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Abstract 

A multi-fidelity optimization technique is applied to the design of a helicopter rotor blade, in 
order to improve its performance in forward flight. This optimization technique is based on 
surrogate models, which replace high fidelity CFD/CSD simulations, necessary to take into 
account the three-dimensional unsteady effects generated in the flowfield of a complex geometry 
blade planform.  The single low fidelity model, based on Kriging methodology, and generated by 
lifting lines simulations leads to a power benefit of 2.5%, which is not reproducible by a posteriori 
high fidelity CSD/CFD computation. The optimization procedure based on two levels of fidelity 
(lifting line and CSD/CFD simulations), taken into account by Co-Kriging surrogate models, leads 
to a realistic blade planform, for which the power benefit is estimated at 2.2%. The advantages to 
use a Co-Kriging surrogate model in such aerodynamic optimization procedure are clearly shown. 

Introduction 

The aerodynamic optimization of helicopter 
rotor blades is a complex and challenging 
problem, due to unsteady flow phenomena. For 
instance, in forward flight, transonic effects on 
the advancing side of the blade, and dynamic 
stall phenomenon on the retreating side can be 
encountered. Furthermore, the effects between 
the aerodynamic behavior and the elastic 
response of an optimized rotor blade have to be 
taken into account thanks to a fluid-structure 
coupling, which requires a large amount of 
computational cost.  

Historically, the aerodynamic optimization 
procedures were based on the coupling between 
low-fidelity, and fast computational codes 
(generally based on lifting line theory), and an 
optimizer. Two types of optimizer were generally 
used, either gradient-based (limited number of 
evaluations, but the risk to reach a local 
minimum of the objective function), or based on 
genetic algorithms (which require a large 
amount of evaluations, on a large research 
domain, which improves the capability to reach 
the global minimum of the objective function).  

Single-objective optimizations with gradient-
descent are among the first approaches to have 

been used, for their efficiency and rapidity. At 
NASA, Walsh and Bingham decomposed the 
problem of minimization of the power 
sequentially, first optimizing in hover, and then 
handling constraints in forward flight. The 
chosen optimizer was the CONMIN algorithm 
[1]. At ONERA, the CONMIN optimizer has been 
coupled with the R85 comprehensive code [2] to 
optimize the geometric laws of a rotor blade to 
reduce its required power in forward flight, while 
constraining the values of the pitch link loads [3]. 

Recently, the use of gradient-based 
algorithms formulated by discrete steady adjoint 
of the RANS equations has allowed high-fidelity 
models in hover optimizations, as the cost of the 
gradient evaluation becomes practically 
independent of the number of design 
parameters [4][5]. The problem is more complex 
for optimization in forward flight. The adjoint 
formulation for unsteady flows requires either 
considering the problem as periodic in order to 
use a steady adjoint formulation [6], or solving 
the unsteady adjoint equation backwards in 
time. 

The second popular approach for 
optimization is the use of genetic algorithms. 
Results on aerodynamic optimizations based on 
the coupling between a comprehensive code 
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and an evolutionary optimizer show actually the 
effectiveness of this type of optimization 
procedure to optimize the twist law of a 
helicopter rotor blade [7]. The main advantage of 
this method is the reduction of the risk to obtain 
a local optimum of the objective function, to the 
detriment of a high cost of computational time.  

It is now well known that surrogate models 
are well adapted to reduce the computational 
cost due to large number of high fidelity 
evaluations, and to allow the use of high fidelity 
simulations in the optimization loop. For 
instance, CSD/CFD simulations are necessary 
to take into account fluid-structure interactions, 
especially for complex geometry blades. First 
studies performed by Collins [8] proposed a 
multi-fidelity framework combining both low and 
high fidelity tools. The connection between the 
two models was operating by a scaling operator 
that multiplies the value obtained by the low 
fidelity model. Recent studies performed by 
Wilke are based on a variable level surrogate 
model, using the Hierarchical Kriging [9]. The 
low and high fidelity models were built thanks to 
dynamic inflow models and Euler equations 
respectively. The research of the minimization of 
the required power led to optimized blade 
planforms in hover and in forward flight, showing 
a significant computational cost reduction. This 
single-objective optimization procedure has 
been extended to a three levels fidelity model 
[10], and to a multi-objective optimization in 
hover and forward flight [11]. It was shown that 
this technique allows being closer to a reference 
Pareto front than single fidelity optimization 
procedure.  

