= |

|l oL |

Simulation of an unsteady aeroelastic response of a multibladed rotor in
forward flight
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Abstract

This paper presents the implementation, in the
ONERA elsA software, of a mesh deformation technique
coupled with the ALE method for solving the Euler
equations in the case of soft rotor blade applications.
This method, taking advantage of the C or O topology of
mesh blocks, has proven to be well adapted for such
rotor applications. It uses, as input, the aeroelastic blade
motion provided by a rotor trim analysis (HOST
software of Eurocopter). Test cases concerning “Isolated
Rotors in Forward Flight with Prescribed Deformations
performed in the framework of the CHANCE program
have been computed for inviscid flows and are presented
for 7A and 7AD helicopter rotors for different flight
conditions.

Introduction

The fluid-structure interaction problem is one of the
major issue for prediction of aerodynamic rotor
performances. Helicopter blades undergo strong
deformations mainly due to aerodynamics loads and in
the same time the resulting blade deformation has a non
negligible influence on the aerodynamics of the rotor.
The final goal of ONERA within the Franco-German
CHANCE CFD Project is the strong coupling between
fluid and structure response by means of coupling the
structural dynamic Eurocopter’s HOST software with the
new object oriented aerodynamic elsA software [1]. This
paper aims at describing and illustrating some mandatory
tools developed in order to reach this objective.

The aerodynamic problem is tackled by means of the
Arbitrary Lagrangian Eulerian method (ALE) for solving
the unsteady Euler equations on deforming meshes.

An original technique, well adapted to rotorcraft
applications, has been developed here. Each blade
profile can undergo rigid body motion depending on
flap, lag and torsional degrees of freedom given by a
Fourier analysis provided by the structure code HOST
[2] developed by EUROCOPTER.
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Computations of unsteady inviscid flow around 7A
and 7AD model rotors in forward flight have been
performed for different flight conditions concerning
some CHANCE test cases. Numerical results presented
herein are compared with wind-tunnel test results in
order to validate the “rigid blade and “soft blade
functionalities.

Numerical methods

The Arbitrary Lagrangian Eulerian method (ALE) for
soft rotor blades has been developed in the ONERA’s
elsA software and has already been tested in the case of
the ONERA three-bladed 7A rotor with PF1 tip in
forward flight with prescribed rigid blade motions [1].

Computing a flow past a deforming body such as a
soft rotor blade needs to solve Euler or Navier-stokes
governing equations on a moving grid.

In the finite volume formulation the governing flow
equations solved on a moving grid are written under
integral form :

iIWdQ + § F[W,s]nds
dt Jo oQ (1)
+ ﬁ Fd[W, gradW]nds = 0

Q

in which the following notations have been used:
e The vector of conservative variables:

p p=density
W =|pU| with {U=absolute velocity
pE pE =total energy

e  The convective fluxes:
fo0 P(U—s)ndx

$o0 Fe[W,slndZ =| §50 pU® (U~ + phndX | (2)
fo0[PE(U - s)+ pUlndx



e  The diffusive fluxes:

0
fo FA[W,gradW]ndZ =| - f5 tndZ 3)
- j;@Q (t.U-q)ndz
7 is the viscous stress tensor
and q is the heat transfer vector
e The grid velocity is noted s and % is a

convective derivative. In equation (1), this
derivative expresses that every -elementary
volume 0Q is convected with its velocity s.
The above equations show that only convective
fluxes are affected by the grid velocity.
The following numerical applications concern only
inviscid flows, then diffusive fluxes have been neglected.

Numerical scheme

The Euler equations are written in a rotating
Cartesian coordinate system in which the conservation
laws are expressed using the absolute velocity as
unknown. They are discretized in space and time
following the classical space-centered Jameson explicit
scheme [3]. For the spatial discretization, a cell-centered
finite volume formulation is used, which is of 2™ order
accuracy on smooth grids. For the time integration, a
four step Runge-Kutta scheme is applied. The 2™ and 4™
dissipation coefficients of the Jameson scheme have been
respectively set to 1 and 0.064. Since the calculations
concern an unsteady application, a constant time step is
defined by the user in terms of azimuthal step AW . The
addition of a simplified implicit stage [4] allows to
increase the time step with respect to the stability
limitation of the explicit scheme.

