A NEW HELICOPTER SIMULATION AND ANALYSIS TOOL: HELIDYN+

Ilkay Yavrucuk¹, Onur Tarimci², Mehmet Katircioglu³, Eser Kubali⁴, Deniz Yilmaz⁵

^{1,5} Department of Aerospace Engineering Middle East Technical University 06531, Ankara, Turkey

> ^{2,3,4} Aerotim Dynamics, LLC. , ODTU Kosgeb 06531, Ankara, Turkey

yavrucuk@metu.edu.tr (Ilkay Yavrucuk)

Abstract

A new software tool - called Helidyn+ is developed for comprehensive helicopter analysis, simulation and Helidyn+ allows the user to generate a design. helicopter math model through its component build up algorithm by selecting model libraries for various helicopter sub-components, such as models for the main rotor, inflow, tail rotor, fuselage, landing gear etc. The software is capable of modeling a helicopter, running a simple performance analysis, trimming for different flight conditions, linearizing, running batch simulations, as well as generating dynamic link libraries ready to be integrated into existing simulations and software environments. This paper explains capabilities and features of Helidyn+ and shows some recent applications.

Introduction

Helicopter math models are engineering tools with a variety of applications. The fidelity of these models can be various and can be used in engineering analysis, design, education and products like simulators. Often the requirement is to have models that have acceptable execution time, but also detailed enough to suit the application. The theory for such models is well established in literature [1, 2]. Yet, there are few off-the-shelf software products that provide helicopter dynamic math models that can be tailored for various applications and used as an engineering tool. Some of them are too complex to use, others don't have the required modeling fidelity. Most companies and universities still develop their own helicopter math models.

Many companies and/or university labs with would benefit from an off-the-shelf, simple to use, verified helicopter dynamic modeling and analysis tool. This would save the effort to build and verify a new math model. There are few off-the-shelf modeling tools for helicopters. A popular helicopter modeling, simulation tool is Flightlab [3]. Flightlab allows the user to build high fidelity helicopter math models and is a very comprehensive tool for helicopter dynamics with many features. It is widely used - mostly at universities and companies involved in helicopter simulation and analysis.

The software tool, Helidyn+, presented in this paper is designed to build fast and accurate helicopter models, analyze and simulate them. It has the key feature to extract independent model libraries to be used in external applications and integrate with FlightGear [4] for fast visualization.

Helidyn+ is an effective and easy to use tool for companies and universities. Few recent applications at the Middle East Technical University demonstrated its effective use both in the lab and in class. The software is used in class assignments, where students are asked to build their own main rotor model and integrate it with a helicopter model (with no main rotor dynamics) generated in Helidyn+. Helidyn+ is also used in the design of controllers for unmanned helicopters. The tool is used to test the controllers in Simulink/Matlab [5], C/C++, or Fortran by integrating Helidyn+ models as function libraries into the various software environments. Similarly, Helidyn+ models are used in an in-house build simulator using virtual reality tools.

Helidyn+ Software Description

Helidyn+ is a dynamic modeling tool for helicopters. The user can establish a simulation model of the desired helicopter by providing geometric, inertial and aerodynamic data. The model libraries belong to various helicopter components and the final model is established using component build-up. Component built-up refers to the calculation of the forces and moments generated by each helicopter component.

S HeliDyn+ v1 02								
		0						
Na Na No		U						
Trim Linearization Consol	le Symbols	Help About						
Model Inputs Performance Analy	vsis Initial Cond	itions Pilot Inputs Simula	tion			Symbols		0 🗙
Component Models Center of	of Gravity and Iner	tia Main Rotor Tail Potor	Fucelane Winn	Horizontal Tail	Presets	Graph Symbols	Console Symbols	
Comportant Models Cartar e			T doctage - willing			Select variable	s and right click to	plot
Hub Stationline: 133	3.50 in 🌩	Hub Precone Angle:	2.75 deg 🚔		G Load Preset	Symbol Name	Value	Description
Hub Waterline: 141	1.70 in 🚔	Blade Flapping Inertia:	1382.00 slug ft2 🔺			E Main Rotor		
					Save Preset	Thrust_MR	6290.51	Main rotor thrust (lb)
Hub Buttline: 0.0	10 in 🌲	Hinge Offset:	0.00000			Pote 1c	27.9913	Longitudinal tip path plan
					Default	Beta 1c	-0.000130471	Lateral tip-path-plane and
Rotor Radius: 24.	.00 ft 🔶	Blade Profile Drag Coefficient:	0.01000			E Tail Rotor	-0.0300737	cater ar up-pati -praire angi
						Thrust TR	374,575	Tail rotor thrust (lb)
Blade Chord Length: 1.7	75 ft 🌲	Blade Lift Curve Slope:	6.30 /rad 🚔			VI_TR	37.8144	Tail rotor inflow (ft/sec)
						Positions		
Blade Twist: -10).90 deg 🛛 🚔	Shaft Tilt About Y-Axis:	-5.00 deg 🔶			×E1	-0.000265325	X-axis position in North-Ea
						XE2	-0.00106024	Y-axis position in North-Ea
Number of Blades: 2	\$	Shaft Tilt About X-Axis:	0.00 deg 🔶			- XE3	-1000	Z-axis position in North-Ea
						- Attitudes	0.0005005	
RPM: 324	4 🗘	Delta-3 Angle:	0.00 deg 🔶			XE4	0.0335225	Euler roll angle (deg)
						XE5	5.12372	Euler picch angle (deg)
Ground Effect Coefficient: 0.6	52 🗘					- Velocities	0.000245556	Euler yaw aligie (deg)
						VA1	-0.00012833	Body X-avis velocity (ft/sec)
	Stat	bilzer Bar				VA2	-0.00035166	Body Y-axis velocity (ft/sec)
						VA3	-0.000199551	Body Z-axis velocity (ft/sec)
a_long: -0.3	33333 📮	a_lat:	-0.33333			VA4	1.73256e-07	Body roll-axis angular velo
						- VAS	9.13675e-08	Body pitch-axis angular ve
b_long: 0.0	00515 🖵	b_lat:	-0.00429			VA6	9.15381e-08	Body yaw-axis angular vel
						- VE1	-0.000146139	Inertial X-axis velocity (ft/
						VE2	-0.000352057	Inertial Y-axis velocity (ft/
						- VE3	-0.00018753	Inertial Z-axis velocity (ft/
						VE4	1./8039e-0/	Euler roll-axis angular rate
						VES	9.073088+08	Euler picch-axis angular ra
						 VEO Decelerations 	0.972028-00	Euler yaw-axis aligular rat
						- AB1	-4 78861e-05	Body X-axis acceleration (
						AB2	-5.13222e-05	Body Y-axis acceleration (f.,
						- AB3	-7.47149e-06	Body Z-axis acceleration (
						AB4	-3.23028e-07	Body roll angular accelerat
)		•		>
Console								0 X
Simulation run sta	arted (Du	ration: 6 - Time	Sten: 0.01)					<u> </u>
Omulation full ste			0(60.01)					
Time Thrust_MR VE1	VE2	VE3						-
L								
								Ready
								• 110