The optimization procedures presented in 
this paper rely on Kriging and Co-Kriging based 
optimization of rotor blades using multi-fidelity 
methods. These methodologies are described in 
the first part of the paper. Then, these 
optimization procedures are applied to define 
the sweep law of a helicopter rotor blade to 
improve its performance in forward flight. The 
analysis of the origin of the power benefit, as 
well as the aero-elastic behavior of the 
optimized blades is then performed in details.  

Surrogate models methodology 

Surrogate modeling plays an important role 
in many areas of aerospace engineering, like 
aerodynamic design optimization, structural 
design and multidisciplinary optimization. Many 
methods have been studied like polynomial 
models (RSM), moving least-squares (MLS), 
Radial Basis Function (RBF), Support Vector 

Machine (SVM), Kriging and multi-fidelity 
methods. 

Surrogate-models based optimization is a 
numerical optimization approach which uses 
surrogate models to guide the research of the 
real model optimum but with a reasonable 
computational cost.  

A model is developed which can approximate 
the objective function data throughout the 
parameter space. Sample points are generated 
based on a Design-of-Experiment technique, 
based on the Latin Hypercube Sampling (LHS) 
method [12]. In the case of a multi-fidelity model, 
a sample points set is defined for each fidelity 
level. The aerodynamic data at sample points 
are evaluated by the use of respective fidelity 
level CFD methods. The high-fidelity model is 
constructed by means of Kriging or Co-kriging 
approach. If termination criterion is not fulfilled, 
iterative refinement is performed by adding new 
samples points. These new data are expected to 
improve the model accuracy and accelerate the 
research of the optimum.  

Kriging and EGO Methodology  
Kriging is a statistical interpolation method 

suggested by Krige [13] and mathematically 
studied by Matheron [14]. Its estimation depends 
on spatial correlation between n sample points, 

       , for which the function values have 

been computed,        . The Kriging model is 
a zero-mean Gaussian process,    with 
covariance function cov(.,.) modeled as: 

                       . 

where    is the variance of the process and 
  is a correlation function which depends of 

internal parameters,  , that can be determined 
by optimizing the likelihood. 

The optimal unbiased linear predictor 
provided by Kriging theory is expressed as: 
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Kriging provides also an uncertainty 
estimator (variance) as: 

             
              . 

In order to improve the research of the 
optimum, it may be necessary to enrich the 
sampling by adding new points to improve the 
accuracy of the Kriging model. The selection of 
these points can be performed by different 
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means: point of the minimum of the model, point 
of the maximum of uncertainty, EGO (Efficient 
Global Optimization) [15]. To improve the model 
accuracy, the new points must be selected by 
balanced exploitation and exploration. So, EGO 
uses both the predictor and the variance of the 
model to estimate the expected improvement 
(EI) defined by: 

                      
          

  
  

     
          

  
 . 

where      and      are the cumulative 
distributive function and probability density 
function respectively. A new selected point 
corresponds to the maximum of the EI. 

Co-Kriging Methodology 
The idea of Co-Kriging is to use all available 

information to estimate unknown high-fidelity 
information. The basic Kriging formulation has 
been extended by many authors ([16][17][18]) to 
combine multiple levels of simulation to create a 
more  accurate or less expensive high-fidelity 
model. The Kennedy and O'Hagan approach, is 
based on an autoregressive model, and consists 
in approximating the high-fidelity model by 
multiplying the low-fidelity model,   , by a 

scaling factor, and by adding a Gaussian 
process,    , representing the difference 
between the low and high fidelity data, 

                  . 

where       
    

   ,    and     
represent the low and high fidelity sampling 
locations. The covariance matrix   is defined by: 
 

