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Abstract

This work presents a methodology for the iden-
tification of a periodic-coefficient Reduced-Order
Model (ROM) for the prediction of perturbation
aerodynamic loads on tiltrotor propellers in cruise
flight. Although the result is a periodic-coefficient
model, the process requires only frequency-domain
aerodynamic solutions. Assuming the unperturbed
proprotor in axial flow, first the matrix collect-
ing the aerodynamic transfer functions between
blade perturbative boundary conditions and gen-
eralized aerodynamic forces is derived. Then, its
rational-matrix approximation followed by the
combination with the equations describing the
kynetic coupling between wing and propro-
tors yields the aerodynamic ROM. This ROM is
expressed in terms of a set of linear equations
that relate the time evolution of the aerodynamic
loads acting on the proprotor blades to wing and
deformable-blade degrees of freedom. Numerical
results concerning a three-bladed proprotor fixed
to a bending and twisting wing will show that the
unsteady aerodynamic loads predicted by the pro-
posed ROM are in excellent agreement with those
obtained through direct time-marching aerody-
namic solutions.

1. Introduction

The aim of the present paper is the identification
of a periodic-coefficient Reduced-Order Model
(ROM) for the prediction of unsteady aerody-
namic loads on tiltrotor propellers (proprotors) in
axial motion. In spite of the fact that it has time
periodic coefficients, the proposed procedure is
based only on frequency-domain aerodynamic so-
lutions. This ROM relates perturbations to wing-

proprotor motion (and gust-induced velocity, if
present) to blade generalized aerodynamic forces.
When combined with the structural equations, it
yields a simple mathematical description of the
wing-proprotor system that is suitable for multi-
disciplinary preliminary design purposes and, at
the same time, is capable to predict the perturbed
dynamic behavior with a high level of accuracy
and low computational cost.

In last few years, the development of simulation
tools for the aeroelastic analysis of tiltrotors has
captured the attention of many researchers (see,
for instance, Refs. [1], [2], [3], and [4]). This
is a very complex phenomenon where a strong
interaction between wing and proprotor occurs
both in terms of kynetic coupling and in terms
of aerodynamic interference. It follows that the
use of a direct CFD simulation for the evalua-
tion of the aerodynamic loads acting on a wing-
proprotor system requires a considerable compu-
tational effort. Hence, simplified (and as accu-
rate as possible) models are highly desirable, es-
pecially for design and control-law tailoring pur-
poses. Nonetheless, most of the work in the field
of tiltrotor aeroelasticity is focused on the devel-
opment of wing-proprotor structural models (al-
though sporadic examples of development of un-
steady aerodynamic models are available in litera-
ture such as, e.g., in Ref. [5]) and, typically, very
simple 2D, quasi-steady models combined with
the strip-theory approach, are used for the pre-
diction of aerodynamic loadings (see, e.g., Refs.
[1], [2], and [4]).

The approximate aerodynamic model presented
here for describing unsteady forces on proprotor
blades is based on a 3D, unsteady aerodynamic
solution. The motion of the proprotor is assumed
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to be affected by that of the wing; however, the
effect of proprotor-wing aerodynamic interference
is not included in the analysis. Specifically, con-
sidering the proprotor in axial flow (i.e., the case
of a tiltrotor in cruise flight), our goal is the iden-
tification of a ROM describing the unsteady aero-
dynamic forces induced by motion perturbations
due to blade flexibility and kynetic coupling with
the wing. This model consists of a set of linear
equations that relate the time evolution of the
aerodynamic loads acting on the proprotor blades
to the perturbations of wing and deformable-blade
degrees of freedom (along with their first and sec-
ond time derivatives). Due to the kynetic cou-
pling between these perturbations and rotary mo-
tion of the blades, the equations have periodic
coefficients. In addition, the inclusion of the flow
memory effects produced by the proprotor wake
vorticity yields the introduction of a finite number
of additional aerodynamic states in the mathe-
matical model. As mentioned above, in this work
the novelty is that although the ROM coefficients
to be determined are periodic in time, the proce-
dure proposed for their identification is based on
a frequency-domain aerodynamic solution for the
perturbed proprotor. In this work, the frequency-
domain solution is obtained by applying the
Boundary Element Method (BEM) for 3D, un-
steady potential flows presented in Ref. [6]. How-
ever, the identification procedure proposed is ap-
plicable whatever frequency-domain methodology
is used for the aerodynamic solution. Details of
the procedure followed for the identification of the
periodic-coefficient ROM are given in Section 2,
for the case of rigid-blade proprotors. The exten-
sion to flexible-blade proprotor configurations is
examined in Section 3.

A numerical investigation has been performed in
order to assess the accuracy of the aerodynamic
ROM presented. Specifically, ROM prediction of
the aerodynamic loads arising on a three-bladed
proprotor connected to a bending and twisting
wing has been evaluated for harmonic and damped
oscillatory perturbations, and compared with re-
sults obtained through direct time-marching aero-
dynamic solutions.

2. Rigid-blade proprotor

Here, we outline the methodology proposed for
the identification of a linear, periodic-coefficient
ROM describing the unsteady aerodynamic forces
arising on the proprotor blades of a tiltrotor in
cruise flight, when perturbed from their helicoidal
motion. In this analysis, the complex aerody-
namic interaction between proprotor wake and
tiltrotor wing is neglected along with transonic
and viscous effects, for which a nonlinear model

would be necessary for an accurate description.
We consider the general problem of an isolated
propeller in axial motion in a potential fluid flow,
with perturbations that arise from shaft vibra-
tions about its uniform translation cruise motion.
In this Section the proprotor blades are assumed
to be rigid.