Fig. 1 Screen shot of the Model Input Tab in Helidyn+.

<pre>in Linear Loop in prime line is the indication of the loop in the indication of the loop in the l</pre>	eliDyn+ v1.02			
In nearcoin Symbols Nearcoin Symbols Symbols all propings Performance Analysis Teld Conditions: Symbols Symbols Conditions: Symbols	ka ka 🔣 🔞 🤋			
all playsis Performances Analysis Natio Symbol: all playsis Performances Analysis Natio Simulational Cycle Control (theta_1c): 13.77117764 day phi: 0.03351517 day control (theta_1c): 0.03351517 day phi: control (theta_1c): 0.00015261 rel phi: control theta phi: 0.0335117 day edal Control (theta_1c): 0.00015261 rel control rel phi: phi: control rel phi: <t< th=""><th>irim Linearization Console Symbols Help About</th><th></th><th></th><th></th></t<>	irim Linearization Console Symbols Help About			
Conductors Constant (beta): 13.7411764 dog ptri: 0.03551517 dog 0.0011700 (1740) (1	del Inputs Performance Analysis Initial Conditions Pilot Inputs Simulation	Symbols		
ntbl Conditions: 0.03351517 deg ph: 0.03351517 deg calaction contral (heta_10): 13.7411764 deg ph: 0.03351517 deg catarial Cycle Contral (heta_11): 2.87163851 deg theta: 5.12561712 deg catarial Cycle Contral (heta_11): 2.87163851 deg theta: 5.12561712 deg catarial Cycle Contral (heta_12): 2.87163851 deg thena rotor finats (b) read Contral (heta_12): 2.87163851 deg thena rotor finats (b) read Contral (heta_12): 2.87163851 deg thena rotor finats (b) read Contral (heta_12): 0.0507585 rel		Graph Symbols	Console Symbols	1
Soletone Control (theta_0): 13-74117764 do 2 phi: 0.033361517 do 2 Phi: 0.00017600 for 1000 fif: Phi:	Initial Conditions:	Select variable	s and right click t	o plot
arcptudnal Cyclic Control (theta_1s): 0.8155359 deg thete: 512501712 deg ateral Cyclic Control (theta_1s): 2.87163651 deg Man Rotor Inflow: 27.41422315 ft/s hedd Control (theta_1s): 7.56229801 deg Tal Rotor Inflow: 27.41422315 ft/s oroptudnal Expanse Angle (beta_1c): 0.00015626 rad Tal Rotor Inflow: 27.81422015 ft/s oroptudnal Expanse Angle (beta_1c): 0.00015626 rad Tal Rotor Inflow: 27.81422015 ft/s oroptudnal Expanse Angle (beta_1c): 0.00015626 rad Tal Rotor Inflow: 27.81422015 ft/s immode (beta_1c): 0.00015626 rad Tal Rotor Inflow: 27.81422015 ft/s immode (beta_1c): 0.0000766 rad Tal Rotor Inflow: 27.81422015 ft/s immode (beta_1c): 0.0000766 rad Tal Rotor Inflow: 27.81422015 ft/s immode (beta_1c): 1000 inot: Tal Rotor Inflow: 27.81422015 ft/s immode (beta_1c): 1000 inot: Tal Rotor Inflow (ft/sec): 2.825 11.0092 Yt/sec stoppidion in Roth-Ea. immode (beta_1c): 1000 inot: Timm 2.825 11.0092 Yt/sec stoppidion in Roth-Ea. immode (beta_1c): 1500 Timm 2.825 11.0092 Yt/sec stoppidion in Roth-Ea.	Collective Control (theta_0): 13.74117764 deg 🊔 phi: 0.03361517 deg 🚔	Symbol Name	Value	Description
angludand Cycle Control (theta_1s): 4.8.1535639 deg 4.8.1525612 deg 4.8.152561		🖻 Main Rotor		
ateral Cyclic Control (theta_1c): 2.87154551.dg Man Rotor Inflow: 7.74142213 ft/s Imarcon findow: 7.7414223 ft/s Imarcon findow:	Longitudinal Cyclic Control (theta_1s): -0.81353639 deg 🖨 theta: 5.12361712 deg 🖨	Thrust_MR	5810.8	Main rotor thrust (lb)
ateral Cyclic Control (theta_1c): -2.87153651 deg Main Rator Inflow: 27.4142313 ft/s beda Control (theta_1c): 7.86238801 deg Tal Rotor Inflow: 37.81422815 ft/s ateral Flapping Angle (beta_1c): -0.00015628 rad ateral Flapping Angle (beta_1c): -0.00015628 rad ateral Flapping Angle (beta_1c): -0.00016628 rad ateral Flapping Angle (beta_1c): -0.00016628 rad innorta ratis: -0.000 Inot innorta ratis: 0.000 Inot innorta ratis: 0.000 Inot innorta ratis: 0.000 Inot innorta ratis: 1000.00 ft innorta ratis: 1000.00 ft innorta ratis: 1500 innorta ratis: 1500 <t< td=""><td></td><td>- VI_MR</td><td>22.3251</td><td>Main rotor inflow (ft/sec)</td></t<>		- VI_MR	22.3251	Main rotor inflow (ft/sec)
beda (control (theta_p): 7.96239801 deg) Tail Rotor Inflow: \$7.81422015 Rty oraptudaha Plapping Angle (beta_1c): 0.00015628 raf) Tail Rotor Inflow: \$7.81422015 Rty oraptudaha Plapping Angle (beta_1c): 0.000015628 raf) Tail Rotor Inflow: \$7.81422015 Rty oraptudaha Plapping Angle (beta_1c): 0.000015628 raf) Tail Rotor Inflow: \$7.81422015 Rty oraptudaha Plapping Angle (beta_1c): 0.000015628 raf) Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.000 Rth Yasis position in North-Ea. oraptudaha Plapping Angle (beta_1c): 0.0000000 Position Rth Nickel: 1.100.000000000 <td< td=""><td>Lateral Cyclic Control (theta 1c): -2.87163651 deg 📥 Main Rotor Inflow: 27.44142313 ft/s 📥</td><td>Beta_1c</td><td>-0.0274317</td><td>Longitudinal tip-path-plan</td></td<>	Lateral Cyclic Control (theta 1c): -2.87163651 deg 📥 Main Rotor Inflow: 27.44142313 ft/s 📥	Beta_1c	-0.0274317	Longitudinal tip-path-plan
Pedd Cortrol (theta_p): 2.96529801.deg Tal Rotor Inflow: 37.81422815.fr(s Image: Control (theta_p): 1.000015628 rad Image: Control (theta_p): 1.00000000 rh: Image: Control (theta_p): 1.0000000 rh: Image: Control (theta_p): 1.0000 rh: Image: Control (theta_p): I		Beta_1s	-0.0411327	Lateral tip-path-plane angl
