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Abstract

in this article, the stresses and strain distribution along the overlap of a single lapped joint between
two adheredns of composite materials, iz analysed. The study hus been performed using an extension
of Goland’s and Reissner’s study. The non-linear model here developement can be solved with a finite
diflerences tecnique and then solving the non-linear algebric equations with a Newton Raphson proce-
dure. The adherends are modelled as laminated bending plates applaing the Classical Lamination Theory.
Using this theory, it is possible to analyse laminates whose arbitrarily oriented plies under & complex

combinations of extensional and flexural load.

1 Introduction

As a consequence of the development of technology. in the recent vears the use of compos-
e materials in aerospatial mdustry is very common. The advantages of using composite
materials are well known as are the problems which appear 1 joining different substruc-
lures made of composite materials. Bonding technology is considered a good solution
for some mechanical joints. In some structures,such as aircraft and helicopters, also the
problem of joining adherends of different materiais exists ( e.g. alluminium-fiber rein-
lorced composite plates ). I is also necessary to being in mind certain critical factors in
joining fiber reinforced plates ov metal and compostie adhervends. One crivical factor is the
mitial bond strength, related to the presence of contaminants in the mterlaver between
adberend and adhesive, This can cause {raciure 1 interlayer adhesive-adherends that it
is not possible to prevent with mechanical tests. In the case of joining different materials
i necessary also to take into account thelr dillerent thermal expansion coefficients to
cvaluate the stesses distribution along the overlap. The aimn of this paper is to indicate
a merhod wlich can be used to calculate the stvess distiibuiion in the overtap of the two
adberends, Tnits simplest form an adhesively bonded stiucture consists in the single-lap
joint. I this article a method of analvsis iz presented {or the non-linear behaviour of



two generally orthotropic adherends bonded together. General non-linear relations for
the stress couple, transverse shear resultant, and in-plane stress resultant at any location
in the adherends and adhesive are derived. Several theoretical analyses of this difficult
probiem have appeared in the literature such as the work by Goland and Retssner (Ref 1).
Thewr study is about two limits cases: where the thickness and modulus of elasticity ratio
of the adhesive 1s much less than that of the adherends and its effect on the flexibility of
the joint may be neglected, where the joint Hexibility is influenced from the presence of
the adhesive Taver. This approach has been used by Renton and Vinson {Ref 2) applied
Lo a cotiposite materials, or extend to all adhesive laver conditions by Chen and Cheng
{Ret 3). Other authors have improved the model of joint using a viscoelastic behavior
of the adhesive such as Delale and Erdogan {(Ref 4), or non-linear one as Bigwood and
Crocombe (Ref 3). In this paper the case where the two adherends are cylindrically
bent plates is considered with the adhesive laver behaviour being modeled by an actual
non-linear stress-strain curve. Using the experience of these later work, it 15 possible o
cuvelepe a mathematical model of a lapped joint with adherends of composite materials,
The model consists in a system of six first ovder non-linear differential equations which
can be solved wsing a finite different technique to reduce the differential equations to more
simple algebric ones. Then the non-linear algebric equations are solved using the Newton-
Raphson scheme. The program is been implemented using MATHEMATICA software.
The method has been used to study the siress distribution in the overlap and its relations
with the adhesive thickness laver, length of the overlap and different type of composite
adherends.

2  Formulation of the Problem

Two rectangular fibre reinforced plates of equal thickness t and length (14-2¢) are consid-
ered. The two sheets are lap-jointed over the length 2¢ and the bond between sheeis is
established by means of an adhesive layer with thickness h. At {rec edge of the adherends.
a combination of tensile, transverse shear and bending moment loads is applied. The
problem can be formulated under the following primary assumptions:

a) the adherends are treated as linear fiber-reinforced laminated plates using the Clas-
sical Lamination Theory. It is important to remember that the most imaportant
Himitation of this theory is that cach piv is assumed to be in a state ol plane stress
and that interlaminar stresses are neglecied;

b} the adhesive is assumed to be non-linear using a realistic material model for the
adhesive mterlaver:

the problem is a plane strain, e the bonded joint 1s very "wide” and undergoes
celindrical bending;

d) the adherends have the same thickness and are made ol the same materials:
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e) the structure is a single lap joint

Other elements of the theory such as the deformation hypothesis, the equilibriumn equation
and strain-cisplacernant relationships ave as used in the classical plate theory.

