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The response of a helicopter rotor to cyclic pitch control 
inputs is examined from the point of view of error analysis and 
system optimization. The transient deviations of individual blade 
flapping response from the desired steady state are used as the 
bases of calculations of a variety of performance indices. These 
are integral square error (ISE), integral time square error (ITSE) 
integral absolute error (IAE) and integral time absolute error 
(ITAE) . It is shown in the case of conventional articulated rotors 
that Lock number and its influence on the blade aerodynamic flap 
damping ratio is the decisive parameter in minimizing and hence 
optimizing the various performance indices. The ideal Lock number 
is shown to vary between 8 and 12, depending on the performance 
index selected. The influence of real or virtual offset of the 
blade flapping hinges in the case of hingeless rotors is then exa
mined for the case of integral square error, and the ideal trade
offs between blade flapping frequency ratio and flap damping ratio 
are determined. It is found that the optimum flap damping ratio 
increases only slightly with increasing flapping frequency ratio 
thus making the optimum Lock number vary directly with flapping 
frequency ratio. 

2. Introduction 

Making a system in the best possible manner, to make it op
timal, to select the optimum parameters for the system or to "opti
mize'' it is the essence of design activity. The central questions 
in any optimization study are what criterion,performance index, 
cost, penalty or payoff function is to be selected and what aspects 
of the design are subject to selection or rational choice? These 
questions are narrowed considerably by employing quantitative 
measures of performance (or malperformance) which are to be maxi
mized (or minimized) through parameter selection or optimization. 
In this study, since time and dynamics are basic, the malperform
ance of the system is calculated in terms of several error indices 
as a function of key design parameters. Application of Laplace 
transformation techniques permits the calculation and minimization 
to be accomplished by the methods of ordinary differential calculus 
in a closed form. 

The choice of the cyclic pitch control response of a hovering 
helicopter rotor is selected for optimization because it lends 
itself well to a formal, closed form mathematical solution while 
amply illustrating the principles and techniques. It is also a 
substantial rotor design problem in its own right. Broader and 
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numerically more difficult rotor-cyclic and collective pitch
airframe dynamic optimizations would proceed in an identical 
manner except that the performance indices would be evaluated di
rectly as part of the analog, digital or hybrid computation rou
tines. 

In this specific study the key dynamical parameters are 
quickly seen to be the equivalent viscous damping ratio and the 
fundamental flapping mode frequency ratio, which depend on the 
real or virtual offset of the blade flapping hinge, virtual spring 
restraint in the case of hingeless blades, and the Lock number of 
the rotor blade. The several malperformance indices examined and 
minimized are those which quantify the transient dynamical devia
tion of the blide response to cyclic pitch with respect to the 
desired steady state flapping response. 

3. Analysis 

The governing differential equation for determining the 
perturbation cyclic flapping of a helicopter rotor blade respond
ing to a small cyclic pitch control input is derived in Appendix I 
and follows below as Equations (1). Equations (2) give the general 
solution for the case of a step change in cyclic pitch ec when 
time t or azimuth ~ equals zero. There is no flapping motion 
initially. By employing the concept of a virtual hinge and flapping 
restraint both hingeless and articulated rotor designs are in
cluded implicitly in the results.l 
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( 2a) 

( 2b) 

(2c) 

The steady state part of the solution2 is seen to be the 
desired output for the cyclic pitch input. The transient part of 
the general solution2 is seen to be an error in the desired ~antral 
output and leads to a cyclic pitch response control error E(~), 
which is defined as 

E(~)- S(cJ!) - S(,~) ( 3) 

steady 
state 

Consequently the error is the negative of the transient flapping 
response to cyclic pitch control. This is 

E(<j;) 
-I6(l+ 4 

- -e 
E)C/J 

(B cosv ''+ l Dlj) ( 4) 

There now arises numerous possibilities for defining performance 
(or more appropriately malperformance) indices whose magnitudes as 
a function of the system parameters can serve as a quantitative 
gain as much insight into the various possibilities, we first 
specialize the analysis to the case of a fully articulated rotor 
with no hinge offset or elastic flapping restraint. In this case 
the error E(~) is especially simple. That is for s=O, (Ws/Q)=l, 
B2=Q, and S1= -ec. Hence for s=O 

E (I/!) 

