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ABSTRACT -

The present paper is concerned with vibrations
reduction of a flat honeycomb panel representative
of a helicopter mechanical deck. The panel is
equipped with 8 PYDF patches as sensors and with 8
PZT patches used as actuators. Vibrations are
induced inte the panel by an electro-mechanical
shaker. The frequency range of interest (0-1000Hz)
makes the problem difficult to treat by classical
methods. Here, the panel is first identified in the
time domain by performing successive single-input,
single-ontput experiments. These experiments are
analyzed by the discrete time Correlation-
Chebyshev method. A very large number of
parameters is necessary for an accurate modeling of
the panel. Still, numerical simulations are readily
performed. A simplified form of the standard L.QG
regulator is used and a solution is obtained by
numerical optimization. The realization of the
controller is detailed and a comparison between
theory and experiment is given.

INTRODUCTION.

The reduction of vibrations or mnoise inside a
helicopter is a challenging problem. Passive
attenuation by appropriate materials which introduce

some damping in the desired range of frequencies is
currently used. Nevertheless, this adds weight and
active comrol has been suggested. At ONERA, this
problem has been under study for some years (see
for example [3] [4]). In the present paper, another
approach to broad band active control by means of
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piezoelectric ceramic actvators is presented. The
structure considered is a flat panel of dimension
0.90mx0.90m and thickness 2 ¢m made from an
honeycomb « Nida Nomex » central part covered on
each side by a fiber glass skin. This panel is
representative of a helicopter mechanical deck. In
this article, the method of systern identification of
the panel is detailed and different conmtrollers are
designed. One of these controllers has been
experimented.

PRESENTATION OF THE EXPERIMENTAL
MODEL.,

The honeycomb panel is flat. It is, as tightly as
possible, cantilevered on its perimeter. The
remaining free surface is a square of dimension

0.84mx0.84m. The parel is equipped with 8§ piezo-
electric actuators made of a thick PZT ceramic film
{lmm thickness) located on one of the sides of the
panel. On the other side and at the same geomeirical
positions are 8 sensors made of a thin (40 um)
PVDF film. The sensors are used to record the
deformations of the panel. The pesition of the
actuators and sensors piezo-elements is givem in
Figure 1 (taken from [4]).

On the panel, a classical electro-mechanical shaker
is also attached. The point where the shaker is
attached is also indicated in Figure 1. The whole
structure made from the shaker and panel may be
considered as a kind of giant loud-speaker. As the
panel deforms, it acts as the membrane of the loud-
speaker and signals are induced into the 8 PVDF



transducers. The goal of the study is to use the
signals given by the 8 PVDF transducers to compute
inputs for the 8§ PZT actuators. With the right
algorithm, it is expected that the noise radiated by
the panel may be reduced.

One possible way to reach this goal is to attennate
structural vibrations. A broad enough range of
frequencies is necessary (here from 0 to 1000 Hertz).
The present paper is limited to the swdy of
attenuation of the vibrations. The first step is the
modeling of the flat panel in the frequency range of
interest (0-1000 Hz). The second step is the design
of a digital controller, the output of which will, in
turn, drive the 8 PZT actuarors.

IDENTIFICATION AND MODELING OF THE
SYSTEM.

The modeling of the whole sysiem, instramented
panel with associated electronic plus electro-
mechanical shaker, is made by identification of open
loop experimental results, The experiments have
been carried out as follow :

1) A single actuator is selected, it may be the
electro-mechanical shaker or one of the § PZT

actuators.

2) A random generator with a limited frequency
band output (Figure 2) is used to drive the selected
actuator.

3) The input of the actuator and the responses of the
8 thin PVDT films are digitized and recorded.

There are 9 experiments of this kind (one for the
electro-mechanical shaker and 8 for the PZT
actuators). Each experiment has 1 input and 8
outputs (response of the 8 PVDF films). The whole
data is considered to be the result of 72 SISO (single
inpat - single output) independent experiments. Each
experiment gives a transfer fumction by the
Correlation-Chebyshev method of Mikild [1-2]. As
the number of natural modes in the frequency band
of interest is large {over 15), the modeling of one
singie SISO experiment necessitates a large number
of parameters. So the complete modeling of the
structure obtained in this way is not suitable for the
design of a classical LQG  (Linear Quadratic
Gaussian) controlier. Nevertheless the modeling
alows simpie and fast simulations of the system.
For the convenience of the reader, an outline of the
Correlation-Chebyshev method is given below.
More details can be found in [1].

