
Implementing Multi-variant Avionic Systems with
Software Product Lines

Frank Dordowsky
ESG Elektroniksystem- und Logistik GmbH

frank.dordowsky@esg.de

Walter Hipp
Eurocopter Deutschland GmbH
walter.hipp@eurocopter.com

Abstract

Eurocopter is member of the international NHIndustries (NHI) consortium that develops and produces the
NH90, a medium weight multi-role helicopter. The growing number of customers and their specific mission
requirements for the NH90 has led to an increasing number of functionally different helicopter variants.
These variants have a large impact on the avionics system and therefore also on the software of the main
computers that control it. Although the software is different for every system variant, they all share a large
amount of common functions and code making it reasonable to reuse software across variants. In order to
cope with the high number of software variants, the NH90 software team adopted a Software Product Line
strategy. This paper describes the fundamental concepts and achievements of this strategy and discusses the
potential benefits of extending the product line principles to the whole system development process. The
software product line approach is also an ideal complement to the concept of Integrated Modular Avionics
(IMA). On the other hand, adopting the concept of incremental certification that has been developed for
IMA systems could reduce the qualification effort of product line systems when compared to traditional
system development.

1 Introduction

1.1 NH90 Avionics System Architecture

The NH90 Avionics System is decomposed into two
major subsystems: the CORE System and the MIS-
SION System [5, 6]. Each major subsystem is con-
trolled and monitored by a redundant set of main
computers, the CORE computer (CMC ) and the
MISSION computer (MTC ) respectively. Major end
items of the CORE system are the Display and Key-
board Units (DKUs) and the Multifunctional Dis-
plays (MFDs) that together form the main human-
machine interface (HMI) of the NH90 helicopter.
The equipment of each subsystem is connected to its
main computers either via a dual redundant MIL-
STD 1553 bus, via ARINC 429 lines, serial RS-485
lines, or via Ethernet lines. The main computers act
as bus controllers for their respective data buses.

1.2 NH90 Avionics Software Architecture

The software architecture of the CORE and MIS-
SION computers is completely determined by the
real-time framework NSS that is developed as a sep-
arate product [5, 6, 9]. NSS stands for NH90 Em-
bedded System Software and frees the application

programmer from intricate real-time programming
tasks such as real time scheduling, device and I/O
handling, data conversion between Ada data struc-
tures and raw I/O data, error and exception han-
dling, redundancy management etc. The NSS is im-
plemented on top of the equipment software that
provides hardware related services and is furnished
by the computer manufacturer (see figure 1). The
isolation layer separates most of the software from
the specialities of the hardware and equipment soft-
ware.

The application components provide the mission
functions and control the avionics equipment. These
components are called Operational Processing Func-
tions (OPFs) and vary between CORE and MIS-
SION computer as well as between helicopter vari-
ants.

The NSS must be adapted to the specific needs
of the CMC and MTC software. This adaptation
is performed as specific modification of certain NSS
source files, which is performed either manually or
by code generation. The majority of the source code
is generated (see 1.3), especially the control and data
interfaces between the NSS and the OPFs.

The DKU operational software controls the page
and display logic and performs format checking on



Figure 1: Software Architecture of the NH90 Main
Computers

manual data entry. It requests data to be displayed
(called parameters) from either CORE or MISSION
computer and sends back crew commands and their
associated parameters.
The DKU software architecture is completely dif-

ferent to that of the main computers: all page and
display logic in the DKU is table driven. These ta-
bles had been factored out into a binary format so
that they can be separately loaded to the target sys-
tem. The DKU tables are completely generated.

1.3 NH90 Software Development Process
and Tools

The NH90 software development process follows the
V-model as mandated by DOD-STD-2167A [1]. It
starts with software requirements analysis, followed
by preliminary and detailed design, coding, host in-
tegration and testing, and finally target integration
and testing. The development of a software version
terminates with successful pass of the formal qual-
ification tests that also mark the acceptance of the
software by customers and certification authorities.
The software requirements are prepared by the

systems engineering department, and the qualified
software is delivered to the NH90 integration rigs.
NH90 system and software development is per-

formed with a large set of heavily customised com-
mercial tools as well as a high number of custom
developed tools [6, 9]. All these tools form a closely
coupled tool chain. Figure 2 shows a subset of these
tools that are relevant to this article.
The left hand side of figure 2 depicts the system

engineering tools that provide the input to software
development:

• The commercial tool DOORS is used to cap-
ture and manage system and software require-
ments. DOORS has no direct interface to the

Figure 2: NH90 Development Tools (Subset)

software engineering tools. Instead, the Soft-
ware Requirements Specification (SRS ) set of
documents is generated out of the content of
the DOORS repository.