The proposed procedure starts from the observa-
tion that, in potential flows, aerodynamic forces
are generated by non-zero surface normal com-
ponents of the body velocity. For the configu-
rations of interest in this work, this is demon-
strated in Appendix A through the application of
a BEM approach. Indeed, in Appendix A it is
shown that a set of Nf generalized aerodynamic
blade forces induced by perturbations to a ref-
erence steady-state configuration (like, e.g., the
cruise axial motion of a proprotor) may be ex-
pressed through a frequency-domain relationship
of the following type

f̃ = Q(s) χ̃, (1)

where (̃ ) denotes Laplace-transformation, and
Q(s) is the [Nf × Nc] matrix that collects the
transfer functions relating the perturbative body-
velocity normal components, χ, at the Nc BEM
collocation points, to the aerodynamic forces, f .

In order to derive a convenient expression for the
body-velocity normal components we observe that,
in a frame of reference fixed with the unperturbed
flow, a general rigid-body motion of proprotor
blades may be expressed by

~v(~x, t) = ~v
H

(t) + ~ω(t)× (~x−~x
H

), (2)

where ~v
H

is the hub velocity, (~x −~x
H

) is the dis-
tance vector between the hub and an arbitrary
blade point ~x, whereas ~ω is the angular velocity
of the blades. Introducing a frame of reference
Hxyz rigidly connected to the rotor, centered at
the rotor hub and with unit vectors ~ir,~jr,~kr, the
velocity distribution in equation (2) may be ex-
pressed through a linear combination of six time-
independent vector spacial distributions, ~Ψn, with
coefficients corresponding to the scalar compo-
nents of ~v

H
and ~ω. Indeed, for

~v
H

= v
H

x~ir + v
H

y~jr + v
H

z ~kr,

and

~ω = ωx~ir + ωy~jr + ωz ~kr,

equation (2) may be recast in the following way

~v(~x, t) =
6∑

n=1

vn(t) ~Ψn(~x), (3)
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where the generalized velocity components are de-
fined as

v1 = v
H
x, v2 = v

H
y, v3 = v

H
z,

v4 = ωx, v5 = ωy, v6 = ωz,

while, for

~x−~x
H

= (x−x
H

)~ir + (y−y
H

)~jr + (z−z
H

)~kr,

the vector spacial distributions are given by

~Ψ1(~x) =~ir, ~Ψ2(~x) =~jr, ~Ψ3(~x) = ~kr,

and,

~Ψ4(~x) = −(z − z
H

)~jr + (y − y
H

)~kr,
~Ψ5(~x) = (z − z

H
)~ir − (x− x

H
)~kr,

~Ψ6(~x) = −(y − y
H

)~ir + (x− x
H

)~jr.

Next, we note that: (i) through the kynetic re-
lationship between shaft motion and rotor rigid-
body motion, for any given perturbation of the
shaft motion, it is possible to determine the corre-
sponding generalized rotor velocities, vn, defined
above and, as a consequence, (ii) if the trans-
fer functions relating vn and forces are known,
also forces induced by any shaft perturbation may
be determined. Therefore, in equation (1) it is
convenient to replace the input column matrix,
χ, with its (time-independent) expression given
in terms of the rotor generalized velocities, vn.
For χm denoting the body-velocity normal com-
ponent at the collocation point located at ~xm, we
have (see Appendix A)

χm(t) = ~v(~xm, t) · ~n(~xm)

=
6∑

n=1

vn(t) ~Ψn(~xm) · ~n(~xm), (4)

where ~n(~xm) is the unit vector normal to the blade
surface at the point ~xm. Transforming equation
(4) into frequency domain and applying this pro-
cess for the boundary condition at each colloca-
tion point yields the following matrix expression

χ̃ = E
BC

ṽ, (5)

where v is the six-element column matrix collect-
ing the generalized velocities, vn, whereas the en-
tries of the [Nc × 6] boundary-condition matrix,
E
BC

, are given by

E
BC

mn = ~Ψn(~xm) · ~n(~xm). (6)

Combining equation (1) with equation (5) yields

f̃ = E(s) ṽ, (7)

where

E(s) = Q(s) E
BC

is the [Nf ×6] aerodynamic transfer-function ma-
trix that relates the generalized rigid-rotor ve-
locities to the corresponding aerodynamic forces.
The entries of this matrix are transcendental func-
tion of the Laplace variable, s, due to the time-
delay terms appearing in the aerodynamic solu-
tion from wake-vorticity convection (see Appendix
A). An aerodynamic operator of this type would
give rise to an infinite-dimension state space prob-
lem in the time-domain. Thus, in order to identify
the aerodynamic ROM, this difficulty is overcome
by utilizing rational expressions for approximat-
ing the transfer functions in the aerodynamic ma-
trix. Indeed, through the methodology outlined
in Appendix B, it is possible to derive the follow-
ing approximate rational-matrix expression

E(s) ≈ sA1+A0 + C [s I−A]−1 B, (8)

where A1,A0,A,B and C are real, fully popu-
lated matrices (see also Refs. [7], [8] and [9]). Ma-
trices A1 and A0 have dimensions [Nf×6], A is a
[Na×Na] matrix containing the Na poles included
in the approximating expression, C is a [Nf×Na]
matrix, while B has dimensions [Na × 6]. In the
expression above, the first-order polynomial trun-
cation is suggested by the fact that the asymp-
totic behavior of transfer functions between ve-
locities and aerodynamic forces is linear, as in-
duced by the presence of the first time derivative
of the velocity potential in the Bernoulli theorem
(see matrix Ep in Appendix A) and by the time-
independence of the boundary-condition matrix,
E
BC

.