B4-2

We consider a stable, causal, linear time-invariant
discrete system where the cutput ¥V is related to the

input ¥ by the equation :
(D

Y+ =Y gut—k) + vE+1)
k20

In this equation Vis an additive error. The

parameters [ and k take positive integer values.

The coefficients g are those of a classical filter

with a Finite-duration Impulse Response (FIR filter).

The sequences {y(f + 1)} and {u(f)} are known
for 0< t SN —1. When <0 we suppose
u(ty=0. If this is not the case, the error

introduced by the hypothesis is added to U . The

auto-correlation function & is defined as :

1 M1
Ok, 1) EZ; W~ k) ulz - 1)

The cross-correlation function @ between the

output and the input is given by :

1 N=-1
o) N; (& + D ult—1)

The sequences {y(f + 1)} and {u(f)} are known
and the {g k} are to be determined. In fact, only a
finite number 72 of coefficient can be considered.
The problem 1s to determine the {g k} for
0< k £n—1, which explain the sequence

{y(t+1)} from the sequence {u(Z)}. In the

Correlation-Chebyshev method, the {g’ k}
sninimize the criterion :
1/
1 n—1 n—1 7 d
J@ == -y 8,60kD)
gy k=0

where 1 < P < co.Forany P satisfying the
condition 1 < P < o2 | the solution is given

by :
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where the element @ij on the row I and column

of matrix (@) is given by :
©,=6i-1,j-1)

If the input sequence {u(t)} is chosen such that

the matrix {@) in (2) is non singular, the {g, } are

determined by (2). Then the sequence {J(f +1)}

given by :

n—1
He+ = Fu—k)
k=0
is an approximation of {Y{(f + Hl.
If two others input-output sequences {y'(¥ +1)}
and {1’ (1)} for 0< ¢ €N’ —1 are available
and are independent of the previous {Y{(f+ 1)}

and {u(z‘ )} , the {§ k}may be used to compute an

approximate value of the output { y'} by:
=l

Pt =) 't~ k)
k=0

It is then possible to define a Root Mean Square
(RMS) error by :

1 N1
E@) = = > (/)= 5DY
i=0
The error £{(7) depends on the number 7 of
parameters g & used. The number 72 can be chosen

to minimize E (H) .

One can also define a relative error by :

R(n) = : f_(ln)
P2
N,;(y @)

B4-3

Remark : As PP approaches infinity, the criterion

J (g ) tends to the Chebyshev criterion :

n—1
~ su ~
Ie(®= " lo(h- Y 800D
I=01,..,n~1
k=0
This remark explains the name, Correlation-

Chebyshev, given 1o Mikild’s method.

Application and validation of the method: The
Correlation-Chebyshev method has been applied to
the identification of the instrumented panel. For
each open loop experiment, the input and all the &
outputs are digitized and recorded with a sampling
frequency close to 4000Hz. There is 32768
consecutive time steps in each record. The power
spectrum of the input is shown in Figure 2 . This
curve has been obtained by the Moving-Blocks
method. The number of points in a block and the
value of the shift are optimized to reduce noise in
the averaged spectrum. In Figare 2 , there is still
much noise in the result, nevertheless the overall
shape of the power spectrum is well defined.

In the identification of the instrumented panel by the
Correlation-Chebyshev method, the npumber of

upknown parameters § ¢ must be optimized. It has

been found that this number is about 600. The
optimal number may slightly vary with the transfer
function considered. However, for the convenience
of the programming, the number 7 has been fixed
to 600. The error thus introduced is negligible.

The identified model must also be validated. One
first validation is the computation of the relative

erroy R(n) which, generally, is less than 10% .