• Interface definitions (e. g. message and signal
definitions) on systems level are defined in a
proprietary database called Avionic Data Base
System (ADBS ).

• The DKU Interface Definition Tool (DUET )
contains all data necessary to describe the page
logic and content of the DKU, as well as asso-
ciated crew commands and parameters. This
tool is also used to generate the DKU tables
(not shown in figure 2).

The majority of the data kept in ADBS and
DUET is imported into the Software Generation
Database Tool (ODIN - OFRS Data and Interfaces
of NH90). The software engineers augment this data
with software related information. The content of
ODIN is extracted and fed into a set of generators
that produce more than 60 percent of the applica-
tion source code of the main computers. Especially
the virtual subsystems and the button database are
completely generated out of ODIN data.
The UML modelling tool Rose from

IBM/Rational was until recently used to pre-
pare the preliminary design. The Ada package
specs of the application components are forward
engineered from the Rose model. Rose is currently
being replaced by Topcased.
Detailed design and coding is performed in

the software development environment APEX of
IBM/Rational.
The Software Design Description (SDD) and the

Interface Design Description (IDD) are the princi-
pal documents produced by the NH90 software team
for every computer and every software version. The
IDD is generated out of the ODIN data augmented
by some manually written text. The SDD is a very



large, much more complex document, consisting of
more than 1,000 pages. It is composed of manually
written sections and of sections extracted from the
Rose model and the source code.

1.4 NH90 Variants

The NH90 was originally planned for 4 nations
(France, Germany, Italy, Netherlands) for all armed
forces (sea, land, and air) so there were already 8
variants from the beginning [13]. Every new cus-
tomer then increased the total number of variants.
Moreover, for every contractual variant there may
be more than one technical variant.
The first dramatic increase occurred in 2002 when

the number of variants rose from under 10 to nearly
25. The second large raise was in 2005 (from 25 to
over 40).
The helicopter variants manifest themselves in

variations of the NH90 avionics system. These vari-
ations are characterised by the fact that most avion-
ics systems functions today are related to avionics
equipment and their features. Therefore, helicopter
variants are determined by their equipment config-
urations.
It is also very common that equipment that is

already integrated into one customer’s variant is re-
placed by a functionally equivalent device which is
manufactured by another customer’s industry.
Complex equipment provides optional features;

different customers may select different combina-
tions of equipment features.
There is also equipment that is integrated into the

CORE system for one set of helicopter variants, and
into the MISSION system for another.
The most important areas that are affected by the

variations listed above are:

• Data Bus Framing : The message traffic on
the databuses of the NH90 avionics system is
strictly deterministic. The message schedule
is determined at design time and encoded in
tables called frames. Helicopter variants have
different equipment that leads to different mes-
sages and hence to different data bus frames for
every variant. The operational software must
contain the data bus frames of all variants it
supports and must be able to select and acti-
vate the frame that corresponds to the actual
variant.

• MFD and DKU formats: MFD as well as DKU
page content, the page navigation logic and
the associated crew commands depend on the
equipment that is fitted to the actual variant.

• Varying set of application functions: The ma-
jority of application functions control and mon-
itor the avionics equipment. Varying sets of
equipment lead to differing sets of application
functions that are related to that equipment.

• Dependencies between application functions:
Some application functions rely on data or ser-
vices provided by other application functions so
that they are affected by presence or absence of
those functions.

• Different operating environments: The origi-
nal hardware architecture consists of two pro-
cessor boards with Motorola 68040 processors
and shared RAM, with Ada83 as the program-
ming language together with the correspond-
ing Ada run-time kernel. More recent operat-
ing environments are based on single processor
boards and Ada95. Future operating environ-
ments may use ARINC-653 [4] conformant op-
erating systems [5]. The operating environment
has a large impact on the software, for exam-
ple on the allocation of software components to
processors, or on the real-time scheduling.