  
  
             

          

   
              

             
          

   

The correlation functions have a similar 
writing as the ones for the Kriging methodology, 
and they depend on the double of internal 
parameters to be determined. As    and    are 
considered to be independent, the internal 
parameters of the low-fidelity model can be 
determined in a similar manner as the Kriging 

model. So,  and the internal parameters of the 
difference process can be determined by 
optimizing the likelihood, but using the difference 
data: 

              
The predictor provided by Co-Kriging is now 

expressed as: 

                          , 
where 

 
      

    
  

    
      

      

  

Kriging provides also an uncertainty 
estimator (variance) defined as: 

             
              . 

Validation on analytical function 

The advantages of the Co-kriging method are 
illustrated by an example with one variable 
optimization. The data are defined by the 
following analytic functions: 

    
 

 
           

                     
 

 

The four high-fidelity data usually chosen for 
this test case are not sufficient to give an 
accurate Kriging model. But this same high 
fidelity data added to the low fidelity data are 
now sufficient for the Co-kriging theory to 
improve the model. It must be noted that, in this 
case, the very good accuracy obtained is due to 
the fact that the two functions correspond to the 
autoregressive theoretical model. 

 

Figure 1: One-variable example of Kriging and Co-
Kriging. 

Application on Rotor Blade Optimization 

The objective of this study is to apply the 
previously described Kriging and Co-Kriging 
optimization procedures, to optimize the sweep 
law of a reference rotor (defined by Airbus 
Helicopters Deutschland), in order to improve its 
performance in forward flight. This rotor is 
equipped with five blades, which are rectangular 
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with a parabolic blade tip. The blade is equipped 
with the two airfoils OA312 and OA309. Linear 
interpolation is performed in the area between 
these airfoils. A linear geometric twist is defined, 
and no anhedral is applied at the blade tip. The 
planform of the reference blade is illustrated in 
Figure 2. 

 

Figure 2: Reference blade planform and location 
of control points 

Three active decision variables on the sweep 
law are chosen, located at 66%, 83% and 100% 
of the rotor radius R. These variables are 
parameterized by cubic splines, whose control 
points locations are shown in Figure 2. The first 
control point defining the cubic spline is located 
at 50% of the rotor radius, and is imposed at 
zero, in order to ensure a smooth transition 
between the initial area (up to 50%) and the 
optimized area (from 50%). The lower and upper 
bound values are respectively set at 0.20 m and 
0.50 m. 

The selected forward flight condition is the 

following: Vh=140 kts, CT/=0.075, =347 rpm. 

Optimization chains 

The research of the optimized solution, using 
a single fidelity model based on Kriging 
methodology is performed, following the 
optimization procedure represented in Figure 3. 

Figure 3: Chart of the optimization procedure by 
Kriging 
The first step consists in building the Design of 
Experiment, based on a LHS spatial 
discretization of the design space. Then, the 
construction of the Kriging model is divided into 
two steps: the research of the minimum of the 
model (obtained thanks to a classical genetic 

algorithm optimizer), followed by the research of 
the maximum Expected Improvement. The 
Design of Experiment is enriched at each step 
by Low Fidelity (LF) simulations of these points. 
This procedure is repeated until a prescribed 
number of evaluations is completed, and the 
check that the power benefit cannot be 
improved. 
  
 The optimization procedure, based on the 
multi-level co-Kriging model, is shown in Figure 
4. 

Figure 4: Chart of the optimization procedure by 
Co-Kriging 

 The first step consists in the generation of 
the two Design of Experiment data base: the first 
one defining the Low Fidelity (LF) model (the 
same as the one built for the Kriging model), 
built on a moderate number of points; the 
second one defining the High Fidelity (HF) 
model, built on a restricted number of points. 
Then, the building of the Co-Kriging model can 
start. The minimum point of the model is 
researched by the genetic algorithm, and then 
evaluated by a High Fidelity simulation. This 
new point is added and enriches the data base. 
Another optimization procedure can begin, as 
well as the research of the Expected 
Improvement point, until the convergence of the 
optimized solution (determined by the user).   