However, the relative error is quite global and does
not give any information on the frequency content of
the reconstructed signal. As the Comelation-
Chebyshev method identifies the system to FIR
filters, the Transfer Function of these filters may be
compared to direct measurements. As usval, the
direct measurements are obtained by the quotient of
the input/output cross spectrum and the input power
spectrum  (Welch’s method) and averaged by a
Moving-Blocks process. Correlation-
Chebyshev and direct measurement are in very close

Generalty,

agreement. Nevertheless, when the actuator and the
sensor are collocated , that is to say when they are at
the same location on opposite sides of the panel,
discrepancies are larger. In this case, the relative



erTor R(?I) is also larger. For example R(n) is

equal te 15.23% for actuator/sensor 5 and 16.57%
for actuator/sensor 6. The most important
discrepancies are for the highest frequencies in the
case of collocation (see Figure 3). This is not
explained though local non linear effects and low
level high frequency input are suspected. As seen in
Figure 2, when the frequency is larger than 1500Hz,
the level of the input is reduced by the low-pass
filter in the random generator. This increases the
level of noise in the final result as shown in Figure 3
specially for the Moving-Blocks method. It is not
known which method provides the best results, The
Correlation-Chebyshev method seems nevertheless
to be very effective when the recorded sequences are
of short duratien. This method is also very good at
filtering. This may be seen in Figure 3 for the
actuator/sensor 5, where the effect of the electrical
current at SOHz is entirely eliminated. At least for
frequencies inferior to 1500z, the Correlation-
Chebyshev method is superior to the direct Moving-
Blocks identification as it is easier to use and it
gives more compact results. For the Correlation-
Chebyshev method, there is only one parameter, the

number 72 of Q p Parameters te be optimized

instead of two, the size of the blocks and the number
of points shifted for the Moving-Blocks method.
Moreover, only 600 real numbers are necessary for
the Correlation-Chebyshev method instead of 2048
complex numbers for the Moving-Blocks Welch’s
method. Yet, even with Correlation-Chebyshev, the
complete modeling of the panel necessitate 9x8x600
real parameters and this is much too large a number
for the design of an optimized controller by any
classical method.

DESIGN QF THE REGULATOR. THEORETICAL
ASPECT.

Foliowing the standard LQG design (Kwakernaak
[51), let us comsider the following discrete time
system :

Xy = Ax; + Bu, + w,
i = Cx
where Vectors x € R(nx1) and

ye R(m X 1) are the state and output of the
system, respectively. The vectors U & R(I=1)

and W € R(7n X 1) are the command and noise,
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respectively. As the state is not directly known, an
chserver is designed to estimate the state. The
eguations of the observer are :

%, = AX +Bu,+D(®, -7,

i+1
y, = Cx
The vector X € R{n X 1) gives an estimate of the

state vector X . The vector j} & R(m X 1) is an

estiznate of the output. The difference between the
measured and the estimated outputs acts as a
corrective term into the first equation of the observer
to make the estimated state to converge towasd the
true state. The command of the system may now be
defined as a function of the estimated state :

@ u = —Ki

I
Replacing ¥ and j; by their values, the equation of
the observer becomes:

2., = (A-BK-DC)% +Dy,

i+1

by taking A" = A-BK-DC , one
obtains :
%, = A% +Dy,

In this equation the observed variables V; are acting

as the command of the observer system. Let us
suppose that we are able w find a stable and
converging observer (for example by the LQG
method). In this case the eigenvalues of the matrix

A’ have absolute values less than 1. Moreover, let
us suppose, that in case of an eigenvalue with
multjplicity P2, it is possible to find P independent

. . /
eigenvectors. Then the spectral norm of matrix A
1s less than 1.

Y

Replacing the estimated state X by its equation in

< p < 1

the command relation gives :
e — —— 4 oy
u, = —KDy, KA X, ;
The process may be repeated np to the point where
J’fo appears. It is possible to chose 5&0 =0 . One

thus obtains for the command the relation :

u,=—K(Dy_ +A Dy _,+A?Dy, .+

%
]




K; -~KA"D , the above

gquation becomes :

N =i
0) u; = ZK; Yicg
g=1

In relation (4}, the command is given as the sum of
terms with decreasing importance.

Defining

x| < Ikhip] o
I K;(l,]) is the term on row [ and column ] of
matrix K; . we have :

max, [k, .7 < [ | < 1K D] o

So, if it is possible to find both a good active control
and a rapidly converging observer with a small

spectral norm ;

Then, it is possible to consider only a limited
number of terms in relation (4).

Let us look now at the sizes of the matrices in

relations {3) and (4). We have : K; =] R(l ,m)

and K € R(l,f’l) . Even if 7, the order of the
system, 1s large, we have always a limited number of
commands { and of measurements #1. In our case
[ =m =8 and the number 711 is 38400. Tt is then
very interesting to use relation (4) instead of relation
(3) if the number /N g can be kept small encugh. It

is now necessary to detail how the regulator can
actually be designed.