Next, combining equation (8) with equation (7)
and transforming into time domain yields the fol-
lowing constant-coefficient expression relating the
generalized rigid-blade velocities (and their first
time derivatives) with the corresponding unsteady
aerodynamic forces arising on the perturbed blades

f(t) = A1v̇ + A0v + C r (9)
ṙ = A r + B v, (10)

where r is the column matrix that collects the Na
additional aerodynamic states associated to the
poles included in the approximating aerodynamic
matrix [a consequence of the flow-memory effects
included in matrix E(s)].

The last step in the procedure for the identifi-
cation of the proprotor aerodynamic ROM is the
replacement [in equations (9) and (10)] of the gen-
eralized rigid-blade velocities, with the kynetic
equations that relate them to the shaft degrees
of freedom (or to the gust velocity, if present).
Introducing a frame of reference Osxsyszs that
is rigidly connected with the (nonrotating) shaft,
the six degrees of freedom of the perturbative
shaft rigid-body motion may be defined by the
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small diplacements ux, uy, uz of the originOs along
the three axes, together with the small rotations
αx, αy, αz of the frame about the same axes (note
that, for a wing-proprotor system they represent
the degrees of freedom of the wing section where
the proprotor is attached to). Combining the
shaft motion with the helicoidal cruise-state mo-
tion defined by the translation velocity ~V along
the unperturbed shaft and the rotational velocity
~Ω about the same axis, in equation (2) we have

~v
H

(t) = ~V +~v
H

per (11)

and

~ω(t) = ~Ω + ~ωper, (12)

where ~v
H
per = ~v

H
per(ux, uy, uz, αx, αy, αz) and

~ωper = ~ωper(αx, αy, αz) denote, respectively, the
hub velocity and the rotor angular velocity due
to perturbative shaft motion. Then, determin-
ing the rotor-frame components of vectors ~v

H
and

~ω, and limiting our analysis to first-order per-
turbation terms, the following relationship be-
tween generalized rigid-blade velocities and shaft
degrees of freedom may be determined

v(t) = K1(Ω, t) q̇sh + K0(V,Ω, t) qsh, (13)

where qTsh = {ux uy uz αx αy αz}, whereas K1

and K0 are [6× 6] time-periodic kynetic matrices
(a periodic-coefficient relationship between v and
gust velocity may also be determined for gust-
perturbed tiltorotor configurations). Note that
the time dependence of the kynetic matrices is
due to the relative motion between the rotor frame
of reference Hxyz (where the scalar components
of the rotor velocity are defined) and the nonro-
tating shaft frame of reference Osxsyszs (where
the shaft perturbations are defined). In addition,
the dependence of K0 on V is due to time varia-
tion of rotor-frame components of the translation
velocity, caused by shaft-frame rotation. In or-
der to explain this, let us assume that the rotor-
frame axis, z, and the shaft-frame axis zs, are
both aligned along the shaft, and that initially
the rotor axes x and y are parallel to the shaft
axes xs and ys, respectively. Then, consider the
shaft perturbations ux (translation) and αx (ro-
tation). We observe that ux induces a perturba-
tive velocity u̇x parallel to the xs shaft axis: in
the (rotating) rotor frame it has the following two
components

v1 = u̇x cos(Ωt), v2 = −u̇x sin(Ωt). (14)

In addition, the rotation of the shaft frame yields
a V αx perturbation velocity along the shaft ys
axis which, in the of rotor frame, has components

v1 = V αx sin(Ωt), v2 = V αx cos(Ωt). (15)

Hence, equation (14) is an example of time-periodic
entries of matrix K1, while examples of time-
periodic entries of matrix K0 depending on the
flight velocity V are given in equation (15). Note
that the advantage in defining the boundary con-
ditions, χ, in terms of the generalized velocities,
v, rather than directly in terms of the shaft de-
grees of freedom, qsh, is that constant-coefficient
relationships are involved. When transformed into
frequency domain, they yield the simple trans-
fer function between v and χ given in equation
(5). On the contrary, equation (13) shows that
expressing χ directly in terms of qsh would give
rise to time periodic-coefficient relationships. In
turn, in the frequency domain these would pro-
duce complex convolution integral terms, and the
rational-matrix approximation would not be ap-
plicable to the resulting E, anymore. In that case,
the alternative to get a finite-state model could
be the application of the rational-matrix approx-
imation to Q [see equation (1)], with the draw-
back of requiring the approximation of a number
of entries much higher than those appearing in
E (hundreds of collocation points might be intro-
duced by the application of the BEM approach).

Finally, the identification of the proprotor aero-
dynamic ROM is obtained by combining equa-
tions (9) and (10) with equation (13). This yields
the following set of equations

f(t) = D2(t) q̈sh + D1(t) q̇sh + D0(t) qsh + C r

ṙ = A r + H1(t) q̇sh + H0(t) qsh,

where

D2(t) = A1K1(t),
D1(t) = A1[K̇1(t) + K0(t)] + A0K1(t),

D0(t) = A1K̇0(t) + A0K0(t),
H1(t) = BK1(t), H0(t) = BK0(t),

are periodic matrices. For a given time evolu-
tion of the shaft perturbative motion variables,
qsh, the equations above yield the corresponding
aerodynamics forces, f , acting on the blades of
the proprotor.