construction (undurp) True Cool does not make the field of the cool of	Pedal Control (theta p): 7 96298801 deg A Tail Rotor Inflow: 37 81422815 ft/s A	E Tail Rotor		
ongludnal Flapping Angle (beta_1c): detral Flapping Angle (beta_1c): from Tolerance: from Tolerance: fr		Thrust_TR	392.375	Tail rotor thrust (lb)
At al constraints: at al registing angle (beta_1c): at al registing angle (regi): at al registing angle (regi): at al registing angle (regi): at al registing angle (regi): at al registing angle (registing angle (registing angle (registing	anaihudiaal Elanaina Anala (hata 14) -0.00015629 vad i 🏝	VI_TR	34.8344	Tail rotor inflow (ft/sec)
ateral Flapping Angle (beta_1:s): -0.05007565 r d Image: constraints: constraints: -0.05007565 r d Image: constraints: -1000.54 Z-asis position in North-Eau. constraints: 0.00 inot Image: constraints: -1000.54 Z-asis position in North-Eau. strict 1000.00 ft Image: constraints: -1000.54 Z-asis position in North-Eau. strict 1000.00 ft Image: constraints: Strict -1000.54 Z-asis position in North-Eau. strict 1000.00 ft Image: constraints: Strict -1000.54 Z-asis position in North-Eau. strict 1000.00 ft Image: constraints: Strict -1000.54 Z-asis position in North-Eau. strict 1000.00 ft Image: constraints: -1000.00 ft North Eau. North Eau. strict 1500 Image: constraints: -0.00000000 North Eau. North Eau. strict 1500 Image: constraints: -0.00000000 North Eau. North Eau. strict 1000.0000000 Image: constraints: -0.00000000 North Eau. North Eau. strin Results -0.000000000 <td></td> <td>Positions</td> <td></td> <td></td>		Positions		
Letter in Rapping Angle (det16): -U.0.00/Sec K8 -U.0.00/Sec K8 -U.0.00/Sec K8 under diversity: 0.00 knot -U.0.00/Sec K8 -U.0.00/Sec K8 -U.0.00/Sec K8 under diversity: 0.00 knot -U.0.00/Sec K8 -U.0.00/Sec K8 -U.0.00/Sec K8 thude: 1000.00 ft -U.0.00/Sec K8 -U.0.00/Sec K8 -U.0.00/Sec K8 in Options - - - - - in of the rations: 1500 - - - - - in Options - <td< td=""><td></td><td>- XE1</td><td>-15.6068</td><td>X-axis position in North-Ea</td></td<>		- XE1	-15.6068	X-axis position in North-Ea
instraints: 0.00 Inot 0.00 Inot <td>teral Happing Angle (beta_1s): -0.05007565 rad</td> <td>- XE2</td> <td>11.0899</td> <td>Y-axis position in North-Ea</td>	teral Happing Angle (beta_1s): -0.05007565 rad	- XE2	11.0899	Y-axis position in North-Ea
Instraints: 		XE3	-1080.54	Z-axis position in North-Ea
www.dv Welockty: 0.00 kmot 0.00 kmot 0.00 k	nstraints:	Attitudes		
nward Webcity: 0.00 Inot Image: 14.7541 Euler pick-naige (deg) itude:: 1000.00 ft Image: 14.7541 Euler pick-naige (deg) itude:: 1500 Image: 14.7541 Euler pick-naige anglar red. itude:: 1500 Image: 14.7541 Euler pick-naige anglar red. itude:: 1.000.0000000 Image: 14.7541 Euler pick-naige anglar red. it		XE4	-1.69231	Euler roll angle (deg)
Number of Rerations: 15:00 Value Value </td <td>rward Welocity:</td> <td>XES</td> <td>14.7541</td> <td>Euler pitch angle (deg)</td>	rward Welocity:	XES	14.7541	Euler pitch angle (deg)
tude: 1000.00 ft Options 7.99468 Options 7.99468 Dot of therations: 15:00 Save 15:00 Function Value: 1:1.44437e-07 Show los file for cost function 1 Save Load Trim Close VE suits -0.03361517 Longbudinal Flapping Angle (rad): -0.00015628 I Results Constraints: Forward Velocity (Inots): 0.0000000 psidual Cycle (deg): -0.33361517 Longbudinal Flapping Angle (rad): -0.00015628 Lexite (deg): 5.126/112 Letter Inflow (ht/s): 27.41412313 Albitude (ft): 1000.00000000 Albitude (ft): 1000.00000000 psidual Cycle (deg): -2.87163351 Longbudinal Cycle (deg): -2.87163351 Lal (deg): -2.87163351 Longbudinal Cycle (deg): -2.87163351 Lal (deg): -2.87163351 Longbudinal Cycle (deg): -2.87163351 Lal (deg): -2.87163351 Longbudinal Cycle (deg): -2.8716351 Lal (deg): -2.87163351 Longbudinal Cycle (deg): -2.87163351 Lal (deg): <td></td> <td>XE6</td> <td>15.3012</td> <td>Euler yaw angle (deg)</td>		XE6	15.3012	Euler yaw angle (deg)
Notes 1000001 Image: Constraints: Constraints: <th< td=""><td>1000.00 ft</td><td>Velocities</td><td></td><td></td></th<>	1000.00 ft	Velocities		
n Options 7.89668 Body Yeads velocity (If Sec) ror Tolerance: IE-10 IE-10 IE-10 sx. Number of Iterations: ISO IE-10 IE-10 Function Value: 15.00 IE-10 IE-10 Function Value: 11.44437e-07 Show log file for cost function IE-10 Save Load Reset Data Trim Close esuits Constraints: Forward Velocity (Incis): 0.03061517 Congludinal Flapping Angle (rad): -0.00015628 Results Constraints: Forward Velocity (Incis): 0.00000000 ps(deg): -0.0005656 Ilective (deg): 13.74117764 Main Rotor Inflow (Nt/s): 27.4142313 Algeb to Tim Initial Conditions Save to Text. File Close		VA1	-7.33587	Body X-axis velocity (ft/sec)
