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Abstract

As a consequence of the variety of effects the rotation has on the vibrating structure it is important to
take into account the complete shares of the gyroscopic influence in the equation of motion. One prerequisite
will be the formulation of the mass terms for all three axis of rotational movement of the vibrating rotor
even if it deals with slender beam like structures. This is the case as well in the in-house Finite Element
Method code GYRBLAD (FEM) as in the commercial Multi Body System code SIMPACK (MBS), which
both have been applied in this investigation. The numerical calculations of the eigenmodes and the stability
behaviour of the rotor will be conducted by using two different modelling concepts: the advantage of the
FEM code lies in the capability of describing the deformation of a flexible structure in an already linearised
manner (Euler-Bernoulli beam), whereas the potential of the MBS code comes from the complete nonlinear
formulation of the arbitrarily large movements of elastically interacting (rigid) bodies in an equilibrium or
accelerated state. In order to take into account the characteristics of the flexible continuum also in MBS the
code offers the special feature FEMBS for combining the FEM with MBS modelling. Thus the potential of
a sophisticated, hybrid MBS code like SIMPACK as a powerful simulation tool for helicopter dynamics will
be demonstrated with respect to the dynamics of the elastic rotor.

For validation purpose the results of the FEM and the MBS code are quantitatively compared to the
results of the analytical description of the dynamic behaviour of the rigid body rotor. Representing the case
of fixed boundary conditions at a rigid hub the results of a single rotating blade are shown. The Princeton
beam with its double symmetric cross section allows the focus on the DOF coupling as a result only from
the rotation. For a single blade the pure gyroscopic coupling will be displayed for the flapping-torsion
and the lagging-stretching movement. The investigation of the complete rotor (four and six blades) follows
where all classes of rotor eigenmodes (collective, cyclic and reactionless) will be studied. As results for the
eigenbehaviour the coupled complex eigenmodes and the variation of the eigenfrequencies with respect to
the rotation speed will be shown (fan diagrams). Resonance phenomena in the eigenmodes occur at specific
rotor speeds and frequencies where the pitch (torsion) amplitude rises over all measures. Although slim and
slender bodies with a high aspect ratio are investigated not negligible coupling effects specially on the blade
pitch movement have to be stated. For the aeroelastic stability analysis of the rotating elastic helicopter
blade this can be highly hazardous.
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1 Introduction

The rotational movement of the rotor blades of a
helicopter in operation subjects the blade and hub
structure to rotation specific loads which in general
are very high and thus potentially operation limit-
ing constraints. These acceleration effects are spe-
cially rotor speed dependent and may not be ne-
glected in a dynamic simulation analysis under any
circumstance. The gyroscopic effects have an essen-
tial impact on the elastic blade and the complete
H/C-rotor and influence their vibration behaviour
significantly. Eigenfrequencies and eigenmodes can
change totally their amount and shape with respect
to the rotation speed.

In a linear dynamic analysis the gyroscopic ef-
fects have to be superimposed to the “original” dy-
namic behaviour which is displayed by the blade
structure already in the non-rotating state. For the
computation of large deformation states high per-
formance (geometric) non-linear codes have to be
applied. In recent time Multi Body System (MBS)
codes have found their way into structural analysis
within the helicopter industry and the use of com-
mercial MBS tools in the general design and devel-
oppement process seems to become common.

These MBS codes combine their inherent prop-
erty of describing large deflections of the (rigid)
structure including full geometric non-linearities
with in general high performance time integration
algorithms. In combination with special algorithmic
features Finite Element Model (FEM) substructures
can be incorporated into the MBS model replacing
one or several rigid body components. By applying
these so called FEMBS techniques consistent elastic
properties can be introduced into the structure to
any desired amount. Together with these FEMBS
structures and additional degrees of freedom added
to the hybrid MBS model the total dynamic model
can be subjected to any kind of numerical simula-
tion. Thus with MBS and FEM two fundamentally
different approaches in structural dynamics can be
combined with their respective advantages to poten-
tial high power CSD tools.

Since the most MBS codes have not primarily
been designed for describing rotating elastic heli-

copter blades with their numerous potentially cou-
pling mechanisms, in this paper these special fea-
tures have been subjected to a systematic investi-
gation to verify their correctness and reliability. It
could be shown that one potential drawback of the
MBS approach — the composition of the system ma-
trices in a linearised equation of motion for the con-
secutive eigenvalue analysis — is succsessfully tack-
led with due to high performance differentiating al-
gorithms.