1.5 Initial Solution Attempts

The initial attempt to re-use already developed soft-
ware was to copy all source code and documentation
and to continue the development with independent
teams in separate branches. This method, usually
referred to as ‘clone and own’ approach, has some
severe disadvantages:

• The adaptation of software of one variant to an-
other is difficult if the software is not designed
for re-use. Designing for re-use is a costly extra
effort that is normally not done unless required
by the customer. The adaptation usually takes
longer than planned and it introduces new er-
rors so that the clones are rather unstable.

• The software versions for the different variants
must be developed and maintained in parallel,
i.e. error corrections and functional enhance-
ments must be performed in every copy which
requires many developers that do the same ac-
tivity at the same time. Since software develop-
ment costs are driven by labour costs, the clone
and own approach becomes very expensive.

2 The NH90 Software Product
Line

In order to overcome these problems, the NH90 soft-
ware needed a more sophisticated re-use strategy.



Such a sophisticated re-use approach is the software
product line (SPL) strategy that has been devel-
oped in the recent years by the software develop-
ment community. This strategy is especially driven
by the Software Engineering Institute (SEI) of the
Carnegie Mellon University [8] and it has already
been transferred to avionics systems and software
(e.g. the CAAS product line of Rockwell Collins
[7, 11]). The NH90 software team decided to also
adopt the SPL strategy and created the concept of
the NH90 SPL.

2.1 Strategic Goals of the NH90 SPL

The original NH90 SPL concept recognised the fol-
lowing strategic goals that the SPL must achieve in
order to be successful and accepted as future devel-
opment model:

• Functional extensions: It must be possible to
incorporate future functional features with no
or minimal effort.

• Future variants: It must be possible to produce
all current and all future helicopter variants out
of a single asset base with no or minimum adap-
tation to application code.

• Non-disclosure principle & customer relevance
principle: Every customer shall only receive ex-
actly the source code and documentation that
covers the features of the customer’s helicopter
variants.

• Investment protection: It shall be possible to
port all existing functionality to new technol-
ogy (Ada95, Ada05 and beyond, ARINC-653,
etc.) with no or minimum impact on existing
application code.

• Effort and cost reduction: The NH90 SPL shall
enable the software team to support and main-
tain existing variants and technologies together
with future ones out of a single asset base with-
out parallel development and maintenance.

• Migration to standards: The NH90 SPL shall
facilitate the adoption of existing and emerging
standards such as ARINC-653 in order to sat-
isfy future customer expectations with respect
to these standards.

2.2 Learning from Industrial Experience

A software product line is basically the transfer of
industrial production techniques to software devel-
opment in order to plan and design for a much higher
degree of re-use of already developed software. Basic

concepts borrowed from industrial production tech-
niques are:

• Software components correspond to prefabri-
cated components. These components are used
as designed and will not be modified. This is
especially the case for airborne equipment that,
once qualified, will not be changed. The soft-
ware components shall be standardised to the
highest degree possible.

• The software production plan corresponds to
industrial assembly lines. There is a standard-
ised, variant independent integration process
which allows the assembly of the software com-
ponents to final products. This approach makes
code production predictable and thus ensures
that the software team can then consistently
meet the deadlines.

• Industrial production uses a high degree of au-
tomation relieving staff from tedious repetitive
activities and increasing efficiency and accu-
racy. The equivalent of automation for software
production is code generation (also called auto
coding). Within the NH90 software, about 60
percent of the code is auto coded.

The NH90 SPL strategy is to take on these in-
dustrial concepts. At completion of the SPL, the
manual development techniques will have been re-
placed by the assembly of standardised components,
together with a high degree of automation via auto
coding.

2.3 Feature based Product Assembly

The NH90 components are represented by so called
assets. Assets are software engineering artifacts
such as software requirements, source code, test
scripts, test data and test results, or the data in
the software engineering databases ADBS, DUET
and ODIN that are used for code generation.
All assets are kept in a central asset base that is

common to all variants and software versions. Error
correction and development of additional functions
take place in that asset base. From there, the indi-
vidual software versions and variants are assembled
into full products.
The mission requirements of every helicopter vari-

ant are grouped into so called features that form the
basic building blocks of the avionics system. Every
asset shall be linked to exactly one feature.
Features can be seen as high level functions or

groups of functions, or as high level system prop-
erties that are visible on system contract level. As
such, features are often related to complete equip-
ment or equipment capabilities. The final helicopter



product can be seen as the basic helicopter itself and
a set of customer chosen features which together
allow the customer to fulfil the intended missions.
This is similar to buying a car where the customer
can also select a basic model that can then be con-
figured on the basis of an accessories catalogue.
The software engineering products such as soft-

ware requirements documentation, software quali-
fication documentation, source code and executa-
bles shall no longer be engineered on a case by case
and variant by variant base. Instead, they shall be
assembled from the assets of the features that are
selected for a certain helicopter configuration, as
shown in figure 3. The intended assembly approach
is as follows:

1. During contract negotiations, features are iden-
tified and assigned to the helicopter variant or
variants that are going to be developed. These
contract negotiations could be supported by a
configuration tool, a tool similar to todays car
configurators.