m Options ror Tolerance: IE-10 sx. Number of Iterations: IG00 Function Value: I: 1.44437e-07 Save Load Reset Data Trim Close ConstraintS: save Load Reset Data Trim Close ConstraintS: forward Velocity (Incts): 0.03361517 ((deg): 0.03361517 Longbudnal Cycle (deg): 1.74117764 Main Rotor Inflow (fty): 2.741142313 Tal Rotor Inflow (fty): 2.741422313 Apply to Simulation Initial Conditions Save to Text File Close		VA2	7.89468	Body Y-axis velocity (ft/sec)
ror Tolerance: IE-10	m Options	VA3	-8.15442	Body Z-axis velocity (ft/sec)
If E-10 VAS -0.0488666 Body ritch-nois angular vel. ax. Number of Iterations: IS00 Image: Ison VAS -0.0488666 Body ritch-nois angular vel. Function Value: 11.144437e-07 Show log file for cost function VEI -10.9621 Image: Image		VA4	-0.0410409	Body roll-axis angular velo
ax. Number of Iterations: 1500 Function Value: 3: 1.44437e-07 Show log file for cost function Save Load Reset Data Trim Close (esuits) (a colspan="2">(a colspan="2">(a colspan="2") (a colspan="2")	ror Tolerance: 1E-10	VAS	-0.0488666	Body pitch-axis angular ve
ax. Number of Iterations: 1500 Function Value: 1: 1.44437e-07 Show log file for cost function Function Value: 1: 1.44437e-07 Show log file for cost function Save Load Reset Data Trim Close VE3 -6.19668 Inertial 2-asis velocity (ffL) VE5 -0.049563 Estimation of the role		- VA6	0.0270857	Body yaw-axis angular vel
Normal National Networks Constraints: Function Value: 3: 1.44437e-07 Show loa file for cost function Save Load Reset Data Trim Close esuits Image: Constraints: Constraints: Proceedings Additional Plapping Angle (rad): -0.00016628 Forward Velocht (rint): (deg): 0.03361517 Longbudnal Flapping Angle (rad): -0.00015628 Forward Velocht (rint): Forward Velocht (rint): Additional Plapping Angle (rad): -0.00000000 pst(deg): 5.12361712 Later al Fabric (rad): -0.00000000 pst (deg): 0.00000000 pst(deg): 13.74117764 Main Rotor Inflow (rh(s): 27.41422113 Albude (rh): 1000.00000000 pst (deg): -2.87163551 Longbudnal (rk): 37.81422815 Constraints: Frienduld - 3.7412 Collective Control (deg) 13.74117764 Main Rotor Inflow (rh(s): 27.41422113 file (deg): -2.87163551 Longbudnal (rk): 37.81422815 Longbudnal (rk): 1000.00000000 pst (deg): -2.87163551 Longbudnal (rk): Save to Text File Close Control (deg) Contronided Longbud	x. Number of Iterations:	VE1	-10.9621	Inertial X-axis velocity (ft/
Function Value: 3: 1.44437e-07 Show log file for cost function Save Load Reset Data Trim Close esuits 0.048563 Estile pitch-sois angular rate. VE5 -0.048563 Estile pitch-sois angular rate. n Results Contraints: -0.048563 Estile pitch-sois angular rate. VE5 -0.048563 Estile pitch-sois angular rate. n Results Contraints: -0.00890254 Body Yaois acceleration (AB2 -0.0999254 Body Yaois acceleration (Abel 0.1036177 Longtuninal Flapping Angle (rad): 0.00015628 Forward Velocity (inots): 0.0000000 psi (deg): 0.103000000 Body yais acceleration (AB4 0.210693 Body yais acceleration (Listerial Flapping Angle (rad): 0.00015628 Forward Velocity (inots): 0.0000000 psi (deg): 0.00000000 Body yais acceleration (AB4 0.210693 Body yais acceleration (AB4 0.210633 Body yais acceleration (upditional Flapping Angle (rad): 0.00000000 psi (deg): 0.00000000 Body (ral angular acceleration (AB4 0.210633 Body yais acceleration (upditional Flapping Angle (rad): 0.0000000 psi (deg): 0.00000000 Body (ral angular acceleration (AB6<		VE2	4.93781	Inertial Y-axis velocity (ft/
Function Value: 3: 1.44437e-07 Show log file for cost function Save Load Reset Data Trim Close esuits		VE3	-6.19668	Inertial Z-axis velocity (ft/
Save Load Reset Data Trim Close ************************************	Function Value: 3: 1.44437e-07 Show log file for cost function	VE4	-0.0313896	Euler roll-axis angular rate
Save Load Reset Data Trim Close texults Image: Constraints: Constrain		VES	-0.048563	Euler pitch-axis angular ra
Conduction Conduction Conduction Conduction Conduction estuits	Save Load Peret Data Trim Close	VE6	0.0295767	Euler yaw-axis angular rat
Constraints: Constraints: AB1 -4.9407 5604 %-asis acceleration. (f. AB2 -0.099254 5604 %-asis acceleration. (f. AB3 2.41558 5604 %-asis acceleration. (f. AB3 -2.41558 5604 %-asis acceleration. (f. AB3 -0.0511224 Body pich angular acceleration. (f. AB3 -0.0501224 Body pich angular acceleration. (f. AB44 -0.2100020000 -10.4100204		Accelerations		
Constraints: Constraints: A82 -0.0999254 Body 'Pasis acceleration (L. A82) (deg): 0.03361517 Longitudinal Flapping Angle (rad): -0.0015628 Forward Velocity (inots): 0.0000000 Body relia acceleration (L. A84) 0.210693 Body relia angular acceleration (L. A84) 0.210693 Body year angular acceleration (L. A86) 0.00000000 A81:ude (ft): 1000.00000000 A81:ude (ft): 1000.00000000 Theta_10 13.741176 Collective Control (deg) Control (deg): Theta_10 13.741176 Collective Control (deg) Theta_10 13.741176 Collective Control (deg) Theta_10 3.5613 Pedd Control (deg) Theta_10 3.5613 Pedd Control (deg) Theta_10 3.5613 Pedd Control (deg) Control (deg) Collective Control (deg) Control (deg) Collective Control (deg) Control (deg) Co		AB1	-4.89407	Body X-axis acceleration (
