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Abstract

In this paper we develop a complete dynamic model of the Twin Rotor MIMO System (TRMS) using the
Euler-Lagrange method. Our model improves upon the model provided by the manufacturer in the user manual
and upon previous models of the TRMS which can be found in the literature. The model is tuned and validated
using experimental data.

1 INTRODUCTION

The Twin Rotor MIMO Systems (TRMS) is a beam
rotating freely in the vertical plane (pitch) about the
end of a pivoted beam, which in turn rotates in the
horizontal plane (yaw) about a fixed point. The beam
is damped by a perpendicular counterbalance beam
rigidly fixed in its centre. The beam is driven by two
mutually perpendicular propellers located at its ends
and driven by DC motors. The larger propeller with
vertical axis is called the main rotor, and the half of the
beam to which it is attached is called the main beam.
The second propeller, and its corresponding half of
the beam, are called the tail rotor and tail beam re-
spectively. The pitch angles of the propeller blades
are fixed, thus the propulsive force is governed by
the propeller speed of rotation. The TRMS laboratory
setup used in this work is manufactured by Feedback
Instruments and is shown in Fig. 1.

The TRMS modelling and control problems have at-
tracted a great attention during the last decade due
to the highly non-linear and cross-coupled dynamics
of the system. The application of the Newtonian ap-
proach to such system requires taking into account
a variety of fictitious forces, the parameters of which
are not readily available, while the Euler-Lagrange ap-
proach provides a rigorous and natural way to obtain
dynamical equations. The simplified Newtonian mod-
els provided by the manufacturer in [2] and [3] do not
capture the system’s dynamics precisely. An exten-
sive attempt to overcome the limitations of these mod-
els was made in [8], where an updated version of the
Newtonian model of [2] and a more accurate model,
derived using the Euler-Lagrange method, were pre-

Figure 1: Twin rotor MIMO setup

sented. However the models obtained in [8] still have
a number of drawbacks. In these models, the pro-
pellers reactive torques, which are the main source of
cross-coupling between the pitch and yaw angles, are
not considered properly. In the Newtonian model, the
use of the law of conservation of angular momentum
to relate the rotors and body dynamics (see eqs. (8)
and (12) in [8]) is not justified. In the Euler-Lagrange
derivations, the kinetic energy of the rotors is not in-



cluded in the Lagrangian, instead, terms containing
the rotors acceleration are included, without justifica-
tion, as external torques (see eqs. (39) and (41) in
[8]). Finally, all the vector quantities, used to calculate
the kinetic energy of each part of the TRMS in [8],
are expressed in terms of global inertial frame, which
leads to unnecessarily complicated calculations. An-
other application of the Euler-Lagrange approach to
the equations of motion of TRMS was reported in [6]
but, unfortunately, the authors did not disclose the
details of the derivation and presented only the fi-
nal equations, in their most general form, and with-
out specifying the numerical values of the parameters.
Here we adopt the modelling methodology presented
in [7], where it was applied to a similar system called
Toycopter. The main advantage of this methodology
is that the vector quantities characterising the trans-
lating parts are expressed in the body-fixed frame of
reference, which significantly simplifies calculation of
the kinetic energy. The main structural difference be-
tween the Toycopter and the TRMS is the presence of
the pivoted beam, of the counterbalance beam, and of
a flat cable, in the latter, which result in more complex
derivations and final dynamical equations.

2 TWIN ROTOR DYNAMICS

We will first obtain the equations describing the DC
motors and then the equations of motion of the me-
chanical parts.

2.1 DC motors

The main and tail DC motors are assumed to be com-
pletely identical, therefore, all the equations in this
section will be given in general from and can easily
be applied to the considered motor by adding the sub-
script “m” or “t”. The voltage of the DC motor, denoted
as v, is set in Simulink through the control signal u.
The entire channel from the control signal to the mo-
tor voltage is assumed to have a constant gain, i.e.
v = kuu. The DC motor itself is described by a simple
first-order differential equation

(1) Lm
di

dt
= v − kvω −Ri

where:
i: is the motor current,

Lm: is the motor inductance,
R: is the motor resistance,
kv: is the motor back EMF constant,
ω: is the motor angular velocity.