~ 
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VD 
( 5) 

Since there is no inherent preference between negative and positive 
errors and early and late errors, the integral of the square of 
the error is a useful malperformance index when evaluated over a 
long interval of time or over many rotor revolutions. Thus we 
define 
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It is shown in Appendix II that P0 can be evaluated by Laplace 
transform techniques and is given by 

( 7) 

The optimum value of Lock number y follows as the value which 
minimizes P0 • That is setting 

1 dPo 1 
= ~ dy 16 

c 

4 = 0 
y2 

( 8) 

results in Yoptimum = 8. It is further seen that P0 is not very 
sensitive to Lock numbers in the range 6<y<l2. This is in the 
nature of the particular malperformance index selected. An alterna
tive index might weight early errors less heavily such as 

( 9) 

It is shown in Appendix II that Pl can also be evaluated by Laplace 
transform techniques as 

=lim{- ~s L[E 2 (\j!)]} 
s+o 

( 10) 

It follows that Pl is given by 

(11) 

and that in this case Yoptimum- 9.6. The index P1 is seen to be 
slightly more sensitive than P0 with an acceptable range between 
eight and twelve. 

Performance indices analogous to P0 and P1, respectively, 
are the integral of the absolute error and the integral of the 
time multiplied by the absolute error. These follow below as P3 
and P4, respectively. 

p3 = limit \j!J IE I d\j! 
\j!+oo 0 

( 12) 

p4 = limit IJ!!IEidiJ! 
\j!+oo 0 

(13) 

These have been evaluated using the Laplace transform methods for 
rectified sine waves3 and are found to be more sensitive to y 
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than in 
P3 and 
tively. 

the cases of P0 and P1. The optimum values of y for 
P4 are found to be approximately ten and twelve, respec-

The more general case of real or virtual offset of the 
flapping hinge is found to be much more complicated numerically 
but to follow similar trends. In this analysis we limit our con
sideration to the malperformance index P0 , the integral of the 
square of the error. Proceeding as in the case of a fully arti
culated rotor, but with a flapping frequency ratio v greater 
than or equal to unity, Po is found to be given by 
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(14a) 

Proceeding as in the earlier case of v=l, the value of ~; which 
minimizes P0 is given by the real solutions to the biquadratic 
equation 
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'I'hese follow from the quadratic formula as 
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It is seen that the general expression for optimum flap damping 
ratio yields the value one-half as the flapping frequency ratio 
approaches unity. Sample calculations for flapping frequency 
ratios greater than unity and as great as 1.20 show that there is 
no significant increase in the optimum flap damping ratio. It 
follows from the definition of Equation (14a) that the optimum 
Lock number for a hingeless rotor blade or other system yielding 
a frequency ratio greater than or equal to unity is given to a 
close approximation by 

Yoptimum -
Sv 

1 + t e: 
(17) 

when the malperformance index Po is minimized or optimized. In 
the case of a virtual flapping hinge offset e: = .15 and a flap
ping frequency ratio v = 1.15, the optimum Lock number decreases 
slightly to approximately 7.7. Noting that the definition of Lock 
number employed in Equation (le) implies a tendency to decrease 
with virtual offset of the flapping hinge, it follows that optimum 
Lock number tends to be primarily a blade property and is not 
sensitive to the hinge location or constraint. It is easy to show 
that Lock number tends to be proportional to blade span and that 
the medium sized rotors of twenty to thirty foot span tend to fall 
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naturally into the optimum range of Lock numbers. On the other 
hand the relatively small and large rotors tend naturally to fall 
outside the optimum Lock number rcnge. However the very large 
rotors generally require significant tip weight to reduce steady 
coning to acceptable levels and thereby will have smaller Lock 
numbers than indicated by rotor span alone. 