3. Deformable-blade proprotor

In this Section, we extend to deformable-blade
configurations the methodology that has been out-
lined above. In the case of deforming proprotor
blades, some additional terms appear in the aero-
dynamic ROM. These arise from the contribution
of blade deflections to the boundary conditions,
and imply the inclusion of the degrees of freedom
associated to the blade deformation among the
perturbation variables.
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The effect of blade flexibility on aerodynamic loads
is twofold: (i), elastic vibrations yield an addi-
tional term, ~vdef , in the velocity distribution of
equation (2) that becomes

~v(~x, t) = ~v
H

(t) + ~ω(t)× (~x−~x
H

) +~vdef (~x, t) (16)

and, (ii), elastic deformation causes rotation of
the unit normal vectors, ~n, appearing in the eval-
uation of the boundary conditions. In order to
include these contributions into the aerodynamic
ROM, it is convenient to express the elastic de-
flection, ~ddef (~x, t), of each rotor blade in terms of
the following combination of Nm shape functions

~ddef (~x, t) =
Nm∑
l=1

ql(t) ~Φl(~x), (17)

where the ql’s denote the generalized coordinates
of the blade elastic motion, while ~Φl are vec-
tor shape functions chosen for the description of
the deformation distribution, which have time-
independent components in theHxyz rotor frame.
Using equation (17), the blade velocity due to
elastic vibration is given by

~vdef (~x, t) =
Nm∑
l=1

q̇l(t) ~Φl(~x), (18)

whereas the unit normals on the deformed-blade
surface may be expressed using the following first-
order truncation of the Taylor series in terms of
the generalized coordinates, i.e.,

~n(~x, t) = ~nrig(~x) +
Nm∑
l=1

∂~n(~x)
∂ql

ql(t), (19)

where ~nrig denotes normal vector in the rigid-
blade configuration, and ∂~n/∂ql are vectors with
time-constant rotor-frame components [that may
be evaluated through equation (17)]. Combining
equations (18) and (19) with equation (16), un-
der the assumption of linear analysis, the pertur-
bation boundary conditions at each blade of the
proprotor are given by

χm(t) = ~v(~xm, t) · ~n(~xm)

=
6∑

n=1

vn(t) ~Ψn(~xm) · ~nrig(~xm)

+
Nm∑
l=1

q̇l(t) ~Φl(~xm) · ~nrig(~xm)

+
Nm∑
l=1

~vcr ·
∂~n(~xm)
∂ql

ql(t), (20)

where ~vcr = ~V + ~Ω× (~x−~x
H

) is the unperturbed
proprotor cruise velocity. Transforming equation

(20) into frequency domain and repeating this
procedure at each control point and for all of the
Nb blades of the proprotor, the following matrix
expression is obtained

χ̃ = E
BC

rig ṽ + E
BC

def (s) q̃def , (21)

where qdef , is the column matrix collecting the
Nb ∗Nm generalized coordinates, ql, of the elastic
motion of all of the rotor blades, E

BC

rig coincides
with the matrix defined in equation (6), whereas
the entries of the [Nc×Nb ∗Nm] matrix E

BC

def are
given by

E
BC

def (s)ml = ~vcr(~xm) · ∂
~n(~xm)
∂ql

+ s ~Φl(~xm) · ~nrig(~xm).

Introducing the (6 + Nb ∗ Nm)-element column
matrix

w =
{

v
qdef

}
which collects the rotor generalized velocities and
blade deformation coordinates, along with the fol-
lowing [Nc × (6 + Nb ∗Nm)] boundary-condition
matrix

E
BC

(s) =
[

E
BC

rig E
BC

def (s)
]
,

and combining equation (1) with equation (21)
yields

f̃ = E(s) w̃, (22)

where

E(s) = Q(s) E
BC

(s)

is the [Nf × (6 +Nb ∗Nm)] aerodynamic transfer-
function matrix that relates generalized coordi-
nates of blade elastic motion and rigid-body ro-
tor velocities to the corresponding aerodynamic
forces.

Akin to the rigid-blade case, in order to determine
the aerodynamic finite-state model, this matrix is
approximated through a rational-matrix expres-
sion. Following Appendix B we may have

E(s) ≈ s2 A2 + sA1+A0 + C [s I−A]−1 B, (23)

where matrices A2,A1 and A0 have dimensions
[Nf × (6 + Nb ∗ Nm)] and may be conveniently
partitioned (see later) in the following way

Ak =
[

Av
k Aq

k

]
(with Av

2 = 0). In addition, A is a square matrix
with dimensions [Na×Na], C is a [Nf ×Na] ma-
trix, and B has dimensions [Na × (6 +Nb ∗Nm)]
and may be partitioned as

B =
[

Bv Bq
]
.
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With respect to the rigid-blade case, here the A2-
matrix term has been added due to the fact that
E
BC

is linearly dependent on s, as induced by
the presence of the variables associated to the
elastic deformation (it is possible to show that
the asymptotic behavior of transfer functions be-
tween displacements and aerodynamic forces is
quadratic, see e.g., Ref. [9]).