By comparing the numerical values of the elec-
trical and mechanical time constants of, for example,

Figure 2: TRMS notation
the main rotor

ce =
Lm
R

= 1.075× 10−4 s cm =
I1R

ktkv
= 3.38 s(2)

(where I1 is the rotor’s moment of inertia, which value
will be calculated below), we note that the dynamics of
the motor’s current can be neglected, resulting in the
following algebraic equation for the DC motor circuit:

(3) v − kvω −Ri = 0.

2.2 Rigid Body

The Euler-Lagrange method involves the following
steps [1]:

1. Define a set of generalised coordinates q =
{q1, . . . , qn}

2. Find the kinetic energy T (q, q̇, t), the potential
energy U (q, t), and the Lagrangian L (q, q̇, t) =
T − U

3. For each coordinate find the generalised force
Fqi

4. For each coordinate compute the Euler-Lagrange
equation

(4)
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fqi .

The set of generalised coordinates is selected as q =
{ψ, φ, ρm, ρt}, where ψ denote the pitch angle, φ the
yaw angle, ρm and ρt the angles of the main and tail
rotors as shown in Fig. 2. The steps used to derive
the Lagrangian are very similar to those used in [7] to
model the Toycopter, with some differences which will
be pointed out at the end of the section.

2.2.1 Kinetic energy

Consider a rigid body, performing an arbitrary motion
in three dimensional space. Let A denote an arbitrary



point fixed in the body,M denote the mass of the body
and IA the inertia matrix with respect to the point A.
Furthermore, let vA denote the instantaneous linear
velocity vector of A, Ω the instantaneous angular ve-
locity vector and rAG the vector between the centre
of mass G and A. The kinetic energy of the rigid body
can be obtained using the following general formula
[7],[9, eq. (5.2)]:

(5) T =
1

2
MvT

AvA +MvT
A (Ω× rAG) +

1

2
ΩTIAΩ .

In order to calculate the total kinetic energy the TRMS
will be considered consisting of four separate rigid
bodies, namely: a) main rotor; b) tail rotor; c) body,
comprising the main beam, tail beam, rotors shields
and counterbalance beam with weight; and d) pivoted
beam. Each rotor is formed by the corresponding pro-
peller and DC motor rotor. In order to simplify the
calculation of the kinetic energy, all vector quantities
associated with each body are expressed in its body-
fixed frame, i.e. reference frame attached to the body.

Let the body-fixed frame (xm, ym, zm) of the main
rotor be attached to its centre of mass Om so that its
xm-axis coincides with the axis of rotation of the pro-
peller and is directed upwards, and ym-axis coincides
with the propeller blade (Fig. 2). The main rotor angu-
lar velocity is determined as the vector sum of three
angular velocities of rotation along ρm, ψ and φ angles
as shown in Fig. 3:

(6) Ωm =

 ρ̇m + φ̇ cosψ

ψ̇ sin ρm − φ̇ cos ρm sinψ

ψ̇ cos ρm + φ̇ sin ρm sinψ

 .
Let lm denote the distance between the points Ob

and Om (which is also the length of the main beam)
and dm the distance between the points O and Om.
Translation of the point Om is due to the rotation of
the main beam along the ψ and φ angles, therefore,
the instantaneous linear velocity vector of the point
Om with respect to the body-fixed frame is (Fig. 4):

(7) vm =

 lmψ̇

−dmφ̇ cosψ sin (ρm + θ)

−dmφ̇ cosψ cos (ρm + θ)


where θ is a fixed angle determined as arccos lm

dm
.

Under assumption of high rotational speed the tensor
of inertia of the main rotor is diagonal and its compo-
nents corresponding to the ym and zm axes can be
taken equal:

(8) Im =

Im1 0 0
0 Im23 0
0 0 Im23

 .
Due to the choice of the body-fixed frame, the position
vector (corresponding to rAG in (5)) vanishes.