Numerical Tools for Low Fidelity Simulations 

The low fidelity simulations are performed 
with the HOST comprehensive rotor code, 
developed by Airbus Helicopters [19].  

The structural model is based on a 1D Euler-
Bernouilli beam model. The beam is discretized 
along the pitch axis as an assembly of rigid 
segments, with the elastic properties contained 
in the joints connecting them. The structural 
properties of the blade (lineic mass, inertia, 
stiffness …) are given as input data file for 

LF DoE LF Simulation

Creation of LF Model

Research of the LF model optimum LF Simulation

Research of the Expected Improvement LF Simulation

LF Model Updated

End ?
NO YES

Optimized Blade

Optimisation

LF DoE LF Simulation

Creation of HF Model

Research of HF model optimum HF Simulation

Update HF Model

End ?
NO YES

Optimized Blade

Optimization

HF DoE HF Simulation
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HOST. During the aerodynamic optimization, the 
blade planform is modified, which leads to a 
change of these structural data. In 2011, 
ONERA has set up an updating procedure of the 
structural data used in the HOST code, to be 
integrated in an optimization loop [7]. This 
procedure is based on the definition of analytical 
polynomial laws which describe the evolutions of 
the stiffnesses, the lineic mass and the inertia 
with respect to the chord and the thickness laws 
of the profiles of the blade. Some analytical 
corrections are also performed to adjust the 
elastic axis and the gravity center axis with 
respect to the pitch axis. This procedure allows 
obtaining realistic blade planforms, with internal 
structural properties adapted to the new blade 
design. This procedure has been used in the 
framework of this study, for the optimization of 
the sweep law of the selected reference rotor.  

The HOST comprehensive code is based on 
a lifting line approach to compute the blade 
aerodynamics loads. The blade is considered as 
a succession of 2D blade elements, each one 
shedding a vortex of bound circulation 
generated at its aerodynamic center (quart-
chord). At a given Mach number, and for an 
equivalent angle of attack, the lift, drag and 
pitching moment coefficients can be obtained via 
2D semi-empirical airfoil lookup tables. The 
compressibility effects and the viscosity are 
somewhat taken into account in these tables. 
Furthermore, some numerical corrections can be 
activated to include the effects of rotation and of 
the local blade geometry (like swept tips), and 
also the effects of stall and unsteadiness 
(unsteady Theodorsen corrections). 

The rotor wake influences the rotor 
performance via the induced velocities it 
generates at the rotor disk. In the framework of 
this study, the METAR [20] prescribed wake 
model, (developed by Airbus Helicopters) is 
used. The wake geometry is prescribed, and 
considered helical. The induced velocities 
generated by a vortex segment of the wake are 
computed using the Biot-Savart law. This 
system is solved iteratively in the trim loop, until 
convergence is obtained, when the circulation of 
the wake is in accordance with the sectional 
blade lift forces, and the mean induced velocity 
reaches a threshold value.  

Then, the HOST computations provide the 
rotor trim characteristics such as the control 
commands (pitch, flap and lag angles), the local 
aerodynamic loads, the blade elastic 
deformations, and the shaft power (which is the 
objective function of this study). The CPU cost of 

one evaluation is between 2 and 5 minutes on a 
local computer. 

Numerical Tools for High Fidelity 
Simulations 

The high fidelity simulations are 
performed using a loose coupling procedure [21] 
between the CSD code, HOST, and the CFD 
code developed at ONERA, elsA [22]. The 
three-dimensional unsteady Navier-Stokes 
equations are solved by the centered second-
order Jameson’s scheme. The time integration is 
performed by an implicit Euler scheme, with 
some Gear sub-iterations. The turbulence model 

is Kok k-, with SST corrections. The flow is 
supposed to be fully turbulent. The grids are 
generated thanks to Chimera technique. A multi-
blocks, deformable mesh of O-H type is 
generated around each blade, containing 1.7 
millions points. These blade grids are immersed 
into a Cartesian background grid, containing 13 
millions points. The total mesh contains in total 
21.5 million points, and can be considered as 
refined.  