The Arbitrary Lagrangian-Eulerian deforming grid
technique is used to account for the relative motion of
the blades. The ALE formulation needs the knowledge of
the mesh coordinates at every time in order to get the
velocity of the mesh nodes by means of finite differences
using a backward Euler scheme. Hence a new time
dependent metric is computed. In the framework of the
development of the ALE approach in elsd, we can
choose first to compute the cell volume time variation by
means of the well known GCL [5] conservation law
which preserves the freestream conservation property. A
second possibility is to use directly the cell dimensions
(length, height, width) to compute the cell volume (lets
call it the LHW technique). As it is mentioned in [1], the
GCL formulation gives good results for a low increase in
CPU time with respect to the LHW method.

The modifications of the numerical fluxes due to the
ALE formulation are classical in Euler/Navier-Stokes
codes. But the main issue raised by introducing such a
technique in an industrial software as els4 is mainly to be
able to tackle complex body deformations (here blade
deformations) and hence make automatically and in any

cases the mesh distort. In 'Arbitrary Eulerian
Lagrangian', 'Arbitrary' means that the mesh can undergo
any deformation provided that it fits the following
boundary conditions:

- a given body deformation,

- outer boundaries are generally motionless (even if it
is not mandatory).

Then, the mesh deformation can be computed by
means of well known techniques. The most popular ones
are the transfinite interpolation [6] and the spring
analogy [7]. In the frame of this work, a well adapted
technique, described below, has been developed.

Grid Deformation technique

The mesh deformation technique developed here,
in the frame of rotor applications, is limited to structured
meshes with C or O topology in the chordwise direction
and H topology in the spanwise direction j allowing to
define a finite number of blade profiles (j-profiles) which
are the projection of a topological mesh plane (n(j)-plane
noted n(p) on Figure 1) on the blade.

Figure 1: Blade surface deformation

Each j-profile (airfoil) undergoes only a rigid body
motion (composed of translations and rotations) which
induces the mesh deformation of the m(j)-plane. The last
j-profile, at the blade tip, interferes on the j-planes
ranging from the blade tip to the mesh outer boundary
(Figure 1). For the sake of simplicity let us consider a
unique j-profile interacting with a unique =(j)-plane
(Figure 2).




Figure 2: Profile deformation to mesh deformation

The profile motion results in a composition of
translation T,(j) and rotation ,(j) of which the unit
orthogonal transformation matrix is Ry(j). As the
boundary conditions impose the mesh to fit the profile
contour and to be motionless on the outer boundaries, a
damping function f(dw) and a damping transformation
matrix F(d,,) have been defined.

The dimensionless distance dw from any mesh point
X to the profile is defined by:

Dw
DW in

where Dw is the distance from any mesh point X to
the profile and Dw,,;, is the minimum size of the body
adjacent cells in the direction orthogonal to the body.

Then mesh point displacements will result in a
damped profile’s translation Td :

Td (X)=Tp(j) f(d,,) ®)

and in a damped rotation @,(j) of which the matrix
Rd is:

Rd (X)=Rp(j) F(d,,) (6)

The damping function f(dw) must decrease from 1
on the body boundary (dw = 0) to zero at infinity
(dw — ). Using an exponential function:

f(d,,) = Exp(- (ad,,)") (7

is an easy and straightforward way for meeting these
boundary conditions. The higher the shape parameter n is
the less is the size of the plateau of f(d,,). The exponent n
is generally chosen equal to 2. Then the size of the
plateau is sufficient for tackling Navier-Stokes mesh
deformation in the vicinity of the body. In this area, tk(l)e
mesh undergoes a quasi-solid body deformation and
mesh overlapping cannot occur.

The parameter a is given by the equation:

o =~ log(e) /AW ®

Which states that:

fldw . ) <€ )

In the following applications & was arbitrarily
chosen equal to 10° so that the displacement of the
farthest node, lying on the outer boundary of the mesh
block, can be neglected and taken equal to zero.

