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ABSTRACT 

The non!inearities present in a helicopter resting on ground were detected and identified from a experimental 
Frequency Response Function set. 
In order to assure that only the non/inearities belonging to helicopter structure were measured, a particular 

attention was devoted to the experiment set-up. 
The Frequency Response Function set was obtained by the use of the stepped sine excitation technique with a 
closed control loop in both amplitude and frequency 
The analysis was performed by use of 1/Je Complex Stiffness Method, a Single Degree Of Freedom frequency 
domain technique. It allows not only to detect the existence of any nonlinear stiffness or damping but also to 
identify the type of nonlinearity In this paper, after a brief theorethical introduction to the method, the obtained 
nonlinear damping and stiffness characteristics are presented and discussed. 

1. INTRODUCTION 

In the context of a methodological research 
programme, a series of ground measurements were 
performed on an Agusta helicopter airframe. 

The comparisons of the Frequency Response 
Functions (FRFs), obtained at the same points for 
increasing excitation force level, showed important 
discrepancies: the natura! frequency shifts to a lower 
level and the peak amplitude decreases. These 
observed phenomena, together with the unsymmetrical 
shape of the peaks, clearly indicate the presence of 
some form of nonlinear behaviour. The frequency 
response functions obtained at the driving point for four 
increasing latera\ forces are shown in Fig. 1. A 
softening nonlinear behaviour is evident in both the first 
and second mode. 

Modal analysis investigations are usually 
performed on the basis of the assumption of structural 
system linearity. When the system does not satisfy this 
fundamental assumption, completely erroneous modal 
model can result. 

Therefore, if the existence of some non!inearities 
is detected, it will be necessary to decide between two 
alternatives. Either, according to the common practice, 
to be satisfied with its detection and, by use of 
particular acquisition techniques (e.g., random 
excitation), to reduce their consequence and relegate 
their residual effect to experimental error or to adopt a 

fully nonlinear approach in order to identify and quantify 
their characteristics. 
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As the model identification results had to be 
used for a following verification procedure and the 
nonlinear behaviour was significant, the last alternative 
was preferred. 

Because the two identifiable modes were quite 
uncoupled and separated from each other. it was 

reasonable to assume, obviously in a limited frequency 
range around them, the system behaves as a Single 
Degree Of Freedom system. This approach, neglecting 
the influence of the other modes, allowed the use of a 
SDOF identification and characterization method. 

The Complex Stiffness Method [1-4] was chosen 
because of its possibility to be directly applied, under 
appropriate conditions, to the frequency response 
functions, i.e. the result of every general modal 
experimental testing, without requiring further dedicated 
measurements. Moreover, it does not need any a priori 
information or initial estimates of the nonlinear 

characteristics and it gives a physical insight in the 
nonlinear phenomena. The basis of the method is the 
describing function theory, proposed for the first time by 
Kochenburger in 1950 and usually applied in the control 
system theory [5-8]. 

2. EXPERIMENTAL SET-UP 

A frequency response function set was obtained 

by using the stepped sine excitation technique [9]. It is 
quite a new method that was developed for the analysis 
of both nonlinear and complex systems. This excitation 
method involves an incremental, stationary, sinusoidal 
excitation. A fully sinusoidal input is applied to the 

structure and the data are acquired only after the 
system has reached steady state conditions at the 
actual excitation frequency. The sinusoidal excitation 
frequency is varied in discrete step and the excitation 
amplitude is kept at constant level by a closed loop 
controL From the acquired time histories only the 

fundamental signal component is retained for the FRF 
calculation. By means of a repeated execution of this 
procedure for all spectral lines, input/output relations 
are accumulated as a function of the frequency. 

The excitation was provided in both lateral and 
fore/aft directions. The shaker was connected to the 
helicopter so that the force could act perpendicularly to 
the rotor hub and could pass through the rotor disc 
centre. Indeed one of the essential conditions for proper 
use of the stepped sine technique is a absolutely 
unidirectional excitation. 

Furthermore in order to single out the possible 
nonlinear effects, due to the structure/shaker interface, 
three different links between the shaker and the 
structure were used: 

1) a spherical bearing; characterised by a non 
negligible backlash, but providing the 
transmission of high force level without 
introducing any significant misalignment; 

2) a universal joint, characterised by a smaller 
backlash at low force level; 

3) a stinger, a stiff connection without any 
backlash, but recovering only very small 
misa!lgnment. 