Let h denote the distance between the points Ob
and O. Applying the same approach to the tail rotor
we obtain:

(9) Ωt =
[
ψ̇ + ρ̇t φ̇ sin (ψ + ρt) φ̇ cos (ψ + ρt)

]T

(10) vt =

 ltφ̇ cosψ

−ltψ̇ sin ρt + hφ̇ cosψ cos ρt
−ltψ̇ cos ρt − hφ̇ cosψ sin ρt



(11) It =

It1 0 0
0 It23 0
0 0 It23

 .
Let the body-fixed frame (xb, yb, zb) of the TRMS body
be attached to point Ob as shown in Fig. 2. The angu-
lar velocity vector of the TRMS body with respect to
the body-fixed frame is (Fig. 5a)

(12) Ωb =
[
ψ̇ φ̇ sinψ φ̇ cosψ

]T
,

and the linear velocity vector of the point Ob due to
rotation of the TRMS body along φ angle is (Fig. 5b)

(13) vb =
[
0 hφ̇ cosψ −hφ̇ sinψ

]T
.

Let Gb denote the centre of mass of the TRMS body.
Due to symmetry Gb lies somewhere in the plane
formed by the main and counterbalance beams. The

(a) Contribution of ψ̇

(b) Contribution of φ̇

Figure 3: Calculation of the main rotor angular veloc-
ity (Ωm)



(a) Contribution of ψ̇

(b) Contribution of φ̇

Figure 4: Calculation of the main rotor linear velocity
(vm)

corresponding position vector, to be used in equation
(5), is:

(14) rObGb =
[
0 yGb zGb

]T
.

It can be easily demonstrated that the tensor of inertia
of the TRMS body is diagonal of form:

(15) Ib =

Ib11 0 0
0 Ib22 0
0 0 Ib33

 .
Let Mm, Mt and Mb denote the masses of the main

rotor, of the tail rotor and of the TRMS body respec-
tively. Expanding eq. (5) for each of the rigid bodies
using the equations obtained above yields the follow-

(a) Calculation of Ωb (b) Calculation of vb

Figure 5: Calculation of the TRMS body angular ve-
locity (Ωb) and linear velocity (vm)

Figure 6: Vertical position of the centre of mass

ing equations for kinetic energy:

Tm =
1

2
Im23φ̇

2 +
1

2

(
Im23 +Mml

2
m

)
ψ̇2(16)

+
1

2

(
Im1 − Im23 +Mmd

2
m

)
φ̇2 cos2 ψ

+
1

2
Im1ρ̇

2
m + Im1φ̇ρ̇m cosψ

Tt =
1

2
Mtd

2
t φ̇

2 cos2 ψ +
1

2

(
It1 +Mtl

2
t

)
ψ̇2(17)

+
1

2
It23φ̇

2 + It1ψ̇ρ̇t +
1

2
It1ρ̇

2
t

(18) Tb =
1

2
Ib11ψ̇

2 +
1

2
Ib22φ̇

2 sin2 ψ +
1

2
Ib33φ̇

2 cos2 ψ

+
1

2
Mbφ̇

2h2 −Mbφ̇h
(
zGbψ̇ cosψ + +yGbψ̇ sinψ

)
.

The kinetic energy of the pivoted beam is simply:

(19) Tp =
1

2
Ipφ̇

2.

2.2.2 Potential energy

In order to obtain the total potential energy we con-
sider the aggregate body of mass Ma consisting of
those parts which have a variable potential energy:
the main rotor, tail rotor and body. Let Ga denote the
centre of mass of the aggregate body. Due to sym-
metry, the position ofGa with respect to the body-fixed
frame can be defined by two coordinates yGa and zGa.
Expressing the vertical position of Ga relatively to the
stationary point O in terms of yGa and zGa (Fig. 6) the
potential energy takes the form:

(20) Va = Mag (zGa cosψ + yGa sinψ) .