4. Conclusions 

It is concluded that the deviation or error between the 
desired steady state flapping response and the actual instantaneous 
flapping motion provides a practical quantitative measure on which 
to base an optimization analysis. The malperformance indices 
Po, Pl, P3 and P4 are seen to be at a minimum when the blade Lock 
number is in the range 8 to 12 in the case of a conventional, fully 
articulated rotor. In the case of practical hingeless rotors, 
where the fundamental flapping frequency ratio is of the order of 
1.1 to 1.2 cycles per revolution, the optimum flap damping ratio 
differs negligiblyfrom that for the articulated rotor. It then 
follows from the relationship between flap damping ratio, flapping 
frequency ratio and Lock number that the optimum Lock number varies 
directly with the flapping frequency ratio of the hingeless rotor 
blade. 

The foregoing optimization of the cyclic pitch response of 
a helicopter rotor serves to illustrate the concepts and techniques 
which are available for enhancing and ultimately optimizing the 
transient and steady state dynamics of an entire helicopter. The 
dynamics of the rotor, control system and airframe are cascaded 
or coupled. A suitable malperformance index (such as the integral 
time absolute error) is selected. A machine or analytical evalua
tion of the index is carried out during the computation of the 
total helicopter system transient response to one or more standard
ized disturbances. The design parameters are then adjusted over 
their permissible range to minimize the index. 
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6. Notation 
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= 
= 
= 
= 

= 
= 
= 
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blade chord, ft 
real or virtual offset of flapping hinge, ft 
real or virtual spring rate, ft-lb/rad 
blade mass, slugs 
radial position of blade element, ft 
subsidiary variable in Laplace transformation 
flapping error, rad 
second mass moment about flapping hinge, slug-ft2 
malperformance index, rad 
radius of rotor, ft 
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lift curve slope for infinite aspect ratio, per rad 

blade element angle of attack, rad 
blade perturbation flapping angle, rad 
blade Lock number, dimensionless 
dimensionless offset of flapping hinge 
damping ratio, fraction of critical flap damping 
amplitude of blade cyclic pitch perturbation, rad 
flapping frequency ratio~ cycles per revolution 
density of air, slugs/ft5 

os 
ljJ 

= 
= 

first mass moment of blade about flapping hinge, slug-ft 
blade azimuth angle, rad 

ws 
Q 

= 
= 
= 
= 

blade fundamental flapping frequency, rad/sec 
rotor rotational frequency, rad/sec 
differentiation with respect to time, per sec 
differentiation with respect to azimuth, per rad 

7. Appendix I - Derivation of Governing Differential Equation 

The dynamic equilibrium of the inertial moments of force and 
the perturbation aerodynamic moments of force about the real or 
virtual flapping hinge of the rotor blade (together with the real 
or virtual spring moment of force, if any) is given approximately 
by the integral from the hinge to the blade tip as 
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Carrying out the indicated integrations and introducing the funda
mental flapping frequency ratio 
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the dimensionless offset distance s 
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and the Lock number 
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and azimuth ~ as independent variable, the governing differential 
equation can be expressed (approximately) as 

8. Appendix II - Evaluation of Performance Indices by Laplace 
Transformation 

( 2 5) 

Applying the final value theorem of the Laplace transform
ation,3 

P
0 
=:limit~~ E2 (~)d~ =limit sL[~f E 2 (~)d~] 

~+oo o s+o o 
( 2 6) 

Applying the integration theorem of the Laplace transformation 

(27) 

Applying the theorem above and the negative differentiation theorem 
in the s-domain which yields multiplication by ~ in the ~-domain 

P1 =:limit ~~E 2 (~)d~ =limit { - ~s L[E 2 (~) ]} (28) 
~+oo o s+o 

P 3 and P4 can be evaluated by the previous methods by making 
use of the Laplace transform of the rectified error E(~) developed 
in Reference 3. 
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