AB3 2.41558 Body 2-asis acceleration. ((de)): 0.03361517 Longbudnal Flapping Angle (rad): -0.0051638 Forward Velocity (Inots): 0.00000000 eta (deg): 5.12361712 Lateral Flapping Angle (rad): -0.05007565 Forward Velocity (Inots): 0.00000000 pat(deg): 13.74117764 Main Rotor Inflow (It/s): 27.44142313 AB4 0.21009843 Body yeak angular acceleration. appludnal Cyclic (deg): -2.87163861 -0.0511224 Body pict angular acceleration. AB5 -0.0501224 Body pict angular acceleration. teral Cyclic (deg): 13.74117764 Main Rotor Inflow (It/s): 27.41422313 AB7.0100.00000000 ABtude (It): 1000.00000000 pat(deg): -2.87163851 Lateral Cyclic (Saushplata- commanded Lateral Cyclic (Lateral Flapping Angle (rad): -0.0511224 Body pict angular acceleration. dal (deg): -2.87163851 Commanded Lateral Cyclic (Lateral Flapping Angle (rad): -0.051264 Collective in angular acceleration. dal (deg): -7.9629801 -7.8629801 Commanded Lateral Cyclic (Lateral Cyclic (Lateral Flapping Angle (rad): contanided Lateral Cyclic (Lateral Flapping Angle (rad): contanided Late	Deculte N	AB2	-0.0899254	Body Y-axis acceleration (f
n Results Constraints: Constraints: Powerd Velocity (Inots): 0.0000000 Body roll angular acceler 1 (deg): 0.03361517 Longitudinal Flapping Angle (rad): -0.001563 Forward Velocity (Inots): 0.0000000 Powerd Velocity (Inots): 0.0000000 text (deg): 5.12361712 Lateral Flapping Angle (rad): -0.05007555 Powerd Velocity (Inots): 0.00000000 Poil (deg): 0.00000000 paid del cycle: J3.7411764 Main Robor Inflow (ft(s): 27.41412313 paid del cycle: -0.81353639 Tal Robor Inflow (ft(s): 37.81422815 terral (cycle: (deg): -0.81353639 Tal Robor Inflow (ft(s): 37.81422815 del (deg): 7.9629801		- AB3	2.41558	Body Z-axis acceleration (
Apply to Time Initial Conditions Apply to Simulation Initial Conditions Save to Text File Close	m Reculto	AB4	0.210503	Body roll angular accelerat
(r(deg): 0.036/517 Longbudhal Flapping Angle (rad): -0.00000000 (r(deg): 5.1236/172 Lateral Flapping Angle (rad): -0.00000000 (ps): 5.1236/172 Lateral Flapping Angle (rad): -0.00000000 (ps): 0.00000000 psi (deg): 0.00000000 (ps): 0.100000000 psi (deg): 0.00000000 (ps): 0.00000000 ABt due (ft): 1000.00000000 (ps): -0.00000000 ABt due (ft): 1000.00000000 (ps): -0.81353639 Tal Rotor Inflow (ft/s): 37.81422815 (ad (deg): -2.871539551 Longbudnal Cycle: (deg): -0.813733 (ad (deg): 7.9629801 Save to Text. File Close		ABS	-0.0511224	Body pitch angular acceler
Apply to Timi Initial Conditions Apply to Smulation Initial Conditions Save to Text. File Close	i (deg): 0.03361517 Longitudinal Flapping Angle (rad): -0.00015628 Forward Velocity (knots): 0.00000000	AB6	0.00809843	Body yaw angular acceler
Ra (d6g): 5.1/263/1/2 Later inapping Angle (rag): -0.0500/565 ps (deg): 0.0500/0600 Instruction (rag): 13.7411/2 Later inapping Angle (rag): -0.0500/565 Instruction (rag): -0.0500/0600 Ingloudnal Cyclic (deg): -0.81353639 Tall Rotor Inflow (ft/s): 37.81422815 Alktude (ft): 1000.00000000 Ingloudnal Cyclic (deg): -0.81353639 Tall Rotor Inflow (ft/s): 37.81422815 Instruction (rag): -0.81353639 Tall Rotor Inflow (ft/s): 27.8161 Commanded Long/tucket (rule (r		😑 Controls		
Interve (deg): 13.74117764 Main Rotor Inflow (ft/s): 27.44142313 Alktude (ft): 1000.00000000 Main Cyclic (deg): -2.87163651	eta (deg): 5.12361712 Lateral Flapping Angle (rad): -0.05007565 psi (deg): 0.0000000	Theta_0	13.7412	Collective Control (deg)
ngtudnal Cycle (deg): -0.81353639 Tal Rotor Inflow (ftyls): 37.81422815 teral Cycle (deg): -2.87163651 Tal Rotor Inflow (ftyls): 37.81422815 dal (deg): 7.9629801 Collective Canonaddel Loretzi (deg) Apply to Tim Initial Conditions Save to Text File Close	Ilective (deg): 13.74117764 Main Rotor Inflow (ft/s): 27.44142313 Altitude (ft): 1000.00000000	Theta_1c	-2.51038	Lateral Cyclic Swashplate
Apply to Tim Initial Conditions Apply to Smulation Initial Conditions Save to Text File Close		Theta_1s	1.55413	Longitudinal Cyclic Swashp
errel Cycle (deg): -2:87163651 dal (deg): 7:9629801 Apply to Trim Initial Conditions Save to Text File Close	ngitudinal Cyclic (deg): -0.81353639 Tail Rotor Innow (ht/s): 37.81422815	Theta_p	8.56631	Pedal Control (deg)
dal (deg): 7,96298801 Letter (c) victors Apply to Trim Initial Conditions Save to Text File Close	teral Cyclic (deg): -2.87163651	Collective	13.7412	Commanded Collective Co
dal (deg): 7.962/980/1 Apply to Tim Initial Conditions Apply to Simulation Initial Conditions Save to Text File Close		LatCyclic	-2.87166	Commanded Lateral Cyclic
Apply to Trim Initial Conditions Apply to Simulation Initial Conditions Save to Text File Close	edal (deg): 7.96298801	LongCyclic	-0.813543	Commanded Longitudinal
Apply to Tim Initial Conditions Apply to Simulation Initial Conditions Save to Text File Close		Dadal	7 96297	Commanded Redal Control
	Apply to Trim Initial Conditions Apply to Simulation Initial Conditions Save to Text File Close			