2.2.3 Lagrangian

Expanding the Lagrangian L = Tm+Tt+Tb+Tp−Va
and grouping the constants in the resulting expression
yields

(21a) L =
1

2
Iφφ̇

2 +
1

2
Icφ̇

2 cos2 ψ +
1

2
Iψψ̇

2



+
1

2
Im1ρ̇

2
m +

1

2
It1ρ̇

2
t −Gc cosψ −Gs sinψ

+ It1ψ̇ρ̇t+ Im1φ̇ρ̇m cosψ−Hcφ̇ψ̇ cosψ−Hsφ̇ψ̇ sinψ

where:

Gc = MagzGa(21b)
Gs = MagyGa(21c)
Hc = MbhzGb(21d)
Hs = MbhyGb(21e)

Iφ = Im23 + Ip + It23 + Ib22 +Mbh
2(21f)

Ic = Ib33 + Im1 − Im23 − Ib22 +Mmd
2
m+(21g)

+Mtd
2
t(21h)

Iψ = Ib11 + Im23 + It1 +Mml
2
m +Mtl

2
t .(21i)

Let us recall that in the equations above h denotes the
distance between the points Ob and O, dm denotes
the distance between the points O and Om, and dt
denotes the distance between the points O and Ot,
and that d2m = l2m + h2 and d2t = l2t + h2.

2.2.4 Generalized forces

The following forces are external to the TRMS: 1. the
aerodynamic forces created by the propellers; 2. the
electromechanical forces generated by DC motors;
3. the viscous forces due to friction in ball bearings;
and 4. the elastic force created by the cable.

According to blade element theory [4], each rotat-
ing propeller generates the propulsive force (or thrust)
T and the load torque Q which are both proportional
to the square of the angular speed. The load torque
Q, generated by air resistance on the blades of the
propeller, is exerted on the corresponding DC mo-
tor’s rotor, but has also the effect of rotating the TRMS
body in the opposite direction to the spinning blades.
Thus, the main propeller creates three different vec-
tor quantities, namely: the thrust torque of magnitude
CTmρ̇m |ρ̇m| lm, acting along the ψ angle, the torque
of magnitude −CRmρ̇m |ρ̇m| cosψ, acting along the φ
angle, and the torque of magnitude CQmρ̇m |ρ̇m| act-
ing along the ρm angle. Similarly, the tail propeller cre-
ates the following torques: CTtρ̇r |ρ̇r| lt cosψ on φ an-
gle, −CRtρ̇t |ρ̇t| on ψ angle and CQtρ̇t |ρ̇t| on ρt angle.

The electromechanical torque generated by the DC
motor is equal to kti, where kt and i stand for motor
torque constant and current respectively.

Friction is a complex phenomenon which encom-
passes a variety of effects. However, a simplified fric-
tion model, which takes into account only two major
components, namely viscous and Coulomb friction,
is usually utilised in the control of mechanical sys-
tems [5]. Assuming high rotational speed of the ro-
tors, the Coulomb friction term for the correspond-
ing coordinates can be neglected. Thus, the mag-
nitudes of friction torques for each coordinate are

given by −
(
fvψψ̇ + fcψ sgn ψ̇

)
, −
(
fvφφ̇+ fcφ sgn φ̇

)
,

−fvmρ̇m, −fvtρ̇t.
The flat cable, connecting the electrical equipment

located on the moving parts of TRMS with the elec-
tronic board at the base of the setup possesses a
certain stiffness and acts as a spring along the yaw
angle. The magnitude of the torque exerted by the
cable on yaw angle is taken as −Cc (φ− φ0).

Summing up all the forces mentioned above for
each of generalised coordinates yields:

(22) Fψ = CTmρ̇m |ρ̇m| lm − CRtρ̇t |ρ̇t|
− fvψψ̇ − fcψ sgn ψ̇

(23) Fφ = CTtρ̇r |ρ̇r| lt cosψ − CRmρ̇m |ρ̇m| cosψ

− Cφφ̇− Cφ0 sgn φ̇− Cc (φ− φ0)

(24) Fρm = ktmim − fvmρ̇m − CQmρ̇m |ρ̇m|

(25) Fρt = kttit − fvtρ̇t − CQtρ̇t |ρ̇t|

2.2.5 Equations of motion

Finally, by computing eq. (4) in terms of each of gen-
eralised coordinates, we obtain the following equa-
tions of motion

(26) Iψψ̈ = −It1ω̇t +Hcφ̈ cosψ +Hsφ̈ sinψ

+Gc sinψ −Gs cosψ − 1

2
Icφ̇

2 sin (2ψ)