Determination of Laminate Engineering Constants

The laninate 1s made up of multiple laminae and it is assumed that the individual laminae
are perlectly bouded together so as to behave as a unitary, nonhomogeneous, anisctropic
plate. The lamina is assumed to be in a simple two-dimensional state of stress. In this

case the orthotropic stresses-strain refationships can be simplified by putting o3 = 73 =
3 = 0.
The lamina stresses in terms of tensor strains are given hy:
=8 Q“ Qm 0 <
oy ;= | @n Gxn 0 &9 {1}
12 0 0 2@66 1’12/'2

where @, are the components of the lamina stiffness matrix.
tn the analvsis of laminates having muitiple laminae, it is often necessary to know the
stress-strain relationship for the generally orthotropic lamina in general system of coor-
dinates referred to the entire laminate. As it is possible to see in Gibson (Ref 7) and in
Jones (Ref 9) the stiffness matrix of laminate can be determined by multipling the stiff-
ness matrix of a single lamina for the transformation matrix {T], to give the constitutive
relation for the composite panel.
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Using the compliance matrix of laminate, the inverse of stiffness matrix which can
be seen in equation [2], it is possible to derive the material constants of the laminate.
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which are necessary 1o =olve the mathematical model,
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Figure I: Geometry of the joint and loading conditions

Formulation of the Static Equations

To obtain the mathematical equations a single element of length dx at distance x from the
edge of the junction is considered (Fig. 1}, The equilibrium of moment for the element
dx of the sheet given by:

daf, 4tk
dr - Vu T Try 2 =0 (4)
dd, ! L+ h _
dv R 2T 0 )

The conditions of horizontal {orce equilibrium ave:

d7, ;

dz

dT;
dz 7
and for vertical force:
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From the equation of the elastic iine it 13 possible 1o write, denoting by v, and vy the

transverse deflection of the upper and lower sheets:
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dzvg f\/f;
d:cg D[

where 1D are the flexural stiffness respectively:

£h3

- :
12(1 ~ ) ‘

for the adliesive and

T 1
py= YLt (13)
12(1 — I3 1/21)

[or & composite plate and i are relerred to the lower or upper acdherend.

It the same way it 1s possible to consider the displacements along the x axis and obtain
thie sequent relations:

f . r.u“‘ ) - :2 :
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The previous relation considers the combinations of bending and direct stress. The

system of equations is completed by the relations between the displacement and strain in
the adhesive:

T — PPN

I, = . {10)
¢ n )

Uy — Uq -

ey T T (17)

The edge conditions for the two adherends ave:
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The equations from [5] to {17} can be used to solve the non-linear problem where the

noulinearty is induced from the non-linear stress-strain relationship of the adhesive.

Non-Linear Analysis of the Adhesive

Lir the delormation theory of plasticity, it 1s possible to relate the plastic strain to the
plastic stress component, such that:

<y 1 1 —p 0 7y
o= T 1 0 - {13)
Yy ° 0 2 (1 + ) Try

where 1w, is the plastic Poisson’s ratio:

1~—/§(1—
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(19)

=
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which varies between the elastic and 1ts asymptote value for fully plastic case. I is the

secant modulus, and can be defined such that:

E, = (20)

where o are the ultimate stresses and g;4, are ultimate strains from equation {181,

assuining that 2. = 0 its possible to have the stress-strain equaiion for the adhesive:
Lse
— ey 9
Gy = T 21}
y 2 (
(1 - Vp)
. E5 Vp ~y f)'))
> (22
(1 - I/p)
oy = T (23)
2(1 + w,)

From the definition ol secant modulus it 1s possible to modelled the adhesive using the
] 3

vou Alises criterion for homogeneous materials:
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and substituting equation [21], [22] and [23] into [24] it is possible to express von Mises

criterion using the strains:

/._
1~
[}
e

! 3
i = m\/(i — TV;)S;J - I(l - f/;)?’i;;

Using cquations [5]. [71. 19} [14], 121} and [23] it will be obtained a system of six first

. it

s

order non-linear differential equations depending from the variables T\, Vi, Muw vy, 52

: -
i dx

and £,.

3 Numerical Example and Results

[ order Lo ivestigate the potential of this model and the algorithm. numerical simulations
on a single lap joint have been done {Fig 1}. The adherend materials is constructed with
taminae ol F300/934 graphite/epoxy and the longitudinal modulus £7, transverse modu-
lus £9;. shear moduius (Fp and Poisson’s ratio iy of lamina are respectively /2, = 131G Pa,
Py = 103G Pa, Gy = 695G FPa and 12 = 0.22. The laminate constants have been cal-
culated with program for different layouts of laminae each one with different fiber ori-
entation. The length of overlap varies from 20mm to 30mm and different thickness of
adhesive and adherends have been chosen. The results obtained can be compared to some
derived by a finite element analvsis and stress-strain curve of some experimental test can
be approximaied very well with an hyperbolic tangent ¢ = Atanh (f—§) In (Mg 4} and
{Fig 3) it is possible to see the distribution along the overlap of the tensile, shear and
moment load in the adherend. Using multiaxial strength criteria (Ref 7} it is possible to
chiaracterised the lamina failure. For the adhesive, a homogeneus isctropic material, the
von Mises criterion can be used. This permits to the designer rapid estimation of when
the joints failure will occur under complex loading conditions. In (Fig 9) it is possible to
see a comparison hetween linear and non-linear case. When the non-linear behaviour of
adhesive is considered, the distribution of stresses and strains along the overlap is better
and the peaks values are lower than the non-linear case,
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Figure 4: Adhesive o, in transverse direction and moment A4, distribution with adherends
thickness of 1 mm
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Figure 8: Adhesive ¢, and v,y for different laminates lavout with different overlap of joint
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