PRACTICAL DESIGN OF THE REGUTLATOR.
The regulators presented in this articie are all
constriucted according to relation (4). The simplest

regalator is obtained with N g = 1. In this case,

there is only one matrix, Ki’ = R(l,m) to be

determined. The identification of the panel by
Mikild’s method does not allows the computation of
the eigenfrequencies of the closed-loop system. One
canpnot either estimate a cost function over an
infinite length of time or average an infinite number
of input time functions. What is only possible is the
numerical simulation over a reduced length of time
of the response of the panel to a chosen input time
function. This input can nevertheless be selected
such as it will excite all the modes of the panel in
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the frequency range of interest. For that purpose, the
input must be long encugh in time and contain all
the frequencies. The input sequence can be a limited
part of the recorded experimental input with a power
spectrum such as the one depicted in Figure 2. It can
also be a sequence given by a numerical random
generator. The length of the input sequence must be
long encugh for a good characterization of the
regulator. For the panel, 1000 and sometimes 5000
steps at sampling frequency 4000Hz were computed.
This corresponds to a very limited length of time,
0.25s or 1.25s but was enough to evaluate the
proposed regulator. Each regulator is associated to a
cost number J . This number is taken as the
weighted sum of the RMS value of the outputs of the
8 PVDF films. A penalty term is also added to limit
the command at an acceptable level. The cost

function J is a very non linear function of the

coefficients in the matrix Kj. The optimization of

matrix K; is thus a uneasy task. The algorithm of

optirtization must be particularly robust and should
not necessitate the computation of derivatives of J.
This later condition comes from the fact that the

J can only be obtained by a
numerical finite difference computation. In the

derivatives of

present paper, the optimization of matrix K{ has

been made by the Downhill Simplex method of
Nelder and Mead [6]. This method has been
preferred to Powell’s method because of its superior
robustness. Nevertheless the Downhill Simplex
method does not converge very rapidly and the
number of optimized parameters must be limited.
For the present problem, 68 parameters, that is to

say one single full matrix K; is the upper limit. For

that number of parameters, the optimization of the

cost function needs about 1000 evaluations of J .
The above process allows only the characterization
of the regulators over a finite length of time. It does
stability. the
computations have shown that some seemingly good
solutions were weakly unstable. It has been found
that the simplest and fastest way to test stability is
the monitoring of the decay of the PVDF response
when the excitation is cut off. When the decay is not
rapid enough, the solution is not retained. This
not only unstable solutions but also

not ensure long term In fact,

eliminates



stable ones which are not sufficiently damped. More
precise results could be obtained by the monitoring
of the evolution of the Fourer transform of the
signal. This necessitates a lot of computations and
has not been done. For the panel, this analysis was
not necessary because the structure was sufficiently
well excited with 1000 steps of random input for the
electro-mechanical shaker. Moreover, the chosen
condition for & solution to be acceptable was that the
RMS value of the responses decreases to less than

10'4 of the valae at the start in less than 1000
steps. This decrease is sufficiently rapid to eliminate
any instability. One must also note that the test for
stability does not need to be done for each matrix

K;. It is only necessary t¢ make the test for the

solutions which seem to be better than the best
solution found so far. A very large penalty term is
added to J in case of instability so an unstable
solution is never retained.

i
Kq
are considered. The first matrix can be determined
as previously. Then the first matrix is kept constant
and a second matrix is optimized. The first matrix is
no longer optimum for a regulator with two
matrices. Nevertheless, the first matrix can be
readjusted and the process can be repeated for any

Let us now sappose that more than one matrix

number of matrices K(;. In fact, for the panel, the

matrices are rather weakly coupled. After a {irst

. . - + ’
successive deterrination of the matrices Kq , only

a single readjustment of the matrices was needed. In
any case, a truly opfimal solution is not necessary.
The computations may be halted when the cost

function J ceases to improve sufficiently.
Up to now, only the case of matrices Kq’ with all

their coefficients has been considered. It may
happen that some coefficients are always equal to
zero. This is the case when a sepsor does not act on
some actuator. In the particular case of the panel,
sensors and actuators are collocated. The main

‘d
KQ’
predominamt. One possible way to sumplify the
problem is thus to look for a solution with diagonal

diagonal of the matrices is likely to be

. 4 .
matrices Kq . The number of {ree parameters is then

considerably reduced. All the parameters may be
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optimized at the same time if the number N p is

kept small enough.