But overlapping can occur in the inner part of the
mesh. Let’s consider the following 1-D example of an
extensible segment AB lying on the x axis of which A is
the origin. The abscissa of A and B are respectively
noted x, and xg with xg>0. One of the extremity of
segment, let’s say A, undergoes a given translation T, in
the positive direction of the x axis and the other
extremity has a free displacement smaller than a small
positive quantity €. Indeed one assumes that:

T, <x(B)—x(A)

(4)

dw =

(lo)ertlp

The displacements of two close points C and D, *

between A and B, of which the respective abscissa are:

Xc
an
Xp =Xc +dx; (dx>0)
are given by:
Te =Ty f(xc) (12)
Tp =TAf(x¢ +dx)

Overlapping would occur, between A and B if:

Xe+ Taf(Xe) > X +dx + Ty (x¢ +dx) (13)

From an asymptotic development it can be shown
that overlapping can be prevented if:

—L<f'(x)<0 (14)
Ty

Then, from the exponential definition of f(x):

f(x) =Exp(-ax"); (a>0) (15)

and its derivative:

f'(x) = —omx"'Exp(—ox") (16)

one readily obtains the following relation between o,
Xmand n:

a7

where X, is an extremum for f'(x).
Reporting (17) into (16) and then into (14) yields:

—L<—omx§:1 <0 (18)
A
As f(x) decreases with respect to x and as the
displacement of B must be smaller than a fixed positive
value ¢, x,, must be chosen such that:
Xp <Xp <Xp 19)
Finally, if n is chosen such adathaupof the
entipl function (15), near the origin, is large
enough (forlextanget an uniforacehsgnt in
the vicinity of A) and x, is chosen accordingly to
equation (19), then equation (18) gives a range of values
faaventmg  ing. lpv2rlap -D the value of a,
given by (8), should satisfy a constraint which would be
similar to equation (18).
Thindamgirix F(dw) is defined from f(dw) as:
F(dw)=(1-Rp(j))f[dw)+ Rp()"  (20)
where R" means the terms of thesangpmatrix
R and I is the unit matrix. Taking advantage that Rp(j) is
a unit orthogonal matrix amtingpthis equation in
(6) yields the tutlawfogthe rotation matrix
Rd:

Rd (X) = Rp on the body (dw = 0)
" | I at infinity (dw — )

From the above definitions of thendafupction
and indampatrix (equations 7 and 20) the

lacehsgnts of the vertex mesh have the following

p

on the body boundary the mesh undergoes the same
translation and rotations as that of the body,

the outer boundaries of the mesh are not influenced
by the movement of the body.



In the case of "rigid blade computations", the blade
motion is defined by the harmonic analysis of the
rotation angles of the blade around the pitch, flap and lag
hinges. For "soft blade computations”, the blade
deformations and rigid body motions are described by a
modal approach. In this case, two output files from the
HOST [2] code are required: a modal basis and the
generalized coordinates. They give, for each j-profile,
the translation vector Tp(j) and the rotation matrix Rp(j)
taking into account the elastic deformation of the blade
in flap, lag and torsion.

This deforming grid approach has been first used to
manage the relative rigid blade motions for the unsteady
inviscid flow around the ONERA three-bladed rotor with
PF1 tip in forward flight [1]. For mono-block topology
this technique is very close to that developed in the
framework of the moving mesh strategy introduced
initially in the ONERA code WAVES [8]. For multi-
block topologies, the technique developed here depends
only on the distance from a node to the body boundary
and not on the mesh topology as it is the case in that
developed in the WAVES code. Then, one can easily
tackle deformation of multi-block defined meshes.

In order to give some idea of the behaviour of grid
deformations involved around soft blades using the
technique described above, we have considered the
isolated 7A blade submitted to a deformation highly
increased with respect to a real situation. Figure 3 and
Figure 4 show partial views of the grids around the blade
surface and around a blade section without (upper part)
and with blade deformation (lower part).
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Figure 3: Partial views of grids around 7A blade:
without (top) and with blade deformation (bottom)
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Figure 4: Partial views of grids around a 7A blade
section: without (top) and with blade deformation
(bottom)

Applications

ALE developments in elsA4 for soft blades have been
done and results for the simulation of the unsteady
inviscid flow around multibladed rotors in forward flight
with prescribed blade deformation are presented below.

Boundary conditions

The following boundary conditions have been

applied for all the applications:

e On the blade surface, a slip boundary condition
is used (Euler calculations).

e For all far-field boundaries as well as for the
most inboard boundary (near the hub), the
boundary condition is a free stream condition.
For these boundaries, the flow variables are
treated following the concept of characteristic
variables for non reflecting boundary
conditions.

e Between the blocks, since the nodes are
coincident, no extrapolation is used: such
boundaries are equivalent to simple mesh cuts.