In this paper the commercial MBS code SIM-
PACK has been validated by comparisons to the
FEM code GYRBLAD. Our own in-house code
GYRBLAD has primarily been designed for rotat-
ing 3-D beam like structures and contains the com-
plete gyroscopic terms necessary to describe the spa-
cial movement of a rotating elastic structure. Addi-
tional comparisons have been done to the commer-
cial FEM tool NASTRAN and to exact solutions
from linearised analytical models.

The effort to keep a low error margin in the re-
sults to be compared proved to be successful. Most
of the eigenvalue results show a relative error of
around 0.1%. To reach values further below this
margin would have needed an additional high numer-
ical effort in model resolution. On the other hand
error margins approaching or passing the 1% mar-
gin would have been a sign for wrong or incomplete
modelling — on either of both sides to be compared.

2 The Princeton beam

Since in this investigation the focus was put on the
gyroscopic effects of the rotating structure the so
called “Princeton beam” had been chosen as the
generic elastic rotor beam. The original Princeton
beam had been submitted to wide experimental test-
ing and the results have been published in [1]. With
its double symmetric cross section any stiffness or
mass coupling is excluded a priori and it is guaran-
teed for that a coupling between the various degrees
of freedom in case of rotation originates only from
the gyroscopic effects.

The original Princeton beam had a length of 20
[in] and a cross section of 0.5 x 0.125 [in2]. Because of
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the aim of describing and validating the coupling of
all possible DOF combinations a structural system
had to be found where the longitudinal eigenmodes
— at least one — lie sufficient low in the range of
the system eigenvalues. That is why for the numer-
ical investigation here the length of the beam has
been enlarged to 8 [m] and — by preserving the as-
pect ratios of the Princeton beam — the cross sec-
tion was widened to 0.2 x 0.05 [m2]. Thus a model
beam had been created which has the same mate-
rial values and the same aspect ratios as the original
Princeton beam but which is ∼16 times enlarged in
the external dimensions. The system values of this
modified Princeton beam are defined as following:

l = 8.0 [m] ; b = 0.20 [m] ; h = 0.05 [m] ;
l/b = 40 [-] ; b/h = 4 [-] ;

E = 71.73 ∗ 109 [N/m2] ; G = 26.90 ∗ 109 [N/m2] ;
ν = 0.33 [-] ; ρ = 2796. [kg/m3] ; η = 0.843 [-]

The first 17 eigenfrequencies of the modified elas-
tic Princeton beam w/r to rotor speed are shown in
the fan diagramm (Fig. 1). There it can be seen
that within the range of 160 [Hz] the first 17 eigen-
modes comprise 2 torsional (43 and 130 [Hz]) and
one elongation mode (158 [Hz]) (index letters “T”
and “X”) as well as 5 lagging and 9 flapping modes
(index letters “Y” and “Z”) (see also Tab. 7 and 9).

Figure 1: The single blade: The first 17 eigenfre-
quencies w/r to rotor speed (GYRBLAD)

3 Modelling with MBS

Within a MBS algorithm the equations of motion
in general are capable of describing in a non-linear
formulation arbitrarily large displacements of the
individual rigid bodies which in turn are designed
for three-dimensional movement. This implies that
on one hand the complete mass tensor, crucial for
capturing the gyroscopic effects, is included in the
simulation model. On the other hand there is the
need to linearise the equations of motion prior to
carrying out a stability analysis. The linearisa-
tion process which is obsolete in an a priori lin-
earised and balanced Finite Element model requires
high fidelity linearisation and equilibrating algo-
rithms. The eigenvalue results compared in this
study showed to be quite sensitive to the respec-
tive algorithm and the accuracy of the linearisation
process.