Several airborne configurations were taken into 
account to extract the effects of the position of the 

landing-gear shock struts. In order to insulate the 
structure from the support frame, the aircraft was 
suspended from the centre of the rotor hub by a 
pneumatic suspension. Such a way led to a variability 
of the suspension system: in the four airborne 
configurations the weight of the helicopter carried by the 
suspension ranged from 0 to 75 % of the aircraft global 
weight. Despite this change in weight, the rigid body 
eigenfrequencies had to be maintained below .8Hz. 

This requirement was accomplished by adjusting the 
pressure in the pneumatic spring, maintaining constant 
the vertical height. 

3. THEORETICAL ASPECTS 

The dynamic behaviour of a nonlinear SDOF 

system can be described by the following equation: 

m(t,.-i:,x)X +c(X,X.x)X +k(X.X,x)x =.f 

where m(t,X,x), c(X,X,x)and k(X,X,x) are genera! 

nonlinear relationships. 
When using stepped sine testing technique the 

FRFs are acquired frequency by frequency, limiting the 
spectral content of the output response at a pure 
sinusoidal input to its principal component. Such 
procedure is equivalent to applying the describing 
function linearization technique to the nonlinear 
inpuUoutput relationship. 

In fact the describing function of a nonlinear 
system is defined to be the complex ratio of the 
fundamental component of the output to the pure 
sinusoidal input. 

For a sinusoidal input y(t) = Y sin(tut) the output 

w(l) of a general system will be a nonsinusoidal periodic 
function which can be expressed as a Fourier series as 
it follows: 

where: 
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w(t) = _Ll-Aw'iin(no.H) +Bncos(nrut)) = 
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ro 

= Ao + _L1-T~1sin(nrut + qJ) 

n=l 

l 's" . An=-;; w(t)sm(nrut)d(rut); 

0 



'" 
Hn =-;s w(t)cos(nwr)d(rut); 

0 

W - •1' B' . - _, ( B, l n - , n + n , (/)11 - tan -.-
,J" 

If the nonlinear relation between the input and 
the output of the element is symmetrical about the 

origin, then A0 ~ 0. The fundamental component of the 

output is: 

li'l (t} = A1sin( rvt) + B1 cos( rut) =ll~sin( (l)t + rp) 

According to the previous definition the 
describing function is given by: 

" l' W1 /1 1 . 131 "( Jo)~-Lq>1 ~-+J-y )' )' 

Generally the describing functions depends on 
the frequency and amplitude of the input signal There 
are, however, a number of special cases. 

If the force f{t) is considered as the output and 
the displacement x(r) as the pure sinusoidal input, the 
fundamental coefficients of the force Fourier series will 
result: 

'" } ·f- J c{.t,.\·,x).t sin(rut)d(oJt) 

0 

l'" B1 = -~ f[k(.t,.{,x)x llll(.\= .. \·,x).\}-·os(all)d(rut) -1-

o 

'" } -r f c(.¥. t. x ).\·cos( OJ r )d ( wl) 

0 

Considering the describing function definition, 
after straightforvvard calculations: 

;11 - !l'k( \' ) 2 '!"'( \' ) \1''( \' ) x- a' ,(1) -rV .'\ 0 • ,(V +{l)f e./ ,(V 

~1 ~ Nt(X.w)-cv2 N;'(X.ro)+!oN;(x.m) 

where the subscript o and e indicates respectively the 
describing function of the odd and the even part (or, in 
a more general sense, its real and imaginary parts) of 

them(.< .. <,<), c(.<,.<,<) and k(x,x,x) relationships, and 

the superscripts indicate the parameter described by 

the considered describing function (m for mass, c for 
damping and k for stiffness). 

3.1 Complex Stiffness Method 

If the following simplifying hypotheses are 
assumed: 

1) the mass m(i,i",x):::: m =constant; 

2) the stiffness k(Y .. r,x) = k(xJ is an odd function of 

the only displacement; 

3) the damping c{.t,x,x) ~ c(-r) is an odd function of 

the only velocity; 
the describing function of the whole system under those 
conditions will become: 

Ns(.X.')= /;} + j 1~; =(N~(X.cv)-cv2 m}+ f(cuN~(X,(o)} 
Comparing the previous expression with the 

inverse of the compliance of a single degree of 
freedom: 

F ( ' ) . X = keq- (l[nleq + ;(cuceq) 

their similarity is evident 
Because the describing function of the dynamic 

relationship was calculated with the force as output and 
the displacement as input, while the actual 
(experimental like) FRF is obtained with the 
displacement as output and the force as input, it is clear 

that meq' keq and ceq will coincide with the m' N~ (.X' OJ) 

and N~'(.X ,(o) only if the harmonics of the actual output 

are negligible in comparison with its fundamental 
component In fact the inverse of a describing function 
is not necessary identical to the describing function of 
the inverse. 