List of test cases

The test cases presented in this paper are those to be
performed by ONERA for isolated rotors in forward
flight in the frame of the CHANCE project.



Rotor | MODANE | p | CdS/So 20?5 o | Max
Test case
7A #3312 |04 | o1 1256 | 0.646
7A #317 04| o1 14.80 | 0.646
7A #3210 04| o1 17.47 | 0.646
7AD | #1224 |04 | o1 1251 | 0.646
7AD | #1228 |04 | 0.1 15.06 | 0.646
7AD | #1232 |04 | o1 1753 | 0.646

Table 1: List of test cases

The test cases concern the 7A and 7AD rotors
(Figure 5), tested in SIMA wind-tunnel during the 11"
campaign [9]. These two rotors have four blades,
equipped with OA213 and OA209 airfoils and only
differ by the blade tip shape (from r/R=0.947 to r/R=1):
the 7A blades are rectangular whereas the 7AD blades
have a parabolic swept tip with anhedral. Both rotors
have an aspect ratio AR=15 and a linear aerodynamic
twist equal to -8.3°/R. During these tests, the rotors were
trimmed according to the “Modane law (=0, B~ -
0,). The test cases selected for this study are defined by
an advance ratio u=0.4, a tip rotational Mach number
Mqgr=0.646 and a fuselage drag coefficient CdS/Sc=0.1.
Several rotor lift coefficients Zb have been chosen,
ranging from approximately 12.5 to 17.5 (Table 1).

| —
7AD] | .
| OA213 " 04209
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Figure S: 7A and 7AD blades definition

Grids

The grids generated for this study are made of one
C-H block per blade. For the 4-bladed, the grids have
thus four blocks, each one including
141x40x26=146.640 nodes, with a total of 586.560
points. The grid extension is +0.8R in the vertical
direction (Z-axis) and 1.6R in the spanwise direction.
The same grid topology was adopted previously when
using the WAVES code [10].

A view of the grid for the 7AD rotor is plotted in
Figure 6. This grid is not deformed. However, a
collective pitch angle of 10° is introduced in the grid in
order to limit the amount of deformation during the grid
deformation process. To generate this grid, an analytical

grid generator developed in [8] and similar to the one
used in [11] has been used. A grid is generated around
one blade; the grids around the other blades are deduced
by rotations around the Z-axis, ensuring interfaces with
coincident nodes between the blocks.

Figure 6: Non distorted grid around the 7AD rotor

Influence of blade deformations for the 7A
rotor (test case #312)

The first computations are done with the els4 code
for the 7A rotor, test case #312 (low lift: Zb=12.56). The
time step chosen for this computation corresponds to
Ay=0.1°, so that one rotor revolution is described by
3600 time steps. The rigid and aeroelastic blade motion
is obtained by HOST isolated rotor simulations.

The influence of the blade deformations on the
sectional lift coefficients C,,M2 time histories is
illustrated on Figure 7 (HOST) and Figure 8 (elsA). It
can be checked that the two codes predict the same
tendencies. In particular, the amplitude and phase of the
peak of negative airloads for the most outboard sections
(t/R=0.975) are better predicted by the soft blade
computations. This is due to the torsion -elastic
deformations which create negative incidences near the
blade tip (Figure 9). Still, there are significant
differences between the C,M* coefficients predicted by
els4 (soft blade) and experiment for r/R=0.975 on the
advancing side, which are certainly a consequence of the
lack of accuracy in the predictions of the torsion
deformations (Figure 9).
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Figure 7: Influence of blade deformation on unsteady
airloads (7A rotor, HOST vs. experiment)
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Figure 8: Influence of blade deformation on unsteady
airloads (7A rotor, elsA vs. experiment)
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Figure 9: Torsion deformations at the tip of the 7A
rotor

Figure 10 shows that the predicted rotor total thrust
coefficient converges to a mean value close slightly
lower than 12.5, which is the prescribed experiment
value. It can be noticed that the amplitude of the
oscillations of predicted thrust coefficient is larger in the
soft blade calculation than in the rigid blade calculation.
A similar trend is obtained in the HOST simulations.
Note the quasi periodic evolution of the curve plotted in
Figure 10 between y=180° and 360°, after a transient
phase for 0°<y<180°. This shows that for such a high
speed condition (u=0.4), the solution becomes periodic
after one rotor revolution.