Figure 2: The rigid double pendulum: The
second coupled flapping-torsion eigenmode (with
f=1.2517[Hz], n=0.8[Hz]) (SIMPACK)

As an exampel for a simple but complete two
body MBS system a double pendulum rotating
around the vertical axis is presented and here its
eigenbehaviour has been investigated by three dif-
ferent methods (two eigenmodes to be seen in Fig.
2 and 3). Each of the two bodies owns three-
dimensional mass properties and originally the six
DOF for the description of movement in space. The
force interaction between the two bodies as well as
between the inner body and the rotation axis (hub)
takes place by means of the stiffness of the applied
springs. For reasons of compatibility the two x two
lateral DOF vi and wi are blocked and thus this sys-
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Table 1: The rigid double pendulum: The system mass matrix

Table 2: The rigid double pendulum: The geometric stiffness matrix

Table 3: The rigid double pendulum: The system stiffness matrix
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Table 4: The rigid double pendulum: The centrifugal stiffness matrix

Table 5: The rigid double pendulum: The gyroscopic matrix

Table 6: The eigenfrequencies of the rotating/non-rotating rigid double pendulum (three methods ANA-
LYTICAL, FEM, MBS; errors related to the ANALYTICAL solution)
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tem rotating with steady speed owns eight DOF in
total.

The complete linearised equation of motion for
the rotating system in general discretised degrees of
freedom reads (for the MBS as well as for the FEM
formulation):([
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In the Tabs. 1 until 5 the system matrices are dis-
played as a result of an analytical description. Here
the MBS system matrices were built together in an
a priori linearised manner. They comprise both the
“classical” mass, damping and stiffness matrices of
the linear dynamical system and additionally the ro-
tation dependent gyroscopic terms. The respective
DOF are distributed in the deflection vector of the
double pendulum in the following order:

{
u

}
=

{
u1, u2, γ1, γ2, α1, α2, β1, β2

}T
(2)

This complete rotating system is now subjected
to an eigenvalue algorithm and the resulting “ex-
act” eigenfrequencies are compared to the numer-
ical results achieved with two other methods: On
one hand the linearised MBS system of SIMPACK
and on the other hand the FEM calculations with
the code GYRBLAD. The latter was adopted in a
way that made it possible to simulate the “MBS be-
haviour” by introducing an artifical stiffening and
additional joint-specific degrees of freedom. The val-
ues of the first four eigenfrequencies determined with
the three methods are shown in Tab. 6 for the ro-
tating as well as for the non-rotating system. The
displayed error margins are related to the analytical
system and lie in the lower permille range.

The appearing gyroscopic effects can be classified
not only formally as contributions to the damping
(antisymmetric matrix) and the stiffness terms (with
either stiffening or softening impact) but also phys-
ically as phenomena which arise either from the de-
formation of the vibrating structure or the radius de-
pendent position along the rotating blade (geometric
stiffness). The impact of the gyroscopic terms on the

Figure 3: The rigid double pendulum: The sec-
ond coupled lagging-elongation eigenmode (with
f=1.6772[Hz], n=0.8[Hz]) (SIMPACK)

dynamic behaviour of the structure in general can
be described as a coupling of (previously uncoupled)
degrees of freedom. The eigenmodes — even of an
originally undamped system — become complex and
the eigenfrequencies will either be lifted or lowered.
In the case of the presence of double eigenfrequencies
(“1K”-modes; see below) previously equal frequen-
cies will be split up. All these physical phenomena
hold as well for the rotating rigid body models as
for the elastic structure of a continuosly flexible ro-
tor. (A suitable object for studying the gyroscopic
phenomena is the rigid gyroscope of course.)

4 Modelling with FEM

As a consequence of the variety of the effects the ro-
tation has on the vibrating structure it is important
to take into account the complete shares of the gy-
roscopic influence in the equation of motion, e.g. for
all DOF. One prerequisite will be the formulation of
the mass terms of the vibrating rotor for all three
axis of rotational movement even if it “only” deals
with the slender, beam like structure of the rotor
blades. As a matter of fact consistent mass distribu-
tion is required (in lumped mass modelling often the
rotatory DOF is not included in the finite element
formulation).

All this is the case as well in our in-house Fi-
nite Element code GYRBLAD (FEM) as in the com-
mercial Multi Body System code SIMPACK (MBS),
which both have been applied in the numerical cal-
culations for the fully elastic blade. In order to take
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into account the characteristics of the flexible con-
tinuum also in SIMPACK, the special feature of the
MBS code for the combining of FEM and MBS mod-
elling (= FEMBS) can be used. The modelling qual-
ity of the imported flexible Finite Element compo-
nents is then dependent of the capabilities of the
underlying FEM source.