2. Several helicopter variants may be combined
into a single software version that can be loaded
to all supported variants. For example, a cus-
tomer may order in a single contract several
helicopter variants for different armed forces or
mission profiles. The software version that will
be produced on this contract can support all
these variants.

3. For the software product, all assets that are
needed to implement the supported features are
selected.

4. The selected assets are assembled into the soft-
ware engineering products for this software ver-
sion, including full software documentation.

However, the implementation of this concept is
far from trivial, especially in view of the fact that it
was introduced rather late into the project.

2.4 Implementation of the NH90 SPL

The conception phase for the NH90 SPL concluded
with the approval of the NH90 SPL master concept.
According to that master plan, the NH90 software
team had to modify its development processes and
tools and modularise the existing assets:

• The DKU software was extended so that the
DKU became ’variant aware’, i.e. the DKU is
now able to adapt its variant specific display
logic to the detected current helicopter variant.

• The NSS was modified so that it can activate
and de-activate operational functions depend-
ing on the detected current helicopter variant.

• Application software components were modu-
larised so that its components correspond to
functional features.

• The database tools and the generators were
modified so that they include variant specific
data, and, in the case of ODIN, allow variant
specific data extraction from a single data vol-
ume.

These changes had to be introduced into the de-
velopment cycle with the smallest increments possi-
ble in order to not endanger the ongoing delivery of
NH90 software releases. This was not always easy to
achieve since some modifications were fundamental
and even rather large. A more detailed account on
the concepts and their implementation can be found
in [9].
The assets were not designed from scratch since

that would have been far too expensive and
time consuming. Instead, the software team re-
engineered the existing products to fit to the overall
concept.
The implementation of the NH90 SPL is not com-

pleted yet. There are still some application software
components that need to be modularised to get truly
standardised components, and the tool improvement
process is also still ongoing. The major activities in
the next future are to extend the software concept
to also include system and software requirements as
well as qualification and test procedures. At the end,
the SPL shall also support proposal and quotation
preparation as well as technical documentation.

3 Benefits of a Product Line

According to experience reports in the literature, the
benefits of a SPL begin to materialise between the
second and third product instance that is derived
from the SPL. This is similar to the NH90 SPL
where the first export variants have recently been
assembled from the asset base. The major benefits
that are now being realised are:

• Increased planning reliability since assembly is
less risky and can be completed within a fixed
timeframe, as compared to single product de-
velopment.

• Decreased development budget because only
one person or a small group is responsible for
a component instead of several persons that in-
dependently develop the same component for



Figure 3: Feature based Selection and Assembly

several product variants. For example, errors
are fixed in a component once for all product
variants instead of several times for every prod-
uct variant individually.

• Components are used in several product vari-
ants and become therefore more stable in
shorter time. This will lead to earlier stabilisa-
tion of the software and to a much higher degree
of quality which in turn will increase customer
satisfaction.

• Features can be added or removed in much
shorter time during development which allows
reacting in short time to customer change re-
quests.

• It will be easier to isolate a single customer vari-
ant for maintenance.

These benefits materialise in the reduction of ef-
fort for creation and maintenance of product vari-
ants: the effort for updating a product instance is
negligible by now, and the effort for the creation of a
new product instance has been reduced to a quarter
of the original effort without the SPL.

4 Extending Software Product Line
Principles to System
Development

The NH90 SPL concept is currently mainly imple-
mented in the area of detailed design and coding. In
order to maximise the profit from the product line,
it would be meaningful to extend the scope to the
complete system development life cycle (V-model),

Figure 4: Extending the SPL to Systems Engineer-
ing

i.e. including system and software requirements en-
gineering as well as formal qualification and rig tests.
The overall long-term vision is shown in figure 4.