Fig. 2 Screen shot of the Trimming windows in Helidyn+.

The HeliDyn+ v1.02			
🖌 🍇 🔣 🐻 🔍			
Trim Linearization Console Symbols Help About			
Model Inputs Performance Analysis Initial Conditions Pilot Inputs	Simulation	Symbols	0 ×
		Graph Symbols Console Symbols	
Step Input Ramp Input	Sinusoidal Input	-Main Botor	
- Step Input	Sinusoidal Input	▼ Thrust_MR VA1 VA4 VE1 VE4	
Start Time: 6.00 s	Start Time: 6.00 s	VI_MR VA2 VA5 ✓ VE2 VE5	
End Time: 6.50 s End Time: 6.50 s	End Time: 6.50 s	Beta_1c Debu 1 VA3 VA6 ✓ VE3 VE6	
Deviation: -3.00 deg Deviation: 1.00 deg	Amplitude: 1.00 deg	Controls Positions Ottitude	
	Period: 3.00 s	Theta 0 Collective	
	X Clear All	Theta_tc LatCyclic	
		Theta 1s LongCyclic XE2 XE5	
	Save Input Settings	Theta_p Pedal XE3 XE6	
	Load Input Settings	Tail Datar Occelerations	
Input Sequence			
Collective Controls (theta 0): Keep Initial Conditions	○ Longitudinal Cyclic Control (theta 1s):		75 R6
Step - interval: [0, 1] input: 13.7412 deg Step - interval: [1, 3] input: 16.7412 deg	INITIAL CONDITION - interval: [0, 6] input: -0.813536 deg		~
Step - interval: [3, 6] input: 13.7412 deg		Save Text (Dutrut
□ Lateral Cyclic Control (theta 1c): ▼ Keep Initial Conditions	Pedal Controls (theta_p): Keep Initial Conditions		
INITIAL CONDITION - interval: [0, 6] input: -2.87164 deg			
			Ready

