
ADVANCED CFD-CSD COUPLING: GENERALIZED, HIGH
PERFORMANT, RADIAL BASIS FUNCTION BASED VOLUME MESH

DEFORMATION ALGORITHM FOR STRUCTURED, UNSTRUCTURED,
AND OVERLAPPING MESHES

Matthias Schuff, Patrick Kranzinger, Manuel Keßler, and Ewald Krämer
kranzinger@iag.uni-stuttgart.de, University of Stuttgart, IAG, Pfaffenwaldring 21, Stuttgart, 70569, Germany

Abstract

Radial basis functions (RBF) are used for interpolation of moving 3D multigrid volume meshes based on
their surface deformation. The method is independent of grid connectivity and can easily handle any structured,
unstructured and overlapping mesh setup. For flexibility and reusability, an object oriented C++ library has been
developed for easy integration into any flow solver. Furthermore, highly distributed computation is addressed.
Since high resolution meshes contain way more surface points than accurate mesh deformation based on RBF
interpolation needs, an efficient grid coarsening algorithm based on an octree has been implemented by which
performance can be boosted considerably. Various setups using the new algorithm are presented. The method is
applied to a typical dynamic aeroelastic problem – the fast-forward flight of a weakly coupled five bladed isolated
rotor simulation. The validation was executed by comparing the resulting trim angles and loads with a formerly
used algorithm.

NOMENCLATURE
α Coefficient(s) for specific RBF

β Coefficient(s) for specific polynomial

Mbb Matrix containing the evaluation of the RBF
between each surface point

Mcomplete Full matrix needed for coeffcient computa-
tion

φ(x,d) Radial basis function with x as the evaluation
point and d as a point of reference

ϕ Azimuthal position of rotor blade

cp Pressure coefficient

db Displacement of specific surface point(s)

ledge Edge length of an Octree cube

lrootedge Edge length of the root Octree cube

m,n Factor for surface reduction

nlevel Octree level

nsur f Amount of surface points

nvolumemesh Amount of volume grid nodes

p Arbitrary grid node(s)

Pb Polynomial ansatz vector(s) for rigid body mo-
tion

psur f Surface point(s)

q(p) Linear polynomial

s(p) Displacement of a arbitrary grid node p

1 INTRODUCTION
Any motion of elastic, lift generating structures sig-
nificantly influence the resulting aerodynamic loads.
Because of the elasticity of helicopter rotor blades,
including fluid-structure interaction for reproduction
of the aeroelastic response is absolutely necessary
when simulating helicopter aerodynamics.

For isolated rotor and complete helicopter simula-
tions a weak coupling scheme between the structured
Finite-Volume flow solver FLOWer [1] and a structure
and flight mechanics code like HOST [2] or CAMRAD
II [3] is used [4]. The elastic blade is represented by
an Euler-Bernoulli beam discretized by rigid elements
connected by virtual hinges. Modal shapes of the
periodic deformations are passed to the CFD code
defining the deformation of the surface for each az-
imuthal blade position. Up to now, based on these
modal shapes within every CFD timestep the sur-
faces of the elastic rotor blades are reconstructed
within FLOWer. Subsequently, the volume mesh is
deformed using Hermite interpolation which requires
connectivity information of the nodes of the structured
mesh. Generally, this implementation requires struc-
tured single or multi block meshes, whose blocks have



at least one point in common with the elastic surface.
To a certain limit this can be bypassed by block split-
ting, so that blocks with connectivity to the surface
are deformed at first. Afterwards the computed de-
formation of these blocks is applied to faces of the
next, farther outside blocks. Considering block split-
ting on a larger scale, this procedure may become
arbitrary complex and hence, a deformation order for
the blocks is not feasible any more.