So far, the concept of frequency range of interest has
been overlooked. As it may be seen in Figure 3 ,
there is a very large mumber of modes with
frequencies less than 2000 Hz. In its simplest form,

i #
in the case of diagenal matrices Kq , the controller

may be considered as a collection of [ single

input/single outpnt FIR filters with only N g
coefficients. As N P must remain small, the

controller is not able to improve a response where
many modes participate. One is thus obliged to limit
the frequency range of action of the controller. In a
helicopter or aircraft cabin, the lowest part of the
audio-frequencies spectrum is troublesome for the
passengers. Still, these frequencies are not easily
attenuated by passive absorbers. For the study of the
honeycomb panel, the frequency band 0-1000 Hz
has been retained. The controller must be optimized
for this frequency range and stil! have no action that
coold possibly decrease the nataral damping of the
panel at higher frequencies. This is accomplished by
the introduction of a low-pass filter as a constitutive
part of the controller. An elliptic discrete Infinite
Impulse Response (IIR) filter [7] has been chosen as
a compromise between performance, complexity and
ease of implementation. The transfer function of this
filter is depicted in Figwre 4 . As shown in the
figure, there is an important phase shift introduced
by the filter. This phase shift increases (in absolute
value) with the frequency. Over 1200 Hz the phase
is not important because the gain has a very small
value. A linear variation of the phase is equivalent
to a delay which decreases the performances of the
controiler. This is unavoidable because good filters
have always an important phase shift. In our case,
the controller must be optimized with the phase shift
introduced by the elliptic f{ilter. The actual command

is not U; (I,1) given by (4) but u;(l , 1) given
by the following relation :

)

. b(Dyu; + b(2)u; (+.....+b(r + Du,

1+ a@ul_, +

In the case of Figure 4, 7 = 7. In relation (5), the

.....

value of the vector i, is still given by (4). This new




formulation of the command is more complex than
the one given by (4). However, the difficulty of the
problem is not really increased. The number of free
parameters, that is to say the smumbers of coefficients

which must be adjusted in the matrices K; ,
remains the same.
APPLICATION AND COMPARISON WITH THE

EXPERIMENT.
Using the method described in the preceding

. . . 4
paragraph, a regulator with 6 diagonal matrices Kg

has been optimized. The number of matrices
determines the extent of the time hisiory of the
sensor outputs which are considered into the
controiler. Outside 6 sampling steps the sensor
signals does not participate into the definition of the
command. As the matrices are diagonal, another
introduced. The controller is

=8

computing the command of an actuator from the

simplification is

composed  of individual  regulators

output of the collocated sensor. As an example,
Figure 5 shows the transfer function of regulator
n°8. In the figure, the amplitnde of the transfer
function decreases sharply after 1000 Hz and is
neghigible over 1200 Hz. The phase of the transfer

function is also given. At frequency f =0 | the

phase is +180° which simply means that the value of
the Transfer Function is negative or equivalently
that the input and output steady values have opposite
signs. The controller has been realized using a
Digital Signal (DSPy  TMS320C40
associated with a DEC alpha processor.

Yor a better definition of the controller, the highest
sampling frequency of the DSP, 10000Hz has been
selected. However, the DSP introduces a delay due
to the time necessary to complete the computations.
This time delay is a fraction of the sampling period.
As shown on relation {4} a design delay of one time
step (at 4000Hz) was appropriately introduced. The
delay of the DSP is shorter and may be considered
as part of this design delay. Thus the DSP
computation time will not change the design of the
controller.  Using the MATLAB
« invfregz » [7], it is possible to find the coefficients
of an IR filter working at the sampling frequency
10000Hz and having almost the same Transfer
Function (time delay included) as the theoretical
the frequency
In our particular case, discrepancies

Processor

function

regulator defined for
4000Hz.