rigid blade
soft blade

1 ]
270 360

1
90 180
)

Figure 10: Influence of blade deformation on total
rotor thrust history

The pressure distributions of the rigid and soft blade
computations are compared to experiment in Figure 11.
The agreement is fair in general. The largest influence of
blade deformations is in the blade advancing side
(y=120°) for the outer sections (r/R=0.975), where the
shock positions are closer to the experiment in the soft
blade computations, which is consistent with the airloads
time histories of Figure 8. For the most inboard section
(t/R=0.5), the agreement with experiment is not good on
the retreating side (y=270°): in this part of the rotor disk,
viscous effects play an important part and are not



included in the present Euler calculations.
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Figure 11: Influence of blade deformation on
pressure distributions (7A rotor, els4 vs. Experiment)
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7A/7TAD comparison (low lift case)

The aerodynamic solution obtained for the 7A rotor
on #312 test case (Zb=12.56) is compared with the
solution for the 7AD rotor on #1224 test case
(Zb=12.51). For stability reasons, the time step required
to run the calculation of the 7AD rotor had to be reduced
by a factor of 2 (Ay=0.05°) compared to the 7A rotor
(Ay=0.1°). In both cases, the blade deformations come
from simulations with the HOST code as it has been
explained in the grid deformation paragraph.

On Figure 12 (upper part), the experiment shows
that the shock waves location is located closer to the
trailing-edge for the 7A rotor than for the 7AD rotor.
Such a tendency is reproduced by the els4 calculations
(lower part of Figure 12). It is reminded here that the
7AD blade tip (including sweep and anhedral) was
designed at ONERA in order to reduce the shock waves

intensity and to reduce the area of transonic flows
appearing on the advancing side for high speed test
conditions. The els4 calculation is able to capture this
reduction of transonic flow for the 7AD blade compared
to the 7A blade, as illustrated by Figure 13.

EXPERIMENT

---A--- TAD

08 1

0 02

xlc
Figure 12: Pressure distributions on the 7A and 7AD
blades (y=90°, r/R=0.975)

machr: 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35

Figure 13: Influence of blade planform on relative
Mach number contour levels (y=90°, p=0.4)

Influence of rotor lift

In this paragraph, the same grid (the one generated
for the lowest value of Zb) is used for the all
computations of the 7A rotor.

Contour plots of lift coefficients C,M* show that the
increase of Zb generates more lift in the front and rear



parts of the rotor disk; this is true for the two rotors, 7A
(Figure 14) and 7AD (Figure 15). This trend is well
predicted by the calculations. Figure 14 and Figure 15
also show the systematic phase lag of the area of
minimum (negative) lift in the calculation compared to
experiment.

[experiment, Zb=12.56 | elsA, Zb=12.56
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e

elsA, Zb=17.47
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Figure 14: Influence of rotor lift coefficient on
airloads distributions (7A rotor)
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Figure 15: Influence of rotor lift coefficient on
airloads distributions (7AD rotor)

Conclusion

The deforming grid approach ALE, first developed
for rigid blade applications has been extended, in the
frame of this work, for soft blade applications and has
been coupled with a mesh deformation technique which
has proven to be well adapted for rotor applications. As
shown in this paper, this technique can tackle large
amplitude deformation of soft blades. This technique
needs as an input the information of the rigid and
aeroelastic rotor blades motion (provided by the HOST
code for the present applications). In the vicinity of the
blade, the mesh undergoes a quasi-solid deformation.
This property confers to this technique to be readily
applicable to Navier-Stokes mesh deformations
preventing for mesh overlapping phenomenon in this
area.

The test cases concerning “Isolated Rotors in
Forward Flight with Prescribed Deformations
performed in the framework of the CHANCE program
have been successfully computed. The results obtained
are in fair agreement with experimental results.

In a near future, the ALE technique will be
combined with the CHIMERA grid technique already
developed at ONERA [12]. Such a method will be
mandatory in order to compute a full helicopter including
main rotor, tail rotor and fuselage.
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