Within the last years the performance of a single
computing core was nearly stagnating. Present day’s
high performance computation clusters offer instead
100,000 cores and more. Thus, efficiently paralleliza-
tion is a key goal for being able to use the power
of current and future computation clusters. Due to
the restrictions to the rotor blade mesh topology, us-
ing the former implementation block splitting for an
efficient parallelization was highly limited. Further-
more, blocks remained, whose geometric dimensions
cannot be further shrunk. Increasing the spatial dis-
cretization would lead to higher number of grid nodes
per block. Hence, the power of next generations of
super computer cannot be used adequately.

To overcome these limitations and because of the
ongoing development of the unstructured Discontin-
uous Galerkin code SUNWinT [5] and a coupled free
wake method, a most flexible and reusable mesh de-
formation algorithm based on radial basis functions
was developed, which is able to deform overlapping
Chimera structures, unstructured meshes and struc-
tures with relative motion (e.g. slotted leading and
trailing edge flaps). Furthermore, the algorithm can
also represent any kind of hinge, by what connecting
elastic to non-elastic components become possible.

2 DEFORMATION ALGORITHM

2.1 Radial basis function interpolation

Radial basis functions (RBF) can be used for inter-
polation of discrete data in an n-dimensional space.
The deformation of a 3D-CFD mesh can thus be in-
terpreted as an interpolation of the known discrete de-
formation of the surface in the surrounding area.

RBFs are real-valued functions whose value only
depend on a certain distance [6], so that

(1) φ(x,d) = φ(‖x−d‖),

where x is the evaluation point and d the point of
reference. These functions can be used for interpolat-
ing data by defining a function for each data point and
summing them up. When deforming volume meshes
the data point is a point on a surface and the data to

be interpolated is its displacement in the deformed
state. By adding a constant and linear polynomial
to this sum, offsets and linear parts of the data are
represented directly analytically. When handling CFD
meshes, translation and rotation in space can be in-
terpreted as x,y,z-offset and a linear function of x,y,z.

The displacement of an arbitrary point p may be
described as

(2) s(p) =
n

∑
i=1

(
αiφ

(
‖p−psur fi‖

))
+q(p).

where αi is a weighting factor for each RBF and
q(p) is an arbitrary linear polynomial [7]:

(3) q(p) =


β0
β1
β2
β3

 ·


1
px
py
pz

 .

The requirement is that there is an n-sized amount
of reference points - or surface points - psur f , that have
a known deformation.

Thus, the displacement of these surface points
must exactly map with the s(psur f ) so that

(4) s(psur fi) = dbi

with dbi being the known displacement of the de-
formed surface points.

As averaged rigid body motions should be solely
covered by the polynomial part q(p), the requirement

(5)
n

∑
i=1

αiPbi = 0

with

(6) Pbi =
[
1 psur fix psur fiy psur fiz

]
has to be fulfilled [8].

Eventually, an equation system can be built and
the coefficients for the basis functions (α) and the
rigid body motions (β ) can be computed by inverting
the resulting dense matrix Mcomplete:

(7)
[

db
0

]
=

[
Mbb Pb
PT

b 0

]
︸ ︷︷ ︸

Mcomplete

[
α

β

]



undeformed
surface points

for each structure

distribute structures
to selected slaves

reduce surface points
distribute unde-
formed reduced

surface to all slaves

invert matrix

on
ce

pe
r

ru
n

ea
ch

tim
es

te
p

compute α, β

with eqn. (7)
distribute α, β

compute offset db
of surface points

at current time

compute displace-
ment of volume

mesh points
with eqn. (2)

undeformed vol-
ume mesh points

deformed vol-
ume mesh points

db

s(p)

α, β

pknown

Fig. 1. Flow chart of the RBF interpolation algorithm

where Mbb with row i and column j is the evalua-
tion of the basis functions for the reference points be-
tween each other φ(psur fi , psur f j), Pb is a n× 4 matrix
with the row i given as in (6).

As Mcomplete contains no information of the actual
displacement, but only information of the distances of
each node to every other in non-deformed state, its
inversion needs only to be executed once as long as
the non-deformed surfaces won’t change.

Detailed description of RBFs can be found in [6]. A
detailed study of different RBFs for deforming volume
meshes has been done by [8].