In the experimental testing the inertance is 
usually acquired: 

F (- k,qJ ·(c"q) (v) -~(F) ~= m-] -; -=~He~ +)-WI~ 
.\ (V (0 ~\ ~\ 

In the previous expressions it is easily noticed 
one of the most intriguing aspects of the Complex 
Stiffness Method: while the direct FRF of a SDOF 
system tends to mix together the stiffness and mass 
characteristics with the damping ones, the inverse FRF 
separates them respectively in the real and imaginary 
part. 

The system parameters are related to the real 
and imaginary parts of the inverse inertance according 
to the following expressions: 

[- (F)] ' keq = m - '!He ....¥ or 

c ~-OJ 'Jm(~) 
'' X 
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Jt is clear that, providing the mass is known, keq 

and ceq can be calculated as a function of the frequency 
and consequently also as functions of displacement and 
velocity. 

3.2 Mass Calculation 

Taking into account two points of the FRF with 
identical displacement magnitude, it is possible to write 
the following expressions: 

Point 1: 

Point 2: R2 ~ !lle2( I·;)~ iii- k', 
. .\ CV2 

since the stiffness was assumed to be function of the 
only displacement its values will be identical for both 
the points. This allows the elimination of k 1 and k2 
values from the two expressions and yields to the 
following relation: 

If this procedure is repeated for each couple of points 
corresponding to a certain displacement, a relating 
value of the mass can be estimated. Then the mass 
values could be averaged over the whole frequency 

range 
An alternative technique is available in the case 

where the previous method failed (e.g., when jump 
phenomena are present in the FRFs or when the 
stiffness is also dependent on velocity or frequency). 
After collecting different values at the same frequency 
but obtained with different force magnitudes, the CU!Ve 

(k"'l - rv2m) is set as a function of displacement. Next, it 

is possible to extrapolate its value for x ~ 0. The whole 
procedure is repeated for at least another frequency. 
Assuming that for all the frequencies the stiffness 
values, obtained for x = 0, are constant, the mass can 

be estimated from the curve (k~~,"-' 01 - rv2m). 

3.3 Parameters Actual Values 

As just said the meq· ceq and keq are the 
describing functions of the actual parameters. 
Generally, in order to describe the dynamic behaviour 
with a more accurate nonlinear model, instead of the 
linearized describing function representation, the 
reconstruction of the original nonlinear characteristics 
could be an interesting goal. 

It can be shown [see appendix A1 for the 
demonstration of a common simple example], that the 
describing function for an odd piecewise linear 
nonlinearity can be written in the form 

, .. , ( ) 
N(X) ~ I:(k,- k., 1)S :~. +k, 

J=l 

where: 
n is the number of the linear segments; 

o, is the rth breakpoint; 

k, is the slope of the inpuUoutput linear relationship 

occurring for ~-- 1 ~ x ~ ~-; 

and S(iifX) is called the saturation function and it is 

defined as: 

2 ( ") oFITJo)' 
( 

O) -Sill-! -; +-; 1- -; 
..)_L = Jr .A . .\ . .\ 

X 
I 

.\· __ 0{; + 01 81 +OJ Computing N(X) for . 
2 2 

where the ~\ correspond to the measured points of the 
describing function, the following set of equations 
results: 

This equation system is trivially solvable by the 
substitution method. The so determined values will 
quantitatively represent the non linearity. 

For the more general describing function forms 
the inversion is more complicated, but often possible. 

lt is intuitively clear that since the describing 
function is a simplified measure of nonlinear 
characteristic, the describing function inversion is 

necessarily non unique. 
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3.4 Further Considerations 

Even if a large number of nonlinearities can be 
handled with the complex stiffness method, it is 
interesting to add some further considerations in order 
to reduce the restrictions imposed by the hypotheses: 

1) Only the first (constant mass) imposed 
restriction is an actual limitation; 

2) The fact that the stiffness has to be only 
dependent on the displacement is not necessary 
for the application of the method. It allows a 
simpler estimate of the mass value. As the 
damping is not important to the mass 
estimation, the previous consideration is even 
more valid for the first part of the third 
hypothesis. So significant conclusions can be 
drawn from the evolution of the equivalent 
parameter also if the first part of the second and 
third hypotheses is not satisfied [3]. In fact, by 
plotting the equivalent parameters as a function 
of both the displacement and the velocity, it is 
possible to know which parameters are a 
function of each other. 