− Im1φ̇ωm sinψ + CTmωm |ωm| lm − CRtωt |ωt|
− fvψψ̇ − fcψ sgn ψ̇

(27)
(
Iφ + Ic cos2 ψ

)
φ̈ = −Im1ω̇m cosψ +Hcψ̈ cosψ

+Hsψ̈ sinψ+Hsψ̇
2 cosψ−Hcψ̇

2 sinψ+Ic sin (2ψ) φ̇ψ̇

+ Im1ωmψ̇ sinψ + CTtωt |ωt| lt cosψ

−CRmωm |ωm| cosψ−fvφφ̇−fcφ sgn φ̇−Cc (φ− φ0)

(28) Im1ω̇m = −Im1φ̈ cosψ + ktmim − fvmωm
− CQmωm |ωm|+ Im1φ̇ψ̇ sinψ

(29) It1ω̇t = −It1ψ̈ + kttit − fvtωt − CQtωt |ωt| .

In the rotors’ equations, i.e. (28) and (29), the terms
involving the angular velocities and accelerations
along ψ and φ angles can be omitted assuming that
their magnitudes are negligibly smaller than the ro-
tors’ accelerations. Thus, the simplified rotors’ equa-
tions are:

(30) Im1ω̇m = ktmim − fvmωm − CQmωm |ωm|



(31) It1ω̇t = kttit − fvtωt − CQtωt |ωt| .

It can be shown that for the particular case h = 0 one
recovers the equations of [7], with the additional term
for the flat cable.

3 PARAMETERS

The next major step in the construction of the sys-
tem’s model is the estimation of the numerical values
of its parameters. The initial parameters of the TRMS
are provided in the User’s Manual [3] and given in Ta-
ble 1.

Table 1: TRMS parameters

parameter value unit
lt 0.282 m
lm 0.246 m
lb 0.290 m
lcb 0.276 m
rms 0.155 m
rts 0.100 m
rmr 0.145 m
rtr 0.090 m
h 0.06 m
Mt 0.221 kg
Mm 0.236 kg
mcb 0.068 kg
mt 0.015 kg
mm 0.014 kg
mb 0.022 kg
mts 0.119 kg
mms 0.219 kg
mh 0.01 kg

Rm, Rt 8 Ω
Lmm, Lmt 0.86 mH
kvm, kvt 0.0202 N m A−1

ktm, ktt 0.0202 V rad−1 s
kum 8.5 No units
kut 6.5 No units

3.1 Propeller forces

The propellers thrust and reactive torque coefficients
were measured experimentally using the methodol-
ogy described in [2]. The experimental setup con-
figuration for measuring the main propeller thrust is
shown in Fig. 7 as an example. Electronic scales with
a weight are placed under the beam and are attached
to the main rotor as shown in Fig. 7. If necessary, a
counterweight is added so that the measurements are
taken when the system remains in horizontal equilib-
rium. In addition, the yaw angle must be fixed to avoid
the effect of the reactive torque. The thrust of the

Figure 7: Measuring propellers thrusts for positive an-
gular velocities

main propeller is obtained from the measured lifting
force from the following relation: Tm = FL

(lm+rms)
lm

.
The corresponding coefficient can be obtained using
a least squares fitting of the experimental curve with
a function of the form Cω |ω|, separately for positive
and negative values of the rotor’s speed (Fig. 8). The
other coefficients are obtained in a similar way. Note,
that in order to measure the tail rotor thrust and main
rotor reactive torque the beam should be turned by 90
degrees. The measured values of the coefficients are
given in Table 2, superscripts + and − denote the val-
ues corresponding to the positive and negative rotor
speeds respectively.
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Figure 8: Main propeller static characteristic

3.2 Friction coefficients

The measurements of the friction forces requires
high-precision equipment and therefore they will not
be considered in this work. The coefficients provided



by the User’s manual on the TRMS [3] and by [8] are
used instead.