Fig. 3 Screen shot of the Pilot Input Tab in Helidyn+.

Fig. 4 Screen shot of the Simulation Tab in Helidyn+.

The forces and moments are then carried to the center of gravity of the helicopter allowing calculations for 6 degree of freedom rigid body dynamics. Therefore, models of different components can easily be interchanged, such that the user can build helicopter models of various fidelities.

Helidyn+ uses model libraries to allow the user to build a helicopter models. Model libraries include low fidelity as well as higher fidelity model components. The lowest fidelity model available in the code is the well-known "Minimum Complexity" model [6]. This model covers a conservative portion of a helicopter's flight regime and includes only the response characteristics a pilot would need to see in a simple simulation. The minimum rather complexity model is composed of main rotor calculations with first order flapping, uniform inflow and an iterative approach to the classic Momentum and Glauert Therories for force and moment calculations. Other components such as wings, horizontal stabilizer, vertical tail, etc. are modeled by using simple calculations with constant aerodynamic coefficients.

Higher fidelity models include 3-state Peters-He [7] inflow models, main rotor blade element solutions, 360deg fuselage aerodynamics, ground effects, ground reactions, SAS models etc. Each component model library can be chosen through the graphical user interface and the appropriate data that is needed for the model is displayed in the related tab (Fig.1). Once the model is built it can be saved and loaded later.

Helidyn+ has a numeric search algorithm to find trim conditions (Fig.2). Once the model is trimmed, it can be linearized around the trim condition. The linear models are in the form of a state space representation of the full nonlinear model.

Helidyn+ allows the user to run batch simulations starting from a trimmed flight condition or any other initial flight condition. The pilot control inputs can be input either using simple functions like step, ramp or sinusoidal, or custom prescribed control input history data (Fig.3). The batch simulations can be plotted and recorded as figures and text files for future use (Fig.4).

Using Helidyn+ it is possible to run a quick performance analysis. The toolbox calculates classic performance indicators for a helicopter such as maximum cruise speed, maximum range velocity, maximum endurance velocity, and plots for Power required, Torque Required vs. forward velocity.

Generated models, trim conditions, batch simulation inputs and results can all be saved and loaded for future use.

Exporting Dynamic Models

The tool allows the user to extract a dynamic link library (.dll) of the generated model ready to be C/C++, integrated into а Fortran or Matlab/Simulink [1] simulation code. Exporting a model is enabled through a simple user interface. The user can export the whole helicopter model as a library, but can also exclude individual components while exporting. Therefore, it is possible to turn any of the model sub-components on and off while extracting the library. For instance, aside from being able to exporting a full helicopter dynamic model, it is possible to export only a main rotor math model, or a helicopter model without a tail rotor. This becomes handy when it is desired to integrate a custom build model component into the simulation. Say for instance, a user would like to design a flight controller in Matlab for a new conceptual helicopter model with an innovative, new horizontal tail configuration. First, the conceptual helicopter model is built in Helidyn+ using the available model libraries. Next, the user can choose to export the model "without" a horizontal tail, and then embed this model into the Matlab environment, where the horizontal tail could be modeled independently. Now, the controller can be designed using the new horizontal tail configuration. Note that the model will still have Helidyn+'s high fidelity main rotor and fuselage models in the simulation.

Helidyn+ is fully integrated into the open source simulation platform called FlightGear for visual simulation. Using a single button activation in the graphical user interface in Helidyn+ the model is exported as a dynamic link library, copied into the FlightGear folder and is ready for simulation with FlightGear. The model can be flown using a joystick or keyboard instantly and makes use of the full functionality of FlightGear. This feature is a fast approach to model, test, integrate and observe real time flying characteristics. A screenshot of Flightgear is shown in Fig.5

Fig. 5 A screenshot from FlightGear.

Recent Helidyn+ Applications

The application of this tool can be in various areas. Here we present three diverse recent applications:

Academic Class Work

Helidyn+ has proven itself to be a very useful tool for a graduate level class in helicopter dynamics as it has been taught at the Middle East Technical University's Helicopter Dynamics Stability and Control class. The students were asked to build main rotor models, run and compare them in real-time simulations. Helidyn+ was configured to generate dynamic link libraries of a helicopter model without the main rotor component. The students were asked to complete the main rotor component by using various as C/C++, Fortran inflow models or Matlab/Simulink functions, integrate them with the Helidyn+ generated dynamic link library and compare results by running various simulation scenarios. The first comparison was against the verified model within Helidyn+. That way students did only spend time on modeling the main rotor, had a full nonlinear flight simulation to evaluate the helicopters total response, and a baseline to compare their results.