3) The restriction of the method to odd function of 
the displacement and the velocity is not 
absolutely an essential requirement for its 
application. It increases the easiness of 
understanding the results. In fact the describing 
function of a genera\ nonlinear relationship 
contains both the real and the imaginary part. 
The direct principal consequence is that the keq 

and ceq do not only correspond to the describing 
function of the stiffness and damping, but 
respectively to the describing function of the odd 
part of the stiffness plus the describing function 
of the even part of the damping and the 
describing function of the odd part of the 
damping plus the describing function of the even 
part of the stiffness; i.e. the describing function 
of the whole system has the form 

\,., \' ! [A'k '- "'] ·[ "' + 1\'k l J (.· . :::::: 0 -(JJ m +OJi\1' +) (l)11 0 I' 

In the case where the stiffness is a function of 
the only displacement, if a FRF obtained at 
constant displacement value is available, 
applying the complex stiffness method, both the 
real and the imaginary part of the stiffness 
describing function will result constant. The 
whole system describing funct"lon becomes: 

So it will be possible to verify whether the 
imagrnary part of the describing function 
depends on an odd damping or on an even 

stiffness relationship. The same procedure can 
be applied if constant velocity FRFs are 

available. 

4.RESULTS 

The Complex Stiffness Method was applied to 
the lower frequency mode of all the FRFs shown in 
Fig. 1. They are the driving point responses at constant 
lateral force stepped sine excitation. The solid, dashed, 
dot-dashed, dotted lines indicate respectively the curve 
obtained at 150, 300, 525, 750 N force value. 

Before introducing the results, it is important to 
point out the following aspects: 

1) The values obtained drrectly by the complex 
stiffness method application, are not the actual 
nonlinear characteristics, but their point by point 
Jinearisation according to the describing function 
procedure. They give only qualitative information about 
the behaviour of the investigated parameter; 

2) The displacement and the velocity, which are 
being dealt with, are the values obtained by the FRFs 
curves, that is the lateral displacement and velocity of 
the helicopter mast. 

4.1 Equivalent Mass 

The first step of the method is the mass 
calculation. In Fig. 2 the mass estimated values, 
obtained in the range of interest for each spectral line, 
are depicted as functions of the displacement 

. j I 

! i. i II I . I 
' •(!.(.::'.()] L. --~~·~·····-~--.~-..t............. ~--·~ j I 
~~--~ e cc'~·-~~-·-·------~:·.. 20.0(>(}-•. 

Fig. 2 -Mass estimates as a function of displacement. 

It is possible to see that the equivalent mass is 
not constant but it increases approaching the 
resonance. 

In order to overcome this effect, also the 
alternative method was applied to three frequencies 
values (1.33, 1.45, 1.6 Hz) well !ar from the resonance 
peaks. 

The values obtained by using both the method 
are listed in the following tables. 
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Force 
150 300 525 750 

Mean 

[N] Value 

Mass 
826.4 862.3 863.2 872.3 856.0 

[kg] 

Tab. 1 • Average mass values estimated at different 
excitation force levels together their global average. 

Frequency 
1.33 1.45 1.6 

Mean 
[Hz]] Value 

Mass 
819.8. 829.9 891.2 846.9 

rkqJ 

Tab. 2 • Mass values estimated at constant frequencies 
excitation and their average. 

It is important to note that the assessed mass is 
not the actual mass of the whole helicopter but the 
modal mass, i.e. the mass involved in the considered 
mode. 

The estimates of the values, obtained for the 
different force levels, are quite consistent. Furthermore 
there is a very good agreement betvveen the results of 
the two methods. 

4.2 Equivalent Stiffness 

Next the equivalent stiffnesses were obtained for 
the four FRFs. They are displayed in Fig. 3 against the 
displacement. 

,--- --------------------- ------------------- ,__ , ______________ _, __ ! 