Based on the common assumptions of the Euler-
Bernoulli beam theory the deflection state can be
split into two parts and the Finite Element formu-
lation can be done seperately for the rotational and
the translational displacements. In a virtual energy
formulation the rotation depending additional terms
look like:

δWΩ = 2Ω
∑

i

∫
li

µx (δu v̇ − δv u̇) dx+

+2Ω
∑

i

∫
li

µ̂h

(
δα β̇ − δβ α̇

)
dx−

−Ω2
∑

i

∫
li

µx (δu u + δv v) dx−

−Ω2
∑

i

∫
li

µ̂h (δα α + δβ β) dx+

+
∑

i

∫
li

Nx(Ω)
(
δw′ w′ + δv′ v′) dx (3)

Since these in general so called gyroscopic effects
appear not only linearly dependent of the rotor speed
but also contribute quadratically speed-dependent
terms to the equation of motion, their influence on
the dynamic behaviour of the blades rises signifi-
cantly with the rotor speed. They even represent the
dominant parameters of the eigenbehaviour (eigen-
modes and -frequencies) of the rotor structure in the
various operating regimes of a helicopter.

An exampel for the normal forces in the blade
due to rotation induced centrifugal accelerations is
shown in Fig. 4. These normal forces are an integral
part of the geometric stiffness matrix and have there-
fore to be determined in calculations in advance.

5 The single blade

Representing the case of fixed boundary conditions
at a rigid hub the results for the clamped rotat-
ing single blade are shown. For various methods

Figure 4: The blade axial force Nx of the 64 Finite
Element Princeton beam at n=6[Hz] (GYRBLAD)

comparisons of the eigenvalues of the blade rotat-
ing at different speeds have been done. The pure
gyroscopic coupling in the flapping-torsion and the
lagging-stretching movement will become obvious by
looking at the eigenmodes of the blade. The mod-
ified Princeton beam has been the generic blade
which had been chosen as the object for the real-
isation of the calculations. In contrast to a tech-
nological unsymmetric blade the double symmetric
cross section of the Princeton beam was of advantage
because it allows the focus on the DOF coupling as
a result only from the rotation. All other possible
coupling mechanisms of an arbitrary real structure
are excluded: coupling by mass, stiffness or aerody-
namic effects — which on their part of course can
influence the behaviour of the vibrating real rotor
blades to a remarkable extent.

Thus the numerical calculations of the eigen-
modes and the stability behaviour of the rotor have
been conducted by using two different modelling
concepts: the advantage of the FE code lies in the
capability of describing the deformation of a flexi-
ble structure in an already linearised manner (Euler-
Bernoulli beam), whereas the potential of the MBS
code emerges from the complete nonlinear formula-
tion of the arbitrarily large movements of elastically
interacting (rigid) bodies in a equilibrium or accel-
eration state. The numerical models comprised 32
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finite elements, 32 rigid bodies connected by discrete
equivalent springs or one body FEMBS component
respective.

As result of the calculations for the rotating and
the non-rotating Princeton beam the eigenvalues for
the lower 17 eigenmodes (9 flapping, 5 lagging, 2
torsion and 1 elongation mode) are displayed (see
Tab. 7 and 9). The three above mentioned methods
had been applied and their relative error margings
(related to the GYRBLAD results) remain in the
lower permille range. As to the hybrid FEMBS mod-
elling a NASTRAN finite element model of the elas-
tic Princeton beam was used to be incorporated into
the SIMPACK rigid body formulation. One minor
drawback of the NASTRAN beam in this case had
been that it did not contain the rotatory mass terms.
This explains the growing differences in the eigen-
frequencies of the higher lagging modes (for the fifth
lagging mode around 1%). The pure MBS model
built up with 32 rigid bodies shows a slightly better
performance than the FEMBS formulation except
for the high flapping modes of the rotating sample
where the error also reaches the 1% margin. There
the model resolution of the 32 rigid bodies proved
to be unsufficient for mapping higher modes (with
around 9 nodes and more).