The performance of a RBF based deformation al-
gorithm depends on two things. Firstly, the inversion
of a densely populated (nsur f +4)× (nsur f +4) matrix.
As a rule, this is an (nsur f + 4)3 problem and can be
solved by LU decomposition or Gaussian elimination.
Secondly, applying each RBF coefficient to each vol-
ume grid node, whereby the number of radial basis
function coefficients is equal to the number of se-
lected surface mesh points. Hence, the complexity
for each timestep is (nsur f · nvolumemesh). As nsur f can
be kept constant (as shown in section 3) the resulting
deformation algorithm complexity is (nvolumemesh).

The here presented algorithm only depends on
knowing the displacement of reference points, what
will typically be provided for the elastic surface by a

CSD tool. No connection information between vol-
ume mesh nodes is needed and thus, the algorithm
can be used for structured, unstructured and overlap-
ping meshes alike.

2.2 Implementation

To make reusing the algorithm as easy and flexible
as possible and to solve the problem of maintain-
ing the interfaces to structure codes of each aerody-
namic code, the new deformation algorithm is imple-
mented as an object oriented library, which can easily
be linked to any aerodynamic solver that can handle
deformed meshes.

The process can be split into three major parts:

1. Setup of the surface points and their deforma-
tion (based on arbitrary deformation information
scheme), leading to db (these objects shall be
called Deformable Objects)

2. Computation of the RBF coefficients α and β with
(7)

3. Deformation of the volume mesh, using (2)

In a common setup using Chimera technique, each
rotor and its corresponding volume mesh blocks will



Master

Blade #1

Blade #2

Blade #3

Blade #4

Assign CPUs Compute α,β Deform mesh

Fig. 2. Distribution of RBF coefficient computa-
tion and mesh deformation

be deformed independendly from the other blades.
More sophisticated setups are of course thinkable
and will be discussed later in this article. Thus, step 1
and 2 have to be carried out once for each structure
that is deformed likewise, e.g. a rotor blade. The ac-
tual mesh deformation is highly distributable and can
be done on the CPU where the aerodynamic solution
is computed. Only the coefficients and the original
surface points have to be distributed to each process,
e.g. via MPI (see figure 2).

Furthermore, the steps are split into an initial part
and a timestep part. Initial steps have to be exe-
cuted once per run and include the setup of the sur-
face points, a reduction of them and the inversion of
the resulting matrix. The timestep part carries out
the deformation of the surface points, the computa-
tion/distribution of the coefficients and the displace-
ment of the volume mesh nodes, resulting in the de-
formed mesh.

Figure 1 shows the major processing of the algo-
rithm as a flow chart.

Keeping the implementation rather simple, as a ba-
sis function the Volume Spline is used, which has
been presented by [7,9]. The radial basis function

(8) φ(x,d) = ‖x−d‖

is the Euclidean distance itself. The farer the eval-
uation point is away from the center, the bigger is the
influence. This smoothes the effect of local distor-
tions [7].

3 PERFORMANCE AND SUR-
FACE REDUCTION

As mentioned in subsection 2.1, the performance of
the mesh deformation depends strongly on the num-
ber of surface points used. Especially when using a

very high resolution of the volume mesh, a high num-
ber of surface points will occur. It is shown by [10] and
verified by our own experiences, that for RBF interpo-
lation a lower amount than actually given is sufficient
for an adequate mesh deformation. Furthermore, sur-
face reduction algorithms have been explored by [10].

3.1 Reduction with simple method

For testing purposes, we firstly used a rather sim-
ple method, which is only applicable for structured
meshes: The non deformed surface is extracted from
the CFD mesh by collecting the block faces represent-
ing walls. For structural meshes this dataset consists
of two-dimensional so-called patches of grid nodes,
whose connectivity is well known. Each patch will be
reduced by just taking every m-th point in the first and
every n-th point in the second direction.