, '""' ~-,·:~·--r·--~--T-·-~-·---r----1 rr· <:, -· -
i; 
!: 
I 

~ .. I 
1' -I 

I 
'')' 0~ 

f 

~ 
• c.t.:Jm 

~ 
G.()(J{l() 

Fig. 3 • Equivalent stiffness (or real part of the system 
describing function} as function of the displacement. 

' ., 

Just at a first view the results are quite 
consistent. lt is also clear that, as it was easily 
predicted, the equivalent stiffness indicates a softening 
stiffness nonlinearity. 

From a more particular point of view it is 
possible to define three typical trends: 

1) From 0 to about few millimetres, the equivalent 
stiffness increases from a very small value to a 
maximum; 

2) Then it begins to regularly decrease as 
displacement increases up to about 22 mm: 

3) Finally after a sharp drop to a lower level, it 
continues to decrease to a constant value. 

A stiffness trend equal to the first is 
representative of the presence of free-plays. To exclude 
the effects of the interface between the helicopter and 
the shaker, different kinds of links were used. No 
significant differences were found. So such behaviour is 
attributable to free-plays present in the main gearbox 
or/and in the landing gear system. 

In the second the effects of a softening 
nonlinearity, distributed or concentrated somewhere in 
the helicopter, could be recognized. Such a behaviour is 
typical of the landing-gear shock absorber plus 
pneumatic tire system. 

Then the sudden drop could depend on the 
modification of the stiffness when the rod of the landing 
gear shock absorber starts to move (indeed this was 
visible near the resonance only at high excitation force 
level, that is for high displacement values). 

4.3 Equivalent Damping 

The equivalent damping were obtained. In Fig. 4 
the extracted functions are depicted versus the velocity. 

Fig. 4 • Equivalent damping (or imaginary part of the 
system describing function) as function of the velocity . 

It is possible to divide the evolution of the 
damping in four different characteristic section: 

1) A very rapid decrease from a very high value: 

2) Then sudden increase and decrease of the 
damping are visible for a displacement value 
comprised between 2 and 15 mm. This 
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behaviour is only visible in the branch obtained 
for decreasing velocity; 

3) A quite constant value; 

4) Finally a sharp increase up to a maximum 
where it remains constant (This behaviour is 
visible only for the high force level curve, that is 
for high velocity). 

These different behaviours suggest the following 
considerations: 

The physical meaning of the behaviour in the 
first range is not clear In the following, by reducing the 
simplifying hypotheses, a possible interpretation will be 
given. 

The peaks due to increasing and decreasing is a 
characteristic of friction damping. The fact that the 
displacement is not large excludes its belonging to the 
landing gear dampers. It could be probably connected 
to the recovering of some freep\ays or to the wobbling 
pneumatic tires. 

The large increasing coincides with the starting 
of the matron of the damping struts of the landing gear 
dampers. It could be the effect of the friction in the 
shock dampers. In this case a further increasing in the 
velocity could give a reduction of the values. 

4.4 Further considerations 

As it is possible to see in the previous figures, 
the equivalent curves have two branches: one obtained 
for increasing displacement and the other for 
decreasing displacement. According to theory they have 
to be identical. The differences occurring are 
attributable to one of the following facts 

1) As the resolution of the curves becomes poor, 
approaching the natural frequency, it is difficult 
to avoid discontinuities or jumps at the high 
values of the displacement and velocity; 

2) Small phase shrfts, due to filters and amplifrers 
of the sensor, occurred during the acquisition 
can produce relatively large differences between 
the FRF values below and above the resonance. 
This causes deviations between the two 
branches of the curves particularly at low 
frequency; 

3) The equivalent characteristic depends on the 
other parameter; (stiffness on velocity and 
damping on displacement). A check of the 
remaining possibility was performed. In the 
following figures (Figs. 5 and 6) the equivalent 
stiffness is plotted against the velocity and the 
damping versus the displacement. Comparing 
them with Figs 3 and 4, no significant 
differences are visible. Indeed, as the analysis 
range falls between low frequency values, no 
large modifications are obtainable by the 

passage from displacement to velocity and 

viceversa. 

4) The parameter is also function of the frequency. 

5) The investigated parameter is not a purely odd 
function of displacement or velocity. 