In the fan diagrams of Fig. 1 and 5 the eigen-
frequencies of the Princeton beam are shown with
respect to the rotation speed of the rotor axis re-
sulting from GYRBLAD computations. In Fig. 5
additionally displayed are the results from several
distinct SIMPACK calculations (marked with an “x”
sign). It can be seen that the SIMPACK results lie
well on the GYRBLAD curves. In Fig. 10 and 11
and Fig. 13 and 14 four eigenmodes at different
rotating speeds are shown, each one for a different
“main” deflection component being dominant. (For
the purpose of easier analysing of the eigenmodes the
GYRBLAD results have been displayed in four sep-
arated subdiagrams for the main component of the
nodal displacements each.) Although the compo-
sition of every eigenmode changes with the rotation
speed to take shape in any order the main character-
istics of the gyroscopic coupling here clearly can be
observed in the time delayed coupling of the DOF
classes “flapping-torsion” and “lagging-stretching”.

The stereoscopic illustration of the respective eigen-
modes can be seen in Fig. 9 and 12.

Figure 5: The single blade: The lower eigenfrequen-
cies w/r to rotor speed (o = gyroscopic resonance)
(GYRBLAD; x = SIMPACK)

6 The gyroscopic resonance

The rotation of the elastic blade causes a coupling
between the components of the eigenvectors which
— in case of the double symmetric cross section —
in the non-rotating state have been uncoupled. Al-
though with increasing rotor speed the coupling ef-
fect gets stronger the time delayed imaginary frac-
tion of the eigenmodes remain relatively small as
long as the blade is built up by a long and slen-
der beam. Looking at the variation of the eigen-
modes with increasing rotor speed (“Campbell dia-
grams for the eigenmodes”) mode specific regions
can be detected where the gyroscopically coupled
components display a steep rise. Exceeding the nom-
inal components they strive to infinity and — after
changing sign — they attenuate again. These aston-
ishing resonance-like effects in the eigenmodes occur
at specific rotor speeds and frequencies between the
gyroscopically coupled components.

In Fig. 5 two resonance areas at the crossing
points of the first torsion with two flapping modes
(the fourth and the fifth) are marked with orange
circles. Looking at the component amplitudes of the
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involved eigenmodes (see Fig. 7, 8, 6) one can not
only perceive the distinct resonance points; it also
is evident that in the adjacent frequency regions be-
fore and behind the resonance points an intense cou-
pling with large coupled component fractions occur.
Another example can be found at the crossing of
the fifth lagging with the first elongation mode (see
Fig. 1 in extrapolation). For the latter case and
the lower one out of the two flapping/torsion cases
the eigenmodes at rotor speeds in the neighbourhood
of the respective resonance points are displayed in
Fig. 9 and 12 from SIMPACK and in Fig. 10 and
11 and Fig. 13 and 14 from GYRBLAD calcula-
tions. In the SIMPACK pictures the spacial move-
ment of the oscillating blade is captured whereas in
the GYRBLAD diagrams the equal magnitude of the
gyrosciopicly coupled DOF gets evident.

Figure 6: The single blade: Component amplitudes
of the first torsion eigenmode w/r to rotor speed
(GYRBLAD)

Concearning the blade aerodynamics especially
the torsional movement is highly relevant. While
the aerodynamic forces are sensitive already to mi-
nor changes of the pitch angles in the gyroscopic
resonance areas the blade pitch amplitude rises over
all measures. (At least the frequency bands of rotor
speed of such areas are well confined.) Even for the
slim and slender beam with high aspect ratio that
has been investigated here — and how H/C blades
use to be like — this effect is potentially danger-

ous with respect to the coupled flapping/torsional
movement and the role it plays in aeroelastic stabil-
ity. Although a real aeroelastic rotor system con-
tains several other mass or stiffness coupling effects
not negligible gyroscopic coupling especially on the
blade pitch movement has to be stated. For the
aeroelastic stability analysis of the rotating elastic
helicopter blades these rotational effects can mean a
favourable, i.e. damping, or a highly exciting influ-
ence.