Finally, the deformable proprotor aerodynamic
ROM is derived by combining equation (23) with
equation (22), transforming into time domain and
then expressing the generalized rotor rigid-body
velocities, v, in terms of the shaft degrees of free-
dom [equation (13)]. This process yields the fol-
lowing set of equations for the perturbation un-
steady aerodynamic forces

f(t) = D2(t) q̈ + D1(t) q̇ + D0(t) q + C r (24)
ṙ = A r + H1(t) q̇ + H0(t) q, (25)

where the (6 +Nb ∗Nm)-element column matrix
of the input variables is defined as

q =
{

qsh
qdef

}
,

and the periodic matrices appearing in equations
(24) and (25) are defined through the following
partitions

Dj(t) = [Dsh
j (t) Ddef

j (t)],

Hj(t) = [Hsh
j (t) Hdef

j (t)],

with,

Dsh
2 (t) = Av

1K1(t),

Ddef
2 (t) = Aq

2,

Dsh
1 (t) = Av

1[K̇1(t) + K0(t)] + Av
0K1(t),

Ddef
1 (t) = Aq

1,

Dsh
0 (t) = Av

1K̇0(t) + Av
0K0(t),

Ddef
0 (t) = Aq

0,

Hsh
1 (t) = BvK1(t), Hdef

1 (t) = 0,

Hsh
0 (t) = BvK0(t), Hdef

0 (t) = Bq.

For a given time evolution of the shaft degrees
of freedom, qsh, and of the generalized coordi-
nates of the blade deformation, qdef , equations
(24) and (25) give the corresponding aerodynam-
ics forces, f , acting on the blades of the proprotor.

4. Numerical results

Now, we present some results of a numerical in-
vestigation that has been performed to assess the
accuracy the ROM presented above, in predicting
the aerodynamic loads arising on a proprotor per-
turbed from cruise flight conditions. Specifically,

we have considered a three-bladed proprotor with
radius R = 3.97m, and cruise flight defined by
axial velocity V = 25.7m/s and rotor angular ve-
locity Ω = 40.4rad/s (this corresponds to one of
the configurations examined in Ref. [1]). The
blade collective-pitch angle varies linearly along
the blade span from the root value θroot = 33◦, to
the tip value θtip = 5◦, whereas the chord length
is c = 0.4778m. For the results that will be pre-
sented in the following, the elastic deformation
of the blades has been simulated by a rigid-body
flapping motion about a root hinge. Therefore,
the proprotor perturbation motion has 9 degrees
of freedom, i.e., those related to the shaft mo-
tion, qsh, with the addition of one elastic degree
of freedom per blade (namely, the flap deflection
angle, β).

Figure 1. Rational-matrix approximation of transfer

function between v1 and lift force on blade 1.

First, some results concerning the Rational-Matrix
Approximation (RMA) of the aerodynamic ma-
trix, E(s), are shown [see equations (8) and (23)].
For the rotor-fixed frame of reference, Hxyz, hav-
ing the z-axis aligned with the shaft and the y-
axis aligned with one of the rotor blades (blade 1),
consider the transfer function, E31(s), between
the generalized velocity component v1 (see Sec-
tion 2) and the lift-force (proprotor thrust) act-
ing on blade 1. Figure 1 shows the comparison
between the values of this transfer function com-
puted by the frequency-domain BEM approach
outlined in Appendix A, and those given by the
rational-matrix approximation, with the introduc-
tion of 16 poles. In the frequency range examined,
the agreement between the two curves is excellent
both for the real part and the imaginary part of
the transfer function. The same good accuracy
may be observed for all of the transfer functions
in matrix E and, as a further example, we show
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Figure 2. Rational-matrix approximation of transfer

function between v3 and lift force on blade 1.

Fig. 2 where computed and approximate values of
the transfer function, E33(s), between generalized
velocity v3 and lift-force on blade 1 are compared.

Then, starting from the rational approximation
of the aerodynamic transfer functions, following
the procedure outlined in Sections 2 and 3, we
have determined the aerodynamic ROM of the
proprotor considered. In order to assess its accu-
racy for a realistic case, the proprotor shaft has
been assumed to be fixed to the tip section of
a tiltrotor wing subject to flapping, w, and tor-
sional, ϑ, elastic motion. Combining this motion
with the blade elastic deformations, it is possi-
ble to determine the variables to be used as input
for the ROM presented in this paper, and thus
predict the aerodynamic loads associated to the
perturbations considered. In this numerical inves-
tigation we have examined two different motions.
One is a combination of wing and blade-flapping
deformations with an asymptotic harmonic be-
havior, starting from rest conditions. Specifically,
the dynamics of the wing-proprotor is described
by the following functions for the time derivative
of wing-tip and blade degrees of freedom

ẇ(t) = Aw (1− e−αw t) sin(ωw t)
ϑ̇(t) = Aϑ (1− e−αϑ t) sin(ωϑ t)

β̇j(t) = Aβ (1− e−αβ t) sin
[
ωβ t− (j − 1)

2π
3

]
,

for j = 1, 2, 3, with Aw = 1m/s, Aϑ = 0.16rad/s,
Aβ = 0.08rad/s, ωw = Ω/3, ωϑ = 1.5Ω, ωβ =
1.1Ω and αw = αϑ = αβ = 1 s−1.