sampling
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between both Transfer Functions with 4000 and
10000 Hz as sampling frequencies are negligible.
Comparison between theory and experiment :
During the experiment, only the Transfer Functions
{TF) between the electro-mechanical shaker and
each of the 8 PVDF sensors were measured. One
such TF, for sensor 2 , is given in Figure &. Three
curves are reported in this figure. One curve gives
the TF without control. The two nther curves give
the theoretical and measured TF with control,
respectively. One can note the almost perfect
agreement between the theory and the experiment.
This is also the case for the other sensors, Figures 6
and 7 show that the amplitude of the Transfer
Functions is decreased almost everywhere excepted
at the higher end of the spectrum. This can easily be
explained. The cost function is the sum of the Root
Mean Square wvalue of the output signal of the
sensors. The controller thus tries to decrease the
amplitude of the signals independently of the
frequency. The modes with the highest participation
into the time signals are at the lower end of the
spectrum. They show also the largest attenuation as
it could be expected.

In Figure 7, the measured TFs have not been
reported for clarity as they are almost identical to
the theoretical ones.

If f is the frequency and V; (f) is the spectral

density of sensor I , the function Y{f) given by

the following relation:

R
20 logy, 2 y;(f)
i=1

v(f)

is the total spectral density in ¢B. The curves Y(f)

with and without control are represented in Figure 8.
This figure shows a substantial reduction (17 dB} on
the first modal frequency (about 104 Hz) and a
reduction of 15 dB on the secoend modal frequency
(about 224 Hz). This apparent success must not hide
the fact that the cost function (the sum of the RMS
value of the sensor outputs) is only decreased by a
relative factor of 24.55 % . The mean reduction of
the vibratory level is thas low enough.

Another more complex controller has been designed
but has not been experimented. This controller has 6

full matrices K;

time, the input of 2 PZT actuator depends on the

instead of 6 diagonal ones. This



time history of the output of the 8§ PVDF sensors. As
the controller is more complex, the reduction of the
vibrations is also more important. The cost function
is reduced by a relative factor of 45.74 %. In Figare

9, the curves y(f) are represeated. The first modal

frequency shows a reduction of 23 dB and the
second modal frequency a reduction of 19 4B .
There is also some reduction for almost every
frequency, even at the higher end of the spectrum.
Because of its complexity, this last controller has not
been realized.

One can also think to improve the controller by

N

q

relation 4. This Increases the length of the semsor
outputs  time into  the
definition of the commands. In fact, the controller
becomes more complex to realize and more difficult
to design for an improvement which may not be
very large. In the case with 6 complete matrices, the
last matrix improves only the resuits by about 4 % .
Another drawback of the method is the computer
time necessary for the design of the controller. On a
Sun Sparc Station 20, the first case with 6 diagonal
matrices necessitates 39 hours of compufation and

multiplving the number of matrices in

histories participating

the case with 6 full matrices, more than a week. The
frequencies and modes shapes of the panel are
strongly dependent of the tightering conditions of
the screws fastening the panel on its support. The
robustness of the regulator is thus very low. Any
improvement of the robustness is likely to be
accompanied with a decrease of the effectiveness of
the control which is already not very high. One way
to overcome this problem is to design an adaptive
controller. The mumerical method of optimization of

the cost function J can be used for such a design.
Most of the computer time is spent on the numerical
simulation of the system. Still, when all the trials are
added, the actual tofal length of time simulated is
cnly a few minutes long. This may seem long
enough but it muost be noted that the cost function
J decreases as new trals are performed. At the
beginning the decrease is very fast and it becomes
slower when the controller is close to optimal. One
should then obtain rapidiy an acceptable if not
entirely optimal controller.

CONCLUSION
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In this article, a method for the mwodeling of a
composite panel has been presented. The modeling
has been used for the design of suboptimal
controllers. One of them has been experimentally
tried. In the frequency range 0 - 1000 Hz, it appears
that a reduction of 25 % and even up to 45 % of the
vibrations is possible. This has been accomplished
with piezo-electrical patches acting as sensors and
actuators. If the relationships between radiated noise
and vibrations are available, the same method is
applicable to noise reduction.

The present method can also be modified to define
adapiive coatrollers acting on a large frequency
range.
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Figure 2. Power Spectrum (PS) of the input of
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Figure 1. Planform of the plague showing the
position of the 8 actuators and sensors and of the

shaker.
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Figure 4. Gain of the low-pass filter , amplitude and phase.
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Figure 6 . Transfer Functions (TF) with and without control between the electro-
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