Figure 7: The single blade: Component amplitudes
of the fifth flapping eigenmode w/r to rotor speed
(GYRBLAD)

Figure 8: The single blade: Component amplitudes
of the fourth flapping eigenmode w/r to rotor speed
(GYRBLAD)
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Figure 9: The single blade: The fifth flapping eigen-
mode at n=3.02[Hz] (SIMPACK)

Figure 10: The single blade: The fifth flapping eigen-
mode at n=3.04[Hz] (GYRBLAD)

Figure 11: The single blade: The first torsion eigen-
mode at n=3.04[Hz] (GYRBLAD)

Figure 12: The single blade: The fifth lagging eigen-
mode at n=9.15[Hz] (SIMPACK)

Figure 13: The single blade: The fifth lagging eigen-
mode at n=8.64[Hz] (GYRBLAD)

Figure 14: The single blade: The first elongation
eigenmode at n=8.64[Hz] (GYRBLAD)
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Table 7: The eigenfrequencies of the clamped non-rotating single blade (n=0[Hz]) (three methods FEM,
MBS, FEMBS; errors related to the FEM solution)

Table 8: The eigenfrequencies of the non-rotating 4-blade-rotor (with ci =20/20/30/40/40/50[Hz], n=0[Hz])
(three methods FEM, MBS, FEMBS; errors related to the FEM solution)
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Table 9: The eigenfrequencies of the clamped rotating single blade (n=6[Hz]) (three methods FEM, MBS,
FEMBS; errors related to the FEM solution)

Table 10: The eigenfrequencies of the rotating 4-blade-rotor (with ci =20/20/30/40/40/50[Hz], n=6[Hz])
(three methods FEM, MBS, FEMBS; errors related to the FEM solution)
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7 The complete isolated rotor

To demonstrate the capability of the MBS code SIM-
PACK and the FEM code GYRBLAD in predicting
the dynamic behaviour of complete rotating rotors
the impact of rotation on the eigenmodes and eigen-
frequencies of totally elastic rotors has been studied.
In the investigation of the complete rotor (four and
six blades) all classes of rotor eigenmodes (collective,
cyclic and reactionless) had to be distinguished. As
results for the eigenbehaviour the coupled complex
eigenmodes and the variation of the eigenfrequen-
cies with respect to the rotation speed are shown
in a fan diagram (see Fig. 19). The analysed ro-
tors have been built up by the required number of
the prior investigated single Princeton blade. Sev-
eral different rotor systems have been investigated.
Beside the rotor speed the main system parameters
had been the number of blades, the (mounting) stiff-
ness of the hub and optionally a vertical offset of the
mounting point, i.e. the length of the shaft.

In two comprehensive studies for both the non-
rotating system and the rotor at the rotation speed
of 6 [Hz] the eigenfrequencies of the four blade rotor
are presented in a quantifying numerical compari-
son between the respective eigenmodes. The results
for the case of a stiff hub (ci = 20/20/30/40/40/50
[Hz]) are shown in the Tab. 8 and 10. (the ci-values
denominate the mounting stiffness at the hub for
the six DOF at the MBS joint/FEM node for the
virtual case of rigid body movement in direction of
the respective single DOF.) Like for the single blade
the three methods FEM (GYRBLAD), MBS (SIM-
PACK) and FEMBS (SIMPACK/NASTRAN) had
been applied. The error margins proved to be as
excellent as in the single blade cases.

Further the results for two selected eigenmodes
of the six blade rotor with its even larger variety
of rotor modes (one additional 2-node and one 3-
node eigenmode for each mode order) are presented.
The rotor had been mounted to a stiff hub (ci =
20/20/30/40/40/50 [Hz]) and the hub node (= shaft
height) had an offset of 2 [m]. At a rotation speed of
2 [Hz] the second 1K regressive flapping eigenmode
(see Fig. 15 and 16) and the first 1K regressive lag-
ging eigenmode (see Fig. 17 and 18) calculated with

SIMPACK as well as with GYRBLAD are shown.
In the diagrams of the GYRBLAD results it easily
can be perceived that due to the gyroscopic coupling
and the displacement of the hub now in contrast to
the two blade rotor the eigenmodes consist of all four
main deflection components.

Figure 15: The 6-blade-rotor: The second 1K regres-
sive flapping eigenmode (with f=6.47[Hz], n=2[Hz])
(SIMPACK)

Figure 16: The 6-blade-rotor: The second 1K regres-
sive flapping eigenmode (with f=6.47[Hz], n=2[Hz])
(GYRBLAD)

Finally results are presented for the four blade
rotor with a low hub stiffness (ci = 2/2/3/4/4/5
[Hz]). The eigenfrequencies with respect to rotor
speed are shown in the Fig. 19 in a fan diagram at
varying rotation speeds up to 5.5 [Hz] as a numer-
ical comparison between the methods GYRBLAD
(32 element FEM blade) and SIMPACK (32 rigid
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body MBS blade). Also here the SIMPACK results
for a selection of distict rotor speeds, denominated
with a “x” marker in the diagram, lie exactly on the
GYRBLAD curves.