3.3 Cable spring constant
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Figure 9: Cable characteristic

The stiffness coefficient of the cable is estimated
experimentally using the procedure described below.
First, the beam is locked in the horizontal position.
Then, various values of the tail motor voltage are set
in Simulink, and, after a constant yaw angle is at-
tained, the tail rotor speed and change in yaw angle
are recorded. The corresponding tail rotor thrust is
calculated using its static characteristic. Taking all of
the velocities except for the tail rotor angular velocity
in eq. (27) equal to zero, we have a static equation
governing the motion of the system during this exper-
iment:

(32) CTtωt |ωt| lt = Cc (φ− φ0)

i.e. the torque created by the cable at a stationary yaw
angle is equal to the one generated by the tail rotor.
The resulting experimental plot is shown in Fig. 9. The
estimated value of the cable spring constant obtained
by linear least squares fitting is Cc = 0.016 N m rad−1.
The steady yaw angle is taken as φ0 = −0.4602 rad.

3.4 Parameters calculation

All the parameters considered in this section will be
derived assuming that the system consists of simple
geometric objects [2]. The main, tail and counterbal-
ance beams are considered as thin rods, the main
and tail shields as thin cylindrical shells with open
ends, and the counterbalance weight as a point mass.
The inertia matrix of the main rotor is diagonal due
to its symmetry with respect to the body-fixed frame.

Furthermore, the main rotor is assumed to be: a thin
rod of length 2rmr and mass Mm regarding to the axis
of rotation, and, assuming high rotational speed, a
thin disk of same mass and diameter regarding to the
axes perpendicular to the axis of rotation [7]:

Im1 =
1

12
Mmr

2
mr , Im23 =

1

4
Mmr

2
mr .(33)

Similarly, for the tail rotor we have:

It1 =
1

12
Mtr

2
tr , It23 =

1

4
Mtr

2
tr .(34)

Clearly, this estimate of the moments of inertia is
rough, and it will be adjusted further using a parame-
ter optimisation procedure.

According to the superposition principle the inertia
tensor of the TRMS body about the body-fixed refer-
ence frame is equal to the sum of inertia tensors of
all constituent parts about the same frame. Thus, the
TRMS body inertia tensor is given by

(35) Ib11 =
1

3
mbl

2
b +mcbl

2
cb +

1

3
mml

2
m +mmsl

2
m

+
1

3
mtl

2
t +mtsl

2
t +

1

2
mmsr

2
ms +mtsr

2
ts

(36) Ib22 =
1

3
mbl

2
b +mcbl

2
cb +

1

2
mmsr

2
ms +

1

2
mtsr

2
ts

(37) Ib33 =
1

3
mml

2
m +mmsl

2
m +

1

3
mtl

2
t +mtsl

2
t

+mmsr
2
ms +

1

2
mtsr

2
ts .

The pivoted beam is assumed to be a thin rod of
length h and mass mh, thus the moment of inertia
about the vertical axis through its end is given by

(38) Ip =
1

3
mhh

2.

The total mass of the TRMS body is given by

(39) Mb = mm +mt +mb +mms +mts +mcb,

and that of the aggregate body by:

(40) Ma = Mb +Mm +Mt.

The coordinates of the centre of mass of the TRMS
body are determined as

(41) yGb =
1
2 lmmm + lmmms − 1

2 ltmt − ltmts

Mb

(42) zGb =
− 1

2 lbmb − lcbmcb

Mb
.



Similarly, for the aggregate body we have:
(43)

yGa =
1
2 lmmm + lmMm + lmmms − 1

2 ltmt − ltMt − ltmts

Ma

(44) zGa =
− 1

2 lbmb − lcbmcb

Ma
.

Expanding eqs. (21b)–(21g) and (21i) using the
results of this section yields the final equations for
the model parameters. The numerical values of the
model parameters are given in Table 2.

3.5 Model tuning

The steady state pitch angle predicted by the model
differs slightly from one displayed by the real plant
ψ0 = −0.5093 rad. Clearly, the steady state pitch
angle is determined solely by the coordinates of the
centre of mass of the aggregate body estimated in
eqs. (43) and (44). In fact, the centre of mass of the
main rotor lies below y-axis, while in eq. (44) we as-
sumed it lying on the y-axis, so the value of zGa should
be tuned. Taking all the velocities in eq. (26) equal to
zero, we have the following static equation revealing
the steady state pitch angle

(45) Gc sinψ −Gs cosψ = 0.