As an example, a structured rotor blade mesh with
19,919 surface points is used. The surface has been
deformed using a fast-forward flight case at an az-
imuth of ϕ = 270° with the tool HOST [2]. While cre-
ating the meshes, the orientation is chosen in such
a manner that m represents the spanwise discretiza-
tion and n runs around the airfoil. Figure 3(a) shows a
view from above with all 19,919 points and figure 3(b)
and 3(c) shows after a reduction to only 440 remain-
ing surface points.

(a) all surface points

(b) reduced with m = 6 and n = 10, remaining points:
440

(c) profile section with n = 10 (red squares are the
remaining points)

Fig. 3. Surface reduction

Figure 4 shows distances of the reconstructed sur-
face compared to the surface directly deformed with
the CSD data. It can be seen, that a reduction to
m = 6 and n = 10 still results in an acceptable surface
mesh, with deviations below production tolerances,
whereas 4(d) would be to coarse for an adequate sur-
face reconstruction. As the discretization gets finer



towards the outer edge of the rotor blade, being the
area where the main aerodynamic effects take place,
a more precise surface deformation is achieved there.
On the opposite, a better resolution towards the root
would be desirable.

But this shows also, that optimally, the surface
node reduction algorithm should select a representa-
tive amount of surface points statistically equally dis-
tributed on the surface.

(a) m = 3, n = 3, rem. points: 2475

(b) m = 5, n = 5, rem. points: 948

(c) m = 6, n = 10, rem. points: 440

(d) m = 10, n = 15, rem. points: 196

(e) scale

Fig. 4. Qualities of surface reduction using the
simple method, showing the offset to deforming
all surface points with the CSD data

3.2 Reduction of surface points by us-
ing a three dimensional search tree
(octree)

For making the method capable to handle unstruc-
tured surface meshes and to achieve a regular ref-
erence point distribution, an octree algorithm [11] has
been implemented.

Sorting all surface points of the original non-
deformed surface into a three-dimensional binary tree
allows selecting a subset of points by their location
in space relative to their neighbors without evaluating

1 root level

2

3

4 selected level

5

6

Point of original

surface mesh
Point of coarsened

mesh

Original grid density

is coarser than target

density.

Original grid density

is finer than target

density.

Original grid

density fits

target density.

Fig. 5. Exemplary illustration of point selection by
means of an one-dimensional search tree

connectivity. For this purpose, preliminarily an empty
cube in space is defined, whose dimensions must
cover the complete mesh setup. This cube is rep-
resenting the root of the search tree now being cre-
ated. All cubes the search tree is built of may contain
only one point of the surface or alternatively eight finer
cubes. After sorting the first surface point, conse-
quently the search tree consists out of one cube with
the initial dimensions containing one surface point.
When sorting the second surface point, the root cube
is divided into halves for each direction in space. It
contains now eight subcubes and no surface point
anymore. The first surface point is assigned to the
subcube, which covers its position. If the same sub-
cube is covering the location of the first and second
surface point, this subcube will be bisected the same
way, the root cube was. This procedure will be recur-
sively continued, until both points are not covered by
the same cube anymore. Then the third surface point
will be sorted the same way.

After all surface points have been sorted, a tree of
cubes in space will result, whose branches consist of
a different number of levels. The dimensions of the
cubes depend on their level inside the octree:

(9) ledge(nlevel) =
lrootedge

2(nlevel−1)

Starting with an initial root cube edge length of
100m the second level represents cubes with an edge
length of 50m, the third level represents cubes with an
edge length of 25m, and so on.

For coarsening the grid, a specific level of the oc-
tree can be selected by defining the maximal cube
length. In the top example selecting a cube length



(a) Top view

(b) Front view (c) Detailed top view

Fig. 6. Original non-reduced surface mesh, resulting coarsened point cloud, and local octree structure

of 0.1m would return all cubes of the 11th level with
an edge length of 97.7 · 10−3m. The coarsened grid
will result by selecting the surface point contained by
each cube of the selected level. If a branch ends
before the selected level, all points covered by this
branch are selected. That way, in areas, where the
grid node density is coarser than the target density all
grid nodes will be selected as reference points. If a
cube contains no surface point but subcubes, an ar-
bitrary point of the surface inside its covered space
must be selected. All three cases are exemplarily il-
lustrated for a one dimensional binary tree in figure
5.