Figure 17: The 6-blade-rotor: The first 1K regres-
sive lagging eigenmode (with f=2.69[Hz], n=2[Hz])
(SIMPACK)

Figure 18: The 6-blade-rotor: The first 1K regres-
sive lagging eigenmode (with f=2.69[Hz], n=2[Hz])
(GYRBLAD)

In all analysed cases the rotor specific features of
the eigenbehaviour can well be demonstrated: The
eigenmodes can be classified into the mode groups
of collective, cyclic and reactionless movement of
the blades referring to the number of node diame-
ters (denoted with a “K” in Tab. 8 and 10 together
with the counter of the node diameters). The dou-
ble frequencies of the 1K-cases in non-rotating state
are split up with increasing rotor speed, with one

frequency branch primarily less increasing than the
other or even decreasing. Last not least passing the
critical rotation speed the instability case of ground
resonance is delivered automatically as a “part of
the bargain”. In the diagram the stability limit
can be found at the place where the eigenfrequen-
cies of the two lower 1K-lagging modes (“01.Y1”
and “02.Y1”, both in regressive regime now) coa-
lesce again at around 4.5 [Hz] rotor speed (see Fig.
19). In the coalescence point and beyond the solu-
tion of the eigenvalue problem renders one of the two
1K-eigenmodes with eigenvalues having positive real
parts (the other one with negative real parts).

8 Conclusions

The main topics of this investigation have been:

• Modelling rotating blades and complete elastic
rotors with advanced CSD tools like the MBS
code SIMPACK,

• studying the impact of rotation on the dynamic
behaviour of the elastic structure and

• validating the results of eigenvalue analysis by
comparing them with results produced with dif-
ferent methods and other independent codes.

The analysis covered the rotating 8 [m] modi-
fied Princeton blade and various full elastic four and
six blade rotors with different hub mounting condi-
tions. For the computation of the eigenbehaviour it
had been made use of the in-house FEM code GYR-
BLAD, both the rigid body and the elastic import
features of the MBS code SIMPACK (combined with
NASTRAN beam models) and last but not least an-
alytical models of few degree of freedom rotors.

Concerning the physical aspects the aim has been
the modelling of the complete gyroscopic and stiff-
ening terms necessary to map the linear stability be-
haviour of the rotating structure. The focus was put
on the coupling mechanism between the degrees of
freedom by the influence of the rotatory movement.

With the analysed blade areas of rotation speed
have been detected where the structure is extremely



prone to gyroscopic interaction between the compo-
nents of deformation from which the torsional deflec-
tion in terms of aeroelasticity seems to be the most
relevant. Such gyroscopic resonance phenomena can
be hazardous to flight safety since together with the
aerodynamic forces acting on the blades they might
enlarge the affinity of the rotor for aeroelastic insta-
bility.

Figure 19: The 4-blade-rotor: The lower eigenfre-
quencies w/r to rotor speed (cy = cz = 2[Hz]) (GYR-
BLAD; x = SIMPACK)

Finally for validation purposes the results of the
MBS code have been compared quantitatively to the
results gained with the other methods presented.
The MBS results for the eigenfrequencies proved
their compliance up to the numerical model accuracy
(in the promille error range). Thus the potential of
a sophisticated, hybrid MBS code like SIMPACK as
a powerful simulation tool for helicopter dynamics
has been demonstrated with respect to the struc-
tural dynamics of the elastic rotor.

9 Symbols

u, v, w Displacements of the beam cross
sectional centre of gravity

α, β, γ Rotations of the beam cross section
x, y, z Coordinates of the beam, with x being

the longitudinal beam axis
lk, b, h Dimensions of each of the rigid bodies

of the double pendulum
lg Total length of the double pendulum
m Total mass of the double pendulum
η Prandtl torsional coefficient

(η → 1 with b/h →∞)
n Number of revolutions of the rotor
µx Transversal mass distribution of the

beam
µ̂h Rotational mass distribution of the

beam
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