Controller Design for Unmanned Helicopters

Helidyn+ can be used as a design tool for controllers for unmanned helicopters. Often times, accurate models are required for controller design. Linearized models are used in developing the controller, but nonlinear higher fidelity models are used to test the controller. Helidyn+ provides a complete solution for this problem and can be used in hardware-in-the-loop and software-in-the-loop simulations. A common way followed in our labs is the following: A helicopter model is generated using Helidyn+ using geometric, inertial and aerodynamic data. Then the model is trimmed and linearized. The linear state space model can be used to design controllers. The controller design can actually be done with tools like Matlab or Simulink. Later the model can be exported into Matlab/Simulink and the controller can be run with the full nonlinear model generated in Helidyn+ in Matlab/Simulink. Similarly, controllers written in C/C++ or Frtran can also be complied with a dynamic model generated in Helidyn+.

METU Virtual Reality Simulator

Another application is the use of Helidyn+ models in a recently developed Virtual Reality Simulator (VRS) build in the Simulation Control and Avionics Lab (SCALAB) at the Middle East Technical University (Fig.6). The VRS uses Flightgear for visualization. In this application, the Flightgear simulation environment is integrated with data gloves, a virtual reality headup-display. The head-up-display features stereo output. The virtual cockpit enables the pilot to interact with the interior cockpit through data gloves. The pilot can observe animated flight controls, cockpit avionics, and out-of-the window movement, such as main rotor animations, scenery, etc. [8]

Originally the simulator was developed with a custom build Uh-1h helicopter dynamic model with lower fidelity. Helidyn+ is used to increase the model fidelity and enable fast prototyping. Moreover, the model is trimmed and linearized to develop a SAS in Helidyn+. Finally, the helicopter model is exported as a model library and integrated to the real time simulation environment as a C/C++ code. As Helidyn+ allows a seamless integration with Flightgear, the model is quickly integrated into the simulator. Any change in the model can quickly be incorporated into the simulator.

Fig. 6: METU Virtual Reality Simulator.

Model Comparisons

A trough validation of the dynamic model libraries in Helidyn+ is performed. Here, we present some comparisons of simulation results of the Helidyn+ model with flight test data. A Helidyn+ model generated with Peters-He three state dynamic inflow and blade element main rotor calculations, Bailey's tail rotor model and aerodynamic calculations with linear coefficients of components is modeled and labeled.

The model is trimmed at a 60 knot forward flight condition and a set of simulations are performed starting from a trim condition. Some results of this effort are documented in Figs. 7-10.

First, a +1.8 degrees of longitudinal cyclic swashplate is given to the model at t = 1s. It is aimed to match the response of the helicopter model of Helidyn+ with the flight test data given in Ref.[9]. Figures 7 and 8 show a comparison of the response obtained using Helidyn+ compared with flight test data. The flight test data is depicted with the green triangle symbols.

Similarly, a +1.5 degree of lateral cyclic swashplate input is given to the helicopter from a trimmed 60 knots forward flight condition. Figures 9 and 10 show the response in the roll channel.

Fig. 7 Euler pitch angle (deg) vs time (s)

Fig. 8 Body pitch rate (rad/sec) vs. time (s)

Fig. 9 Euler roll angle (deg) vs. time (s)

Fig. 10 Body roll rate (rad/sec) vs. time (s)

Conclusion

A new comprehensive simulation software, called Helidyn+ is developed for helicopter

design and dynamic analysis and is used in various simulation applications. The component build-up approach enables the user to build helicopter models of various fidelities and export them in desired combinations. Moreover, direct integration to real time simulation environments such as Flightgear enables the user to conduct fast and reliable pilot-in-the-loop flight simulator tests. Helidyn+ also provides helicopter model blocks to be used with computer languages such as Matlab, Simulink, Fortran and C/C++.

Overall, any application development using Helidyn+ is easier and faster as the focus will be more on the application, rather than on developing and verifying helicopter math models. Changes in the models are easy and straightforward. The software requires basic modeling information most of which could either be measured on a helicopter or estimated.

References

- [1] Padfield, G. D., "Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling," AIAA Education Series, 1996.
- [2] Chen, R.T.N., "A simplified rotor system mathematical model for piloted flight dynamics simulation," NASA Report TM 78 575, 1979.
- [3] http://www.flightlab.com/flightlab.html.
- [4] http://www.flightgear.org.
- [5] http://www.mathworks.com
- [6] Hefley, R. K., Mnich, M. A., "Minimum-Complexity Helicopter Simulation Math Model," NASA Contractor Report 177476 USAAVSCOM Technical Report, 87-A-7, (1988).
- [7] Peters, D. A., He, C. J., "Finite-State Induced-Flow Model for Rotors in Hover and Forward Flight," 43rd Annual National Forum of the American Helicopter Society, 1987.
- [8] Yavrucuk, I., Kubalı, E., Tarımcı, O., Yılmaz, D., "A Low Cost Flight Simulator Using Virtual Reality Tools," American Institude of Auronautics and Astronautics, Modelling and Simulation Technologies Conference, Chicago, Illinois, August, 2009

[9] Yilmaz, D., Yavrucuk, I., "Development of A Flight Dynamics Model For A UH-1H Helicopter Simulator," Ankara International Aerospace Conference, Ankara, September, 2007.