This suggests an intriguing explanation of the 
unjustifiable behaviour visible in the describing function 
of the damping: it is attributable to the existence of an 
even part of the stiffness. Indeed, as it had just been 
said, the not odd part of the stiffness appears in the 
equivalent damping. Furthermore its trend is quite 
similar to the imaginary part of the describing function 
of backlash nonlinearity (see Appendix A2 for more 
detail on this nonlinearity). To verify this interesting 
hypothesis the complex stiffness method was applied at 
a set of FRFs obtained with constant displacement The 
unjustifrable trend of the damping disappeared. As, in 
the hypothesis of a stiffness depending only on the 
displacement, it is reliable to consider its effects 
negligible both in the real and the imaginary part of the 
describing function, it is possible to assume such trend 
as the effect of the not odd part of the stiffness 
relationship. 

L~ .. ~ ... ·~-'--··~· ····· ... L·~· . -~~~L·~--""'~~J 
;).()().'};) O[XJ 00... 

Fig. 5 - Equivalent damping redrawn as function of the 

velocity. 
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The result suggests that the assumption could 
be true and confirms that also not odd characteristics 
can be treated with the complex stiffness method. 

If constant velocity FRFs had been acquired the 
same procedure can be repeated, in case it is 
necessary, on the equivalent stiffness, giving 
information on the imaginary part of the damping 
describing function. 

5. ACTUAL VALUES OF THE PARAMETERS 

The actual values of the characteristics were 
obtained by inverting the describing function by using 
the outlined method. In the following Figs. 7-8 the 
actual nonlinear stiffness is depicted versus the 
displacement. The inversion operation increases the 
differences between the values obtained for increasing 
(Fig. 7) and decreasing (Fig. 8) displacement values. 

,--
i •)tx\.ro. 

! 

''J'''' 

r 1 
i j 

•C.O.X>J f~~-~ .... .L.'"·-~·-··-L~_l~__.__._l~·~-·--1~-'-'-...J.... _.1 

I (!,C{>OO ·Hl.();»-
L.~---·~-~-------- .... ·····-·-·-····~------~---~---

Fig. 7 ·Original nonlinear stiffness (or inverted real part of 

the describing function) obtained for increasing 

displacement plotted as function of the displacement. 

Fig. 8 - Original nonlinear stiffness obtained for 

decreasing displacement shown as function of the 

displacement. 

In the following the actual nonlinear damping 
relationships obtained from both the increasing (Fig 9) 
and the decreasing (Fig 10) velocity branches of its 
describing function are shown. 

Again the differences between the two cases are 
amplified by the describing function inversion. In 
particular the high negative slope deforms the initial 
trend of the first figure. introducing meaningless 
negative values. 

It is important to note the dependence on the 
frequency of the damping, recognizable in the shift of 
the peaks occurring in Fig. 10. This is a characteristic 
trend of the friction damping. 

Fig. 9 -Original nonlinear damping (or inverted imaginary 

part of the system describing function) obtained for 

increasing velocity values shown as function of the 

velocity. 

----·---~-, 

Fig. 10 Original nonlinear damping obtained for 

decreasing velocity values depicted as function of the 

velocity. 

l 
I 
j 

§. CONCLUSIONS 

The intent of the study was to provide 
information leading from a experimentally obtained FRF 
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to a better understanding of a nonlinear system 
behaviour and an identification of the nonlinear 
parameters. Even though the used technique is only 
applicable to SDOF systems it was possible to detect 
the trends of the nonlinear stiffness and damping 
present in the investigated helicopter airframe. 

Moreover the possibility of extending this method 
to handle also non-odd nonlinear characteristics, 
commonly found in real structures, prospects future 
practical applications. 
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A. APPENDICES 

A.1 Describing Function of a Simple Odd Piecewise 
Linear Nonlinearity 

In the following (Fig. A1.1) the inpuUoutput 
relationship of a nonlinear system characterized by a 

dead-zone plus a saturation is depicted. Where X 0 and 

.X_, are respectively the ranges of the dead-zone and the 

saturation, k denotes the slope of the nonlinearity. 

01./0.ll-;"(m[ SJ<Il)IU,!I()N N0'~1.1N[Ail<lV 

I ( ---~-~--~·---··~""····~--~~~~.,..-.--,-·-· ~~~ 

",I 
~ ) 

_J 
\·-~x, 

.. 1--·-·---·~·-"-" ... -~~--···---·-·- ----·····-·--··--·-
··0.8 -0.6 ··0.~ ·O.Z 0 o.~ 0.'· 0 b O.l.< 

,,,,,~, 

Fig. A 1.1 - OutpuUinput relation for a dead-zone and 

saturation nonlinearity. 