Combining eqs. (21b), (21c) and (45) yields: zGa =
yGa cotψ0 = −0.0307 m. The updated value of de-
pending parameter Gc is −0.2750 N m.

Some of the model’s parameters were optimised
using a parameter estimation technique. The objec-
tive of the parameter estimation procedure is to find
optimal values of the parameters under considera-
tion according to some cost function, which is typi-
cally the least squares error between the experimen-
tal and model responses. In this work the Simulink
Design Optimization toolbox was utilised. The optimi-
sation of the parameters was carried out separately
for the following four subsystems: the main rotor, tail
rotor, pitch angle and the yaw angle. In each case
considered, the subsystem was treated in an isolated
and simplified mode of operation to avoid the effects
of cross-couplings and of parameters not of interest.
For example, the pitch angle subsystem was treated
in 1DOF free response mode, i.e. with stopped rotors
and fixed yaw angle. As a result, the following param-
eters were optimised:
• Main rotor: the moment of inertia Im1 and friction

coefficient fvm.
• Tail rotor: the moment of inertia It1 and friction

coefficient fvt.
• Pitch angle: the moment of inertia Iψ, friction co-

efficients fvψ and fcψ.
• Yaw angle: the moment of inertia Iφ, friction co-

efficients fvφ and fcφ.

Table 2: Model parameters

parameter est. value tuned value unit
Im1 4.13× 10−4 1.72× 10−4 kg m2

It1 1.49× 10−4 3.24× 10−5 kg m2

Iψ 0.0651 0.0656 kg m2

Iφ 0.0113 0.0113 kg m2

Ic 0.0537 - kg m2

fvψ 0.006 0.0024 N m rad−1 s
fcψ 0.001 5.69× 10−4 N m
fvφ 0.1 0.03 N m rad−1 s
fcφ 0.02 3× 10−4 N m
fvm 4.5× 10−5 3.89× 10−6 N m rad−1 s
fvt 2.3× 10−5 3.43× 10−6 N m rad−1 s
C+
Tm 1.53× 10−5 - N s2 rad−2

C−Tm 8.8× 10−6 - N s2 rad−2

C+
Tt 3.25× 10−6 - N s2 rad−2

C−Tt 1.72× 10−6 - N s2 rad−2

C+
Rm, C+

Qm 4.9× 10−7 - N m s2 rad−2

C−Rm, C−Qm 4.1× 10−7 - N m s2 rad−2

CRt, CQt 9.70× 10−8 - N m s2 rad−2

Cc 0.016 - N m rad−1

ψ0 −0.6663 −0.5093 rad
φ0 −0.4602 - rad
Gc −0.1954 −0.275 N m
Gs 0.1536 - N m
Hc −0.0012 - kg m2

Hs 0.0012 - kg m2

The final parameters of the mathematical model are
summarised in Table 2.

4 SIMULATION

The conformity of the mathematical model with the
real plant was assessed qualitatively using a set of
tests, in which the open-loop responses, of the model
and of the real plant, to the same inputs were com-
pared. Note that, in the TRMS setup, the actual yaw
and tail rotor angles are measured in the opposite di-
rections from those used in the model [3]. Hence, the
relevant signs were changed accordingly. By inspect-
ing the obtained results (Fig. 10 to 13) we can say that
the model captures fairly accurately the behaviour of
the real system. The obtained mathematical model
was used in the synthesis of a non-linear H∞ control
law [6]. Some closed-loop responses are displayed in
Fig. 14 to 15.

5 CONCLUSIONS

In this work we have developed a complete dynamic
model of the TRMS. The parameters of the model
were estimated and tuned using experimental data.



The model was subsequently used to design a con-
troller for the TRMS. Further details about the imple-
mentation of the controller will be reported elsewhere.
The object of future work will be the design of an anti
wind-up scheme to compensate for inputs’ saturation.
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Figure 10: Model vs. plant responses to square input
along pitch angle
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