The aerodynamic forces associated to this motion
have been evaluated both applying the ROM pre-
sented in this work and through the time-marching
(exact) solution of the time-domain version of the

Figure 3. Lift force on blade 1 due to wing/blade

harmonic perturbations.

Figure 4. Lift force on blade 1 due to wing/blade

harmonic perturbations. Details of the initial evolu-

tion.

BEM approach outlined in Appendix A. Figure 3
depicts the lift force acting on blade 1, as com-
puted by both approaches. The two curves can-
not be distinguished and the prediction of the
reduced-order model is in excellent agreement with
the time-marching solution. This is confirmed in
Fig. 4 where, changing the scales of the axes, a
more detailed analysis of the comparison is shown
for the initial part of the motion. The ROM
shows the same excellent accuracy in predicting
all of the aerodynamic loads examined. As fur-
ther examples, in Figs. 5 and 6 the comparison
between time-marching and ROM predictions is
shown for the pitching moment about the mid-
chord line and for the moment about the flap
hinge on blade 1. Also in these cases, no dif-
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ference between the two results can be observed
in the figures.

Figure 5. Pitching moment on blade 1 due to

wing/blade harmonic perturbations.

Figure 6. Flapping moment on blade 1 due to

wing/blade harmonic perturbations.

The second wing-proprotor perturbation motion
that has been examined simulates the damped
oscillations of a stable wing perturbed from an
equilibrium configuration (the rotor blades are as-
sumed to be rigid). Specifically, the wing motion
considered is given by the following expressions

w(t) = Aw e
−αw t sin(ωw t)

ϑ(t) = Aϑ e
−αϑ t sin(ωϑ t),

with Aw = R/5, Aϑ = π/20, αw = 0.2s−1, αϑ =
0.4s−1, whereas the values of ωw and ωϑ are equal
to those used in the analysis discussed above.

Lift force, pitching moment and flapping moment
on blade 1 due to these perturbations are depicted

Figure 7. Lift force on blade 1 due to wing/blade

damped perturbations.

Figure 8. Pitching moment on blade 1 due to

wing/blade damped perturbations.

in Figs. 7, 8 and 9, respectively, both as predicted
by the ROM approach and as computed through
the BEM time-marching solution. Akin to the
harmonic input case, also for the damped motion
the solution predicted by the ROM approach is
very accurate. Taking the flapping moment as an
example, Figs. 10 and 11 demonstrate that the
same high level of accuracy is obtained for the
loads on the other two rotor blades, as well.

Finally, we have examined the sensitivity of the
ROM presented on the accuracy of the rational-
matrix approximation. In particular, we have an-
alyzed the effect of decreasing the number of ad-
ditional aerodynamic states (for the sake of sim-
plicity of the aeroelastic model and reduction of
computational costs, it is desirable to have as few
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Figure 9. Flapping moment on blade 1 due to

wing/blade damped perturbations.

Figure 10. Flapping moment on blade 2 due to

wing/blade damped perturbations.

additional aerodynamic states as possible). Fig-
ure 12 shows the rational approximation of the
transfer function between the velocity component
v1 and the lift force on blade 1 obtained using 8
poles (i.e., half of those used for the results in
Fig. 1). The agreement with the values computed
through the frequency-domain BEM approach is
satisfactory, but it is not so good as that of Fig.
1. However, it is interesting to observe that, de-
spite the reduction of the aerodynamic states, the
accuracy of the predictions given by the result-
ing aerodynamic ROM remains excellent. This
is shown in Fig. 13 for the lift force on blade 1
induced by harmonic perturbations.

Figure 11. Flapping moment on blade 3 due to

wing/blade damped perturbations.

Figure 12. Rational-matrix approximation of trans-

fer function between v1 and lift force on blade 1, using

8 poles.

Concluding remarks

A periodic-coefficient ROM for the prediction of
unsteady aerodynamic loads arising on tiltrotor
propellers perturbed from horizontal cruise flight
conditions has been presented. Despite the time
dependence of the model coefficients, it is deter-
mined through the application of a frequency-
domain aerodynamic solver, followed by a ratio-
nal approximation of the resulting transfer func-
tions between kynetic degrees of freedom and aero-
dynamic loads. Due to this rational approxima-
tion, the ROM description requires the inclusion
of some aerodynamic states to be added to the
kynetic degrees of freedom. In this paper, the
frequency-domain aerodynamic solution has been

61-9



Figure 13. Lift force on blade 1 due to wing/blade

harmonic perturbations. ROM from a 8-pole ratio-

nal-matrix approximation.

obtained by a BEM approach. However, the pro-
cedure described for determining the ROM is gen-
eral and applicable whatever frequency-domain
solution is available.

In the numerical investigation for the assessment
of ROM accuracy, a three-bladed proprotor with
flapping blades and shaft fixed to the tip section
of a flapping and twisting wing has been exam-
ined. Aerodynamic loads arising both from har-
monic and damped oscillatory perturbations of
the wing-proprotor system have been calculated.
Using the results from a time-marching (exact)
BEM solution as comparison, the ROM presented
here has demonstrated to be capable to predict
with excellent accuracy the loads induced by both
types of perturbations. In addition, the numer-
ical investigation has also shown that the accu-
racy of the aerodynamic ROM remains excellent
if the rational approximation of the aerodynamic
transfer functions is based on a number of poles
reduced with respect to those of the optimal so-
lution. This implies that simplified versions of
this aerodynamic ROM give reliable predictions,
and this is extremely useful from the preliminary-
design and control-synthesis points of view.
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Appendix A. BEM formulation for
frequency-domain potential aerodynamics

Consider a body moving in an inviscid fluid. If
initially the flow is irrotational, it remains irro-
tational at all times, except for the points which
come in contact with the body surface, S

B
, since

for these points Kelvin’s theorem is no longer ap-
plicable (see, e.g., Ref. [6]). These points form a
surface, S

W
(the wake), where vorticity may be

different from zero.