The development chain starts with the sales depart-
ment who defines the mission features and agrees
them with the customer. System Engineering takes
over and defines the system architecture, followed by
requirements engineering that develops the input to
software engineering at the centre of the diagram.
Variant information is needed on all levels of the

V-model. Today, this type of information is main-
tained individually in every tool or document and
thus a potential source of inconsistencies. There
will be very likely the need to introduce a configu-



ration tool to manage all features, variants, kits and
options centrally. There is already a proposal for
such a tool with the concept name SCORE (Shared
NH90 COnfiguration REpository). SCORE would
also maintain the relation between features and he-
licopter variants in a configuration matrix.
In a first step, SCORE could be set up with the

feature information currently defined in the code
generation database ODIN, extended by informa-
tion about feature characteristics and dependencies.
Then, all processes and tools along the V-model
could gradually be transferred to use SCORE as a
single source for variant information. During this
process, inconsistencies will come up that can be
clarified and that will also lead to a refinement of
the centrally defined variant information.
For the MISSION computer, some redesign activi-

ties are planned that will include a reorganisation of
the NH90 software requirements. Currently, several
ways of variant handling are used in parallel. For ex-
ample, it is allowed to clone requirement sets for cer-
tain variants and then to modify single requirements
as applicable. Such an approach limits the consis-
tent modularisation of the system because cloned
and modified software requirements can no longer
be implemented as an invariant building block. This
approach should therefore not be accepted in the fu-
ture, and requirements should instead be grouped
into modules that are invariant against helicopter
configurations.
Furthermore, some activities have been started

to improve the change management process with
respect to helicopter variants. Currently changes
are tracked against individual variants. However,
a change usually affects many variants at once and
the implementation of the change is also valid for
many variants. It would be much more efficient to
track changes against features and related assets.
The new change management process will therefore
contain the possibility to assign problem reports and
change requests to features. The configuration ma-
trix that associates features with the helicopter vari-
ants then automatically provides the information on
which variants are affected by the problem report or
change request.

5 Product Lines and Integrated
Modular Avionics

Integrated modular avionics (IMA) systems are be-
ing installed on a number of new aircraft. The goal
of IMA systems is to reduce the number of LRUs on
an aircraft in order to decrease space, weight and
power, to reduce spares holding and to cut down
maintenance and operating costs.

Figure 5: IMA System with NH90 SPL

IMA systems are built from an IMA platform
and a number of applications that execute on the
platform. The platform consists of a number of
hardware nodes called modules, a network that con-
nects the modules, and a real-time operating system
(RTOS) that provides communication, computing
and memory resources to the applications. The ap-
plications access the platform services via a stan-
dardised application programming interface that is
named APEX and is defined in the ARINC 653 stan-
dard [4]. One of the main characteristics required by
ARINC 653 is the provision of strict memory and
time partitioning to support functional isolation.
Product lines and especially the NH90 SPL

form an ideal complement to IMA systems because
(1) they allow a flexible assembly and re-assembly
of the applications based on features, and (2) they
facilitate the migration of todays federated systems
towards IMA systems.
Decomposing a large avionics system into such

isolated applications reduces complexity and sim-
plifies development, maintenance and qualification
activities. For IMA systems it is crucial to decide
which parts of the system shall be realised by which
application. This decision is based on standard
architectural considerations like cohesion and cou-
pling but also on aspects like expected change rate,
planned functional extensions and replacements or
project management decisions including supplier se-
lection. Applications shall ideally be designed in a
way that they can be replaced by alternative imple-
mentations of the same functionality without mod-
ifications to the rest of the system.
Software product lines basically decompose the

system into individual components that implement
a certain feature. Together with a framework such
as the NSS with its standardised interfaces, the com-
ponents do not make any assumption on the context
within which they will be used and thus can be as-
sembled freely. IMA applications can conceptually
be regarded as a realisation of a set of features im-



plemented with the corresponding set of SPL com-
ponents (see figure 5). The ideal combination of fea-
tures into applications with respect to design crite-
ria such as coupling and cohesion can be determined
from the feature model if this maintains information
about dependencies between the features. Other cri-
teria such as implementation or qualification status
of the features could also be derived from a suitable
feature model.
The migration of the NH90 main computer soft-