To obtain a satisfactory level of convergence 
of the coupling procedure between the CSD and 
CFD codes, 6 iterations are performed for each 
design point. The CPU cost for a converged 
coupling procedure requires about 90 hours, on 
64 processors of the SGI parallel calculator, 
used at ONERA. 

Analysis of Optimization Results with 
Kriging 

The first step of the Kriging optimization 
procedure is to build the Design of Experiment 
data base. Over the initial 30 points defined by 
the Latin Hypercube Sampling procedure, 16 
points have reached the numerical convergence 
of the Low Fidelity simulations (performed with 
the HOST code). Then, the data base has been 
enhanced by the research of the optimum points 
followed by the research of the Expected 
Improvement points. After 47 converged HOST 
evaluations, it is considered that the Kriging 
optimization process has converged to the 
global optimum solution (Figure 5). 
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Figure 5: Convergence of Kriging optimization 
procedure 

It has also been checked that this solution is 
similar to the one obtained with an evolutionary 
optimizer (CMA-ES), with a large reduction of 
HOST numerical evaluations. The cost of CPU 
is then reduced by a factor of 5.  

The power benefit with respect to the 
reference blade is equal to 2.5%. The blade 
planform is visualized in Figure 6 . 

 

Figure 6: Optimized blade planform obtained by 
CMA-ES and Kriging procedures (with updated 
structural data) 

The optimization procedures lead to a 
modification of the sweep law, the optimized 
blade has a forward sweep from 50% to 73% of 
span, followed by a backward sweep from 73% 
to the blade tip. It has been checked that this 
optimized blade planform is less sinuous, with 
reduced sweep angles in the backward and the 
forward directions in comparison with the one 
obtained without updating structural data during 
the optimization procedure.  

The origin of the shaft power benefit can be 
analyzed by the distribution of the local lift 
coefficient on the rotor disk in Figure 7. 
 

  

Figure 7: Distribution of the sectional lift 
coefficient of the reference and Kriging optimized 
blades 

The HOST low fidelity calculations on the 
Kriging optimized blade predict a reduction of 
the lifting loads in the internal part of the blade, 
in the second quarter of the rotor disk (between 
90° and 180° of azimuth) with respect to the 
reference, as illustrated in Figure 8.  

 

  

Figure 8: Distribution on the rotor disk of the 
difference between the Kriging optimized and the 
reference rotors of the sectional lift coefficient 
and the surfacic induced power (LF simulations) 

It has been checked that the origin of the power 
reduction comes from a benefit of 11% of the 
induced power. The areas on the rotor disk 
where the reduction of the induced power is 
predicted are shown in blue in Figure 8. Three 
main regions can be noticed: the blade tip on the 
advancing and the retreating side, and the inner 
part on the advancing side. 
The optimization of the blade sweep has an 
influence on the elastic torsion deformation and 
on the flap displacement at the blade tip, as 
shown in Figure 9.  
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Figure 9: Torsion and flap deformations at the 
blade tip of the reference and the Kriging 
optimized blades 

By its forwards sweep planform, the optimized 
blade obtained by the Kriging optimization 
procedure has a higher elastic torsional 
response than the reference in terms of 
amplitude (about 4° instead of 2°). The flap 
displacement is less sensitive then the torsion 
angle to the optimized blade planform (same 
evolution and same order of magnitude of the 
amplitude).  

Analysis of Optimization Results with Co-
Kriging 

As for the Kriging optimization process, the 
first step is to evaluate the objective function 
(shaft power consumed by the main rotor) with 
the High fidelity numerical tool (weak coupling 
between HOST and elsA), on a very limited 
number of points, to build the High Fidelity 
Design of Experiment. Four points have been 
chosen among the 30 initial ones issued from 
the Latin Hypercube Sampling procedure.  