For ~vf denoting the velocity of the fluid particles,
it is possible to introduce the potential function
φ such that ~vf = ∇φ (for ~x outside S

B
∪ S

W
).

Assuming the flow incompressible, combining the
above equation with the continuity equation,
∇·~vf = 0, one obtains the following Laplace equa-
tion

∇2φ = 0 for ~x outside S
B
∪ S

W
.

This differential equation requires the definition
of boundary conditions both over the body and
over the wake. The first one is determined from
the assumption of body surface impermeability.
Accordingly, on SB we have (~vf − ~vB ) · ~n = 0,
where~v

B
is the velocity of the body-surface points

and ~n is its outward unit normal. Recalling that
~vf = ∇φ, the body boundary condition reads

∂φ

∂n
= ~v

B
· ~n.

The boundary conditions on the wake are ob-
tained from the principles of conservation of mass
and momentum across a surface of discontinuity.
Recalling the results presented in Ref. [6], these
are expressed as: (i) ∆(∂φ/∂n) = 0 on S

W
, and

(ii) ∆φ =const. following a wake material point
(with ∆ denoting jump across the wake).

Starting from this differential formulation and ap-
plying the boundary integral equation technique,
for lifting body configurations with the wake sur-
face fixed with respect to a body-fixed frame of
reference (as it occurs, for instance, in translat-
ing wings, hovering rotors and propellers in ax-
ial motion), it possible to derive the following
frequency-domain, incompressible-flow potential
solution for ~x∗ ∈ SB (see Refs. [6] and [10] for
further details)

1
2
φ̃(~x∗) =

∫
S
B

(
∂φ̃

∂n
G− φ̃ ∂G

∂n

)
dS(~x)

−
∫
S
W

∆φ̃TE exp(−s τ)
∂G

∂n
dS(~x). (26)

In equation (26), G = −1/4π‖~x−~x∗‖ is the unit
source solution of the Laplace equation, whereas
τ is the time necessary to convect the material

wake point from the trailing edge to the current
position. Note that, for configurations where the
wake surface is not fixed with respect to the body-
fixed frame of reference the frequency-domain in-
tegral equation (26) would not be achievable, in
that frequency convolution integrals would ap-
pear in the description of wake contribution.

Numerical solution of equation (26) can be eval-
uated from its algebraic approximation. It is de-
rived discretizing the body surface intoN

B
quadri-

lateral panels and the wake surface intoN
W

quadri-
lateral panels. Assuming φ, ∂φ/∂n and ∆φ con-
stant over each panel [i.e., using a zeroth-order
Boundary-Element Method (BEM)], and satisfy-
ing equation (26) at the Nc = N

B
centers of the

panels (collocation points) yields the following al-
gebraic approximation (see Ref. [10] for details)

1
2
φ̃k =

N
B∑

j=1

Bkj χ̃j +
N
B∑

j=1

Ckj φ̃j

+
N
W∑

n=1

Fkn ∆φ̃TEn , (27)

with

χj =
∂φ

∂n

∣∣∣∣
~x=~xj

, φj = φ(~xj)

and
∆φTEn = ∆φ(~xTEn ),

where ~xj is the j-th collocation point and ~xTEn
is the trailing edge point from which the wake
point at the center of the n-th wake panel was
emanated. The coefficients appearing in equation
(27) are given by

Bkj =
∫
S
Bj

Gk dS, Ckj = −
∫
S
Bj

∂Gk
∂n

dS,

Fkn = − exp(−sτn)
∫
S
Wn

∂Gk
∂n

dS,

where Gk = G|~x∗=~xk , and S
Bj and S

Wn denote
the surfaces of the j-th panel of S

B
and of the

n-th panel of S
W

, respectively.

Finally, expressing the potential discontinuity,
∆φTEn , in terms of the values of potential at the
center of the corresponding body trailing-edge panel
through the relation

∆φ̃TEn =
N
B∑

j=1

Snj φj ,

where Snj = 1(−1) if the j-th element is the
upper(lower)-surface element located at the trail-
ing edge position from which the n-th wake el-
ement was emanated, and Snj = 0 otherwise,
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equation (27) may be recast in the following ma-
trix form,

φ̃ = Eφ(s) χ̃. (28)

In the above equation, φ is the column matrix col-
lecting the φj ’s, χ is the column matrix collecting
the χj ’s and Eφ is a [Nc ×Nc] matrix given by

Eφ(s) =
[

1
2
I−C− F(s) S

]−1

B. (29)

Generalized aerodynamic forces

Once the potential distribution over the lifting
body has been evaluated, the application of the
Bernoulli theorem yields the pressure distribution
and, through integration, the generalized aerody-
namic forces.