Now consider the pure sinusoidal input Ysin( (VI), 

if Y .>,\'s, the output will be expressed, in a half cycle, 

as: 

0 0 S:o.Jt S:a 

k(Yslll( rvt) -- X 0 ) a S: OJt .s' j3 

w(t) k(X,- X0 ) /3" (lj{ c:( 7[ /3) 
("- /3) C: oJI c:(" --a) 

(;r··-a)So.Jt S:Tr 

k(Yslll( M) -- X 0) 

0 

h ... 1(X") d /3 . '(X') w ere a =s111 T an =sui y . 
The input and the output are plotted in Fig. A1.2. 

0f.AI)-20N[ 3>\lURAliON NO'IliN(AR!lY 

- L.-~---·~--~--···-----~-····--~-~---~----·.-.-J 
0 0.2 0.4 0.6 0.8 1 1.2 1 4 l.(i 1.8 2 

•o<.Jion:, 
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Fig. A1.2 ·Output and input wave for a dead·zone and 

saturation nonlinearity. 

The odd nature of w(t) implies that /1 1 ~o and 

the symmetry over the four quarts of a period brings 
that: 

4J~ B 1 =- · w(t)sin(tot}d(tot) = 

is: 

J[ 0 

=;js:k[J'sin(rot)-X0 ]d!rut)+ J,~ k(X, -X0 )sin(rot)d(rut)} 

According to its definition the describing function 

N(l')=!!J_=lr r 

() 

Ok 
J- -=-[a+ si11acosa] 

1( 

k 
-[ 2(;3- a)+ (sin2j}- sill2a)] 
Jf 

Y> x.)· 

The describing function is plotted in Fig. A1.3 as 

a function of Y 11 . . 
/J 5 

t ~, 

Fig. A1.3 · Describing function of the dead·zone and 

saturation nonlinearity. 

The output is null since the input is lower than 
the dead-zone range. Then, as it is intuitively 
reasonable the N(l') firstly increases, because the 
effects of the dead-zone gradually diminishes as the 
amplitude of the input increases up to x_,. then 
decreases, since the saturation amounts reduces its 
ratio to the output. 

On the other hand by use of the general 

expression given in the par 3.3, with n.::::-2, X 0 and Xs 

being the two breakpoints, and k as the slope, the 
following expression will be obtained. 

N(l'J=k[l-s(-~o )]+·f~s) 
It is possible to show, with simple manipulations, that 
such expression is identical to the previous. 

A.2 Describing Function of the Backlash 
Nonlinearity. 

Fig. A2.1 shows the output/input relationship of 
a backlash nonlinearity, with slope k and width 2X0 If 
the input amplitude is smaller than X0, there will be no 

output. 

""5 0~ 
~ I 
o-o.J. 

_1"'-··- --=====------~--··---
- 1 -0.8 -0.!\ -0.4 -·0.2 0 

iopu! 

Fig. A2.1 

nonlinearity. 

OutpuUinput relation for a backlash 

If the input is Ysin(oJt).the output wave w(t) can 

be described, in a period, as follows: 

(X -b)k 

(Xsin(oJI) +b)k 
w(t) ~ 

-(X-b)k 

(Xsin(wt) -b)k 

where r=,,n-'(1-~:.J 

Jf 
-5(1JI5TC-y 
2 

l7r 
n-y5(1Jf 5-

2 
3Jr 
- :5' tut S2n- y 
2 

51[ 
2n-y5tut:5'-

2 

The output ·w(l) of the nonlinearity is as shown in 
the Fig. A2.2. 

1,...... ·-----,~-=--------~--·--

',I .. 
+:/ 

-O.~i-

o.s '' 

Fig. A2.2 - Output and input wave for a backlash 

nonlinearity. 

The function w(t) is neither odd nor even. 
Therefore, both A 1 and B 1 are non-zero. Through some 
tedious but not difficult integrations the following 
expressions are obtained: 
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A,~ 4kXo_( Xo -I) 
" ]' 

13 Ak[n- ... ,(2Xo ) (2Xo 1) 1 ~- ~~sm ---1 - ---
71 2 y y 

The real or the imaginary parts of the describing 
function are (or the describing functions respectively of 
the odd and even parts of the input/output relationship) 
plotted in Fig. A2.3. 

Fig. A2.3 M Real and imaginary part of the backlash 

describing function. 

Note that the presence of a non-zero imaginary 
part brings a phase lag. This lag is the reflection of the 
gap that introduces a time delay. 

07-11 