For convenience, in the current implementation al-
ways the first branch is followed recursively down un-
til its end returning one discrete point. In general this
will not ensure an equally distributed coarsened point
cloud representing the surface, as especially for struc-
tured meshes, the sequence the surface points are
sorted depends on its i- j-k-location inside the CFD
mesh. In other words, it is not ensured, that the aver-
aged distance of the points inside the selected point
cloud is approximately equal to the edge length of the
selected cube level. However, it is ensured that the
maximum distance between two points of the coars-
ened surface representing point cloud is the double of
the edge length of the selected octree’s cube level.

The method complexity of the octree sorting and
selection algorithm is (nsur f · log(nsur f )). It needs only
to be executed when one of the original non-deformed
surfaces were modified. In this case, the Mbb matrix
must be recreated and inverted. Accordingly, the ad-
ditional computational costs for sorting and selecting
are not relevant.

Figure 6 shows an overview and a detail of the
original surface mesh of a rotor blade, the result-
ing coarsened surface point cloud and the borders of

(a) rem. points: 4987

(b) rem. points: 913

(c) rem. points: 305

(d) rem. points: 111

(e) scale

Fig. 7. Different qualities of surface reduction us-
ing octree coarsening, showing the offset to de-
forming all surface points with the CSD data

cubes used for coarsening. The dimensions of the
root cube were specified to 100x100x100m. As tar-
get density 50mm was specified, which is represented
by the 12th level of the octree. This ensures a maxi-
mal distance between two points in the resulting point



cloud of 100mm.

In comparison to the reduction algorithm based on
structured surface patches explained in section 3.1,
the accuracy of reconstructed surface is improved,
especially near the root section, as shown in figure
7. This allows a further reduction of the number of
surface points needed for surface reconstruction and
consequently improves the performance.

4 EXAMPLES OF DEFORMATION
STRUCTURES

4.1 Overlapping meshes

One major feature of the new deformation algorithm
is the ability to handle overlapping meshes. The first
example shows a rotor blade that was split into two
structures, one for the inner root section and one for
the main blade area. The two structures share a cer-
tain part of the blade surface, which is needed by the
Chimera technique for the transfer between both vol-
ume meshes. Figure 8 shows the overlapping area
with an exact share of the mesh nodes. Figure 9 has
a non-matching surface in terms of mesh nodes; the
discretized surface of course is the same within dis-
cretization accuracy.

Figure 10 shows a setup of a slotted trailing edge
flap of a rotor blade. Four multi-block grids are visible,
which are all combined to deform simultaneously. An
air gap is represented between the blade and the flap.

Fig. 8. Matching overlapping surface using
Chimera in non-deformed and deformed state

4.2 Hinges

The new implementation allows to move points along
a specifically shaped surface, e.g. a cylinder or a
sphere, as demonstrated in figure 11. Note that this

Fig. 9. Non-matching overlapping surface using
Chimera in non-deformed and deformed state

Fig. 11. Rotor-only simulation w/o gap between
blade and cylindrical structure (note that the
green, light blue and orange surfaces are congru-
ent)
red/orange: old implementation with spline hinge
connection
blue: new implentation with shifting of the hinge
structure

represents a Chimera setup where the hinge walls of
the rotor blade mesh move along the surface of the
background mesh.