 

Blade planform % (LF) 

% (HF) 

 
LHS2 

+14.2 

+36.7 

 
LHS4 

+1.5 

-0.3 

 
LHS7 

+2.7 

+2.4 

 
LHS9 

+4.1 

+0.4 

 
Optim Kriging 

-2.5 

+0.7 

Figure 10: Blade planforms and power benefits 
estimated by LF and HF simulations for the HF 
DoE and the optimized rotor by Kriging 

It is very interesting to notice that the hierarchy 
between the different rotors can be different with 
respect to the level of fidelity of the numerical 
tools (Figure 10). Especially, the HF simulations 
predict a loss of performance for the optimized 
blade issued from the Kriging procedure. 
Actually, the three-dimensional unsteady effects 
can have a major influence on rotor blades, 
especially designed with a double sweep. Hence 
the importance of taking into account these 
effects in the optimization procedure thanks to 
surrogate models, as Co-Kriging. 
The convergence of the optimization procedure 
with Co-Kriging is obtained after 6 researches of 
the minimum point, as illustrated in Figure 11. 

 

Figure 11: Convergence of optimization procedure 
with Co-Kriging 

A limited number of HF simulations is required to 
obtain an optimized solution: 4 for the 
generation of the Design of Experiment, 6 for the 
research of the Minimum Point, and 1 for the 
research of the Expected Improvement point, 
that is to say 11 HF evaluations in total. This 
shows the efficiency of the Co-Kriging method to 
reach an optimum point that should have been 
obtained after (at least) 60 to 70 evaluations with 
the Kriging method. The gain in CPU time with 
the Co-Kriging method is about 6 with respect to 
the Kriging method.  
For the OPT6 point, the difference between the 
minimum of the model and the estimation of this 
minimum point by HF calculations (weak 
coupling between HOST and elsA) is less than 
2%, which is considered to be as satisfactory as 
possible.  
Beyond the OPT6 point, the Expected 
Improvement point and the next OPT7 
optimization point have been researched by the 
procedure, and then evaluated by HF 
calculations. As shown in Figure 12, the EI6 
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design does not provide any power benefit 
estimation. The estimated power benefit 
provided by the OPT7 optimized design is lower 
than the one obtained by the OPT6 point, which 
can be considered as the best optimization point 
of the Co-Kriging procedure. 
 

Blade planform % (HF) 

 
OPT6 = Optim Co-Kriging 

 
-2.2 

 
EI6 

 
+0.02 

 
OPT7 

 
-0.7 

Figure 12: Blade planforms and power benefits 
estimated by HF simulations during Co-Kriging 
optimization procedure 

The Co-Kriging optimization procedure results in 
a blade planform presenting a forward and then 
a backward sweep, evolving in a smoother 
manner than for the blade planform generated 
by the Kriging optimization procedure. The 
sweep angles are reduced with the Co-Kriging 
optimization procedure. So, this blade planform 
seems more realistic than the optimized Kriging 
blade. The break that can be noticed for the 
optimized blade planforms corresponds to the 
location of the first optimized control point (at 
mid-span), parametrizing the sweep law by a 
cubic spline. These designs have been 
generated in the framework of a theoretical 
study, and should be adapted if necessary. 
The shapes of the models obtained by Kriging 
and Co-Kriging optimization procedures on the 
three decision variables, allowing to obtain their 
respective optimum point are shown in Figure 
13.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Kriging Co-Kriging 

  

Figure 13: Shapes of the Kriging and the Co-
Kriging models 

Three zones on the Kriging and the Co-Kriging 
models can be detected: two with a maximum 
level, one with a minimum level. But, their 
shapes are quite different. For the Kriging 
model, the minimum point is inside an area 
close to the upper boundary of the research 
domain. For the Co-Kriging model, the minimum 
point is detected in a more extended region, 
inside the domain. The Co-Kriging domain 
brings a large modification of the shape of the 
surface response, and not only an improvement 
of the accuracy of the Kriging model.    
 