ware to an ARINC 653 compatible RTOS is facil-
itated by the fact that the NSS isolates the appli-
cation functions from the underlying hardware and
equipment software. Only the isolation layer of the
NSS and the code generators for the control and
data interface must be adapted to the new RTOS.
One of the major tasks of an IMA systems inte-

grator is to negotiate the resource requirements be-
tween application developer and platform provider.
The feature model of an SPL, when extended by the
resource requirements of each feature, can then be
used to determine the resource requirements of the
applications that implement these features.
Building a complete IMA system imposes some

additional requirements to the product line be-
cause it will be necessary to model how partitions
work together: a classic feature model assumes that
the components are assembled to a single applica-
tion but for IMA systems one must distinguish be-
tween intra-application and inter-application depen-
dencies. This can be regarded as an extension of the
feature model. Automatic consistency based on the
extended feature model can check both the integrity
of each application with respect to included features
and the complete IMA system with respect to de-
ployed applications.
It may happen that a set of applications hosted on

a module exceeds that modules resources. Often it
is not possible to simply add additional modules due
to space and weight limitations. In that case it may
be necessary to reallocate the features to a different
set of applications. With the generation technol-
ogy that has been developed for the NH90 SPL it
would be possible to simply restructure the alloca-
tion of features to applications and to re-assemble
them into a new set of applications that better fits
to the available platform.

6 Incremental Certification

Simply reusing source code will not realise the de-
sired cost benefits of a product line since coding rep-
resents only a minor fraction in the avionics software
development effort (According to Capers Jones [10],
coding represents only 16 percent of the total soft-

Figure 6: DO-297 Certification Tasks

ware development effort in military projects). One
of the major cost drivers for avionics projects is the
certification of the system. Therefore, most savings
could be realised if it would be possible to obtain
certification credit for single components that can
then be used in subsequent certification efforts. Un-
fortunately, software reuse has acquainted a bad rep-
utation in safety critical systems. The spectacular
failure of the ARIANE 5 first flight for example has
been attributed to software reuse malpractice [12].
Because of these concerns, the FAA has devel-

oped the advisory circular AC 20-148 [2] that pro-
vides guidance for obtaining certification credit for
reusable software components (RSC). However, this
advisory circular is not exactly applicable to the
NH90 SPL since it aims more towards closed com-
mercial RSCs such as operating systems, provided
by different vendors to a wide range of systems that
are not necessarily restricted to the avionics do-
main. A certification strategy that is more suited
to software product lines is an approach known as
incremental certification that has been developed for
IMA systems.
The RTCA DO-297 Integrated Modular Avion-

ics (IMA) Development Guidance and Certifica-
tion Considerations [3] provide guidance for ap-
plicants and authorities for the incremental cer-
tification of IMA systems. It defines six certifi-
cation tasks: (1) module or platform acceptance,
(2) application acceptance, (3) system-level accep-
tance, (4) aircraft-level acceptance, (5) change and
(6) reuse. Figure 6, taken from [3], illustrates these
tasks.
A comparison between NH90 SPL artefacts and

IMA elements shows that it may be possible to
adopt a similar strategy for the NH90 software prod-
uct line:

• The NSS plays the role of the IMA platform
(the NSS is separately qualified, so this is al-
ready a first step towards incremental certifica-
tion).

• The feature related components compare to the
IMA applications.



• The IMA system integration is equivalent to
product assembly and integration including
HW/SW integration.

• Aircraft integration is represented by system in-
tegration, starting from avionics rig integration
of the main computers with the equipment and
ending with integration into the helicopter.

This approach has not yet been developed into a
detail that would allow it to be introduced into the
project, and it has not yet been discussed with cer-
tification authorities. But even if certification credit
cannot be obtained for single components in a way
similar to that outlined above, it will still be possi-
ble to reduce certification and qualification costs by
reusing the life cycle data that are necessary to ob-
tain acceptance. This includes requirements, design
descriptions and models, source code, test cases, test
procedures and test results, quality and configura-
tion management records, and all other sort of vali-
dation and verification data. This of course requires
that the functionality of every single feature remains
unchanged across variants or at least is adapted only
via well established variation points, based on pa-
rameterisation or configuration for example. The
reviews and analysis that still needs to be performed
can then concentrate on the variation points and will
therefore be much less intensive and time consum-
ing as the original review effort. This of course only
works if the variation points of the product line have
initially been verified.
However, two critical areas need further investi-

gation:

• Features are not unrelated to each other, some
features depend on the availability of another
features, or features may even be exclusive.