In a frame of reference connected with the body,
the Bernoulli theorem has the form

∂φ

∂t
−~v

B
· ∇φ+

‖~vf‖2

2
+
p

ρ
=
p∞
ρ
, (30)

where p denotes local pressure, p∞ is the pressure
of the undisturbed flow, ρ denotes air density,
and ∂/∂t denotes time derivative in a blade-fixed
frame. Letting φ0 and p0 denote, respectively,
the velocity potential and the corresponding pres-
sure field around the body in its reference con-
figuration (reference aerodynamic solution), and
ϕ and p′ denote, respectively, velocity potential
and pressure field produced by perturbation mo-
tion, then one has φ = φ0 + ϕ and p = p0 + p′.
Substituting these expressions in equation (30),
dropping reference-state and second-order pertur-
bative terms, and transforming into frequency-
domain yields the following linearized expression
for the pressure perturbation

p̃′ = −ρ [sϕ̃+ (∇φ0 −~vB ) · ∇ϕ̃]. (31)

Using the body panel-discretization introduced
above, and expressing ∇ϕ̃ through the potential
evaluated at the blade collocation points, equa-
tion (31) may be recast in the following matrix
form

p̃′ = Ep(s) ϕ̃, (32)

where p′ and ϕ are column matrices that collect
the values of the perturbation pressure and of the
perturbation potential at the collocation points,
respectively.

Then, the generalized perturbation forces are de-
fined through the following expression

fn = −
∫
S
B

p′~n · ~Υn(~x) dS(~x),

where ~Υn are a set of Nf vector shape functions
with time-constant components in a frame of ref-
erence connected with the undeformed body. Note
that for aeroelastic analysis, this set of shape func-
tions has to coincide with that used for defining
the body rigid and elastic motion [i.e., with the
shape functions appearing in equations (3) and
(17), in our case]. Then, considering again the
body surface discretization applied in the BEM
formulation, the following matrix relationship may
be obtained in the frequency domain

f̃ = Ef p̃′, (33)

where the entries of the [Nf ×Nc] matrix Ef are
defined as

Efnj = −
∫
S
Bj

~n · ~Υn(~x) dS(~x),

with S
Bj denoting the surface of the j-th body

panel.

Finally, combining equation (28) (written for per-
turbative variables) with equations (32) and (33)
yields the following linear relationship between
boundary conditions and generalized aerodynamic
forces associated to a small-perturbation motion
of the body

f̃ = Q(s) χ̃, (34)

where the [Nf ×Nc] matrix Q is given by

Q(s) = Ef Ep(s) Eφ(s). (35)

Appendix B. Matrix-fraction
approximation

Here, a procedure for the matrix-fraction approx-
imation of the aerodynamic matrix is briefly out-
lined. Observing that the frequency asymptotic
behavior of aerodynamic transfer functions is
quadratic if the inputs are degrees of freedom rep-
resenting displacements, whereas it is linear if the
inputs represent velocity components, the formu-
lation introduced in Ref. [7] suggests the follow-
ing general matrix-fraction approximation for an
aerodynamic matrix

E(s) ≈ Ê(s) = s2 Â2 + s Â1 + Â0

+

[
N∑
i=0

Dis
i

]−1[N−1∑
i=0

Ris
i

]
(36)

(with Â2 = 0 for velocity-component inputs).
Matrices Âi,Di and Ri are real and fully pop-
ulated (except for DN that is chosen to be an
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identity matrix). They are determined by a least-
square approximation technique along the imagi-
nary axis. Specifically, the satisfaction of the fol-
lowing condition is required

ε2 =
∑
n

wn Tr

[
Z∗(sn) Z(sn)

]∣∣∣∣
sn=iωn

=min,

where i =
√
−1, wn denotes a suitable set of

weights, and

Z(s) :=

[
N∑
n=0

Dns
n

] [
s2 Â2 + s Â1 + Â0 −E(s)

]

+
N−1∑
n=0

Rns
n

is a measure of the error (E− Ê).

Next, in order to use the matrix-fraction approxi-
mation for deriving an aerodynamic ROM in state-
space format, it is convenient to recast equation
(36) in the following form

Ê(s)=s2Â2+sÂ1+Â0 + Ĉ
[
sI−Â

]−1

B̂, (37)

where B̂ depends upon the Ri’s, Â upon the Di’s,
whereas Ĉ

T

= [I,0, ...,0] (see Ref. [7] or Ref.
[9], for details). The accuracy of the approxi-
mation depends upon the number, N , of matri-
ces used in the matrix-fraction term in equation
(36). The appropriate value of N depends upon
the characteristics and number of functions to be
approximated. The number of poles included in
the approximate expression is linearly related to
the value of N . If a high number of poles is
introduced, some of them could be found to be
unstable, i.e., they could have real part greater
than zero: these are spurious poles which are in-
troduced by the interpolation procedure, and are
not physically acceptable (if the input kynetic
variables have limited amplitudes, aerodynamic
forces have limited amplitudes, as well). In order
to overcome this problem, the iterative procedure
suggested in Ref. [7] is adopted. This consists of:
(i) diagonalization (or block-diagonalization) of
Â, (ii) truncation of the unstable poles (the ma-
trix Â is modified into a smaller matrix A), and
(iii) application of an optimal fit iterative pro-
cedure to determine new matrices A2,A1,A0,C,
and B that replace, respectively, Â2, Â1, Â0, Ĉ,
and B̂ (whereas A remains unchanged through-
out the iteration). Hence, the matrix-fraction ap-
proximation assuring a good and stable fit of E(s)
has the final form

E(s)≈s2 A2+sA1+A0 + C [s I−A]−1 B.
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