The power benefit is estimated at 2.2% by High 
Fidelity computations, which is very encouraging 
The origin of this power benefit can be analyzed 
on the one hand by the distribution of the 
sectional lift estimated by the HF simulations, 
respectively for the reference, and the optimized 
rotors issued from the Kriging and the Co-
Kriging procedures (Figure 14), and on the other 
hand, by the distribution of the difference of the 
induced power between the optimized Co-
Kriging and Kriging rotors, obtained at the end of 
the coupling procedure of the HF simulations 
(Figure 15). 
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Figure 14: Distribution on the rotor disk of the 
sectional lift coefficient for the reference; and 
kriging and Co-Kriging optimized rotors (HF 
simulations) 

 

 

Figure 15: Distribution on the rotor disk of the 
difference of the surfacic induced power between 
the Co-Kriging and the Kriging optimized rotors  

Both optimization procedures allow a decrease 
of the shaft power thanks to the reduction of the 
positive loads in the internal part of the 
advancing blade, in the second quadrant.  
The smoother sweep evolution obtained with the 
Co-Kriging procedure with respect to the Kriging 
optimization results can explain the power 
benefit estimated by HF calculations (-2.2% for 
the Co-Kriging optimized blade, +0.7% for the 
Kriging optimized blade). The vanishing of the 
over-loaded area at the blade tip on the fore 
region, as well as the reduction of the negative 
peak at the blade tip in the second quadrant are 
the main reasons to explain the power benefit 
for the Co-Kriging optimized blade. These areas 
correspond to the ones where a gain on induced 
power is estimated (blue areas in Figure 15), 

showing that the main shaft power benefit 
comes from a reduction of the induced power. 
The blade tip deformations in torsion and flap 
obtained by the two optimized rotors are shown 
in Figure 16. Thanks to its smoother and more 
realistic planform, the torsional deformation of 
the Co-Kriging optimized blade has an amplitude 
reduced by 3° in comparison with the Kriging 
optimized one, as well as a more regular shape.  
 

  
 

Figure 16: Torsion and flap deformations at the 
blade tip of the reference and the Kriging and Co-
Kriging optimized blades 

Concluding Remarks 
The optimization of helicopter rotor blades is 

a challenging problem, as far as more and more 
complex blade planforms are considered. The 
main issue is an accurate simulation of the 
flowfield taking into account the three-
dimensional unsteady effects in the optimization 
loop. By this way, one can assume to obtain 
realistic blade planforms and accurate 
estimation of the power consumed by the main 
rotor (generally considered as the objective 
function of the optimization procedure). The 
CFD codes being computationally expensive 
and time-consuming, it is well adapted to use 
surrogate models, which replace high order 
simulations.  

In this paper, ONERA presented two 
aerodynamic optimization procedures, to define 
an optimized sweep law, by using low and high 
fidelity levels of surrogate models, respectively 
based on Kriging and Co-Kriging methodologies. 
The main results obtained in this study are the 
following: 
- The optimization procedure in which the low 

fidelity HOST computations are replaced by 
a Kriging model provide an equivalent 
solution to the optimization procedure based 
on the coupling between HOST and the 
evolutionary CMA-ES optimizer, with a large 
gain on the CPU time consumption (factor of 
5).  

- A posteriori, the evaluation of the shaft 
power of this optimized Kriging rotor, by high 
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level computations (CSD/CFD weak 
coupling) actually shows a loss of about 1% 
on the shaft power with respect to the 
reference rotor. This shows that the 
accuracy of the HOST computations and the 
Kriging models is not sufficient. Taking into 
the high level evaluations in the optimization 
loop is mandatory, and can be effective by 
the use of a Co-Kriging model. 

-  The blade planform of the optimized rotor 
issued from the Co-Kriging optimization 
procedure is smoother and more realistic 
than the previous optimized rotor. The 
power benefit is estimated at about 2% by 
high level computations. A limited number of 
HF simulations is required to obtain a 
satisfactory optimized solution. A factor of 6 
in CPU time can be estimated with respect 
to what would have required the Kriging 
optimization procedure based on HF 
simulations. 
 

Perspectives of this study should consist in 
developing and validating different models to 
quantify the uncertainties propagation 
depending on selected uncertain and/or 
epistemic variables. This work should then lead 
to robust optimization procedures. 
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