• The NH90 components compete for common re-
sources such as processing time, memory space
and data bus cycle time.

The first issue can be addressed by maintain-
ing these feature relations in the configuration tool
SCORE that has been introduced in section 4 above.
The latter issue must still be verified during integra-
tion of the product instance since the NSS does not
provide strict partitioning of the components.
The authors believe that with the certification

guidance that is already available for reusable soft-
ware and IMA systems, product lines have a larger
potential for cost reduction than any other develop-
ment technique for large avionic systems. However,
it requires that also system engineering data such
as the system and software requirements are struc-
tured and organised in accordance with product line
principles. This means that in order to realise the

full benefit of the product line approach, it is neces-
sary to extend the NH90 SPL principles to systems
engineering as described in section 4.

7 Summary

Although the benefits of product lines are well
known in the field, only few real-world examples ex-
ist in the domain of avionics [11]. The only other
example of a real-world airborne avionics product
line known to the authors is the U.S. Army’s Com-
mon Avionics Architecture System (CAAS) Product
Line [7]. It has been reported that its application
to the Bell ARH-70A program allowed to complete
software design, development and test within seven
months after the contract agreement was signed [11].
One of Eurocopter’s key competitive advantages

is the ability to produce highly customer specific he-
licopters that in return enable the customers to fulfil
their specific mission needs. The Software Prod-
uct Line strongly supports this company strategy as
it enables flexible combination of common modules
in a short production time and at reasonable cost.
Moreover, it also provides a suitable migration path
to a modern IMA system. The NH90 software team
members are convinced that the SPL strategy is a
model for future software development approaches
and is not restricted to NH90 avionics – the existing
product line could be extended to future helicopter
avionics, especially when ported to an IMA plat-
form. A consistently high degree of software re-use
would increase Eurocopter’s competitiveness in the
future avionics system software market.

References

[1] DOD-STD-2167A: Military Standard Defense
System Software Development, 1988.

[2] Advisory Circular AC 20-148 Reusable Soft-
ware Components, December 2004.

[3] RTCA DO-297 Integrated Modular Avionics
(IMA) Development Guidance and Certifica-
tion Considerations, November 2005.

[4] Arinc 653 Avionics Application Software Stan-
dard Interface. PART 1 – Required Services,
March 2006.

[5] Richard Bridges. NH90 helicopter avion-
ics systems from the 1990s to 2010 and be-
yond. In Workshop Software-Architekturen
für Onboardsysteme in der Luft- und Raum-
fahrt. Fachausschuss T6.4 Software Engineer-
ing, Deutsche Gesellschaft fuer Luft- und
Raumfahrt, Oct 2007.



[6] Gerd Budich. Generation of Ada code from
specifications for NH90 computers. In Pro-
ceedings of the 26th European Rotorcraft Forum
ERF, 26–29 September 2000.

[7] Paul Clements and John Bergey. The U.S.
Army’s Common Avionics Architecture System
(CAAS) Product Line: A Case Study. Techni-
cal Report CMU/SEI-2005-TR-019, ESC-TR-
2005-019, Software Engineering Institute (SEI),
September 2005.

[8] Paul Clements and Linda Northrop. Software
Product Lines - Practices and Patterns. SEI Se-
ries in Software Engineering. Addison-Wesley,
2002.

[9] Frank Dordowsky and Walter Hipp. Adopting
software product line principles to manage soft-
ware variants in a complex avionics system. In
John D. McGregor and Dirk Muthig, editors,
Proceedings of the 13th International Software
Product Line Conference, San Francisco, Cal-
ifornia, USA 2009, volume 1. Software Engi-
neering Institute, August 2009.

[10] Capers Jones. Software cost estimation in 2002.
CrossTalk: The Journal of Defense Software
Engineering, pages 4–8, June 2002.

[11] Ronald J. Leach. Missed opportunities in soft-
ware cost reduction. In Proceedings of the
64th Forum of the Aeronautic Helicopter So-
ciety AHS, 2008.

[12] Jacques-Louis Lions. Ariane 5 fligth 501 failure.
report by the inquiry board. Technical report,
Ariane 501 Inquirey Board, July 1996.

[13] Stefan Steyer. NH90 Beschaffungsdrama. Die
Entwicklung des NH90. Rotorblatt, 16(3):52–
55, 2009.