Therefore, preliminarily the deformed surface of
the rotor blade will be reconstructed from the defor-



Air gap

Fig. 10. Slotted trailing edge flap setup using overlapping mesh structures

Fig. 12. Reprojection of undeformed (black)
points to a virtual surface (green line); red trian-
gles indicate where the deformation would have
put them

mation information supplied by the CSD tool. The de-
formed surface is reduced and the RBF coefficients

are regularly computed. Then a set of points along
the surface of e.g. a cylinder is spanned and after-
wards deformed by applying the recently computed
coefficients. The new locations of the points spanned
on the cylinder surface are in general not on its en-
velope surface. Thus the points are reprojected to
the surface of the cylinder (figure 12). The originally
spanned points are now added to the non-deformed
original surface point set of the rotor blade. The final
reprojected position of these points is interpreted as
their deformed location. Using this extended surface
point set, new RBF coefficients are computed replac-
ing the ones used for moving the points spanned on
the cylinder. If these newly computed coefficients are
applied to a 3D-CFD mesh, the surface points will lie
on the deformed surface of e.g. the rotor blade and
the points of the CFD mesh originally laid on the slid-
ing surface or next to it will still lie on this surface -
just on an other location, which represents the defor-
mation of the originally deformed surface. This proce-
dure is implemented for planes, cylindrical surfaces
and spheres. So all kinds of hinges can be repre-
sented.



5 VALIDATION

5.1 Comparing deformation between
Hermite and RBF interpolation

Fig. 13. Difference between Hermite interpolation
and RBF interpolation at ca. 0.7 R, red: Hermite
interpolation, blue: RBF interpolation

Fig. 14. Difference between Hermite interpolation
and RBF interpolation at ca. 0.7 R, closer look at
the trailing edge, red: Hermite interpolation, blue:
RBF interpolation

The aerodynamic solution shall not be affected by
changing the deformation algorithm. In particular, the
reconstructed surface must be the same when com-
paring RBF deformation with the former Hermite Fi-
nite interpolation.

Figure 13 and 14 show a slice of the deformed
grid. Next to the deformed surface the results of
both interpolation algorithms are quite similar. As the

(a) top side

(b) bottom side

(c) scale

Fig. 15. Difference between Hermite interpolation
and RBF interpolation (m=3, n=3), offset plot

Hermite finite interpolation, the RBF Interpolation en-
sures good grid quality within the boundary layer, as
because of its properties the influence of the local de-
formation is dominant in the area next to the reference
points.

Figure 15 shows the difference between a RBF
based deformed rotor blade and a rotor blade with
the former Hermite interpolation. Clearly visible are
the offsets starting from leading and trailing edge and
growing towards the outer edge of the blade. These
differences come from a misinterpretation of torsion
angles for the rigid elements of the Euler-Bernoulli
beam within the currently implemented Hermite inter-
polation algorithm of FLOWer and was found out dur-
ing validation.

Otherwise, the differences of the deformed sur-
faces are almost non-existent. The deformation of
the volume does not effect its grid quality as shown
in figure 13. The differences between Hermite and
RBF interpolation are due to a different handling of
fixed body motions. The Hermite interpolation algo-
rithm implemented within FLOWer does not include
the average torsion angle.

5.2 Trim validation

A trim validation with an isolated five bladed rotor at
a flight speed of 125 kts has been conducted. The
trim computations were run using an automated script
that performs weak-coupling with HOST. As a refer-
ence, the former Hermite interpolation deformation
was used [4,12,13].

In figure 16 the pitch angles are plotted against the
iteration steps for both trim runs. The convergence



of these angles is almost the same, with some ne-
glectable discrepancy which is due to a slightly dif-
ferent twist of the elastic rotor blade because of the
misinterpretation of the beam angles in the former al-
gorithm (as mentioned above).

-5

-6

-7

-8

-9

[°]

1

1.2

1.4

1.6

1.8

2

[°]

0 5 10 15 20 25

Trim iteration

left scale:

Helicopter Angle Of Attack

Cyclic Pitch Sinus

right scale:

Collective Pitch

Cyclic Pitch Cosinus

Fig. 16. Angles of pitch during trim iterations (up-
per color in legend belongs to Hermite interpola-
tion, lower to RBF)

Figure 17 shows the ∆cp at an azimuth of ϕ = 216°
between Hermite and RBF algorithm after 24 trim
steps which is considered a converged state of the
pitch angles (see figure 16). Around ϕ = 216° is one
of the few spots, where a slight discrepancy is barely
observable, which can be explained by a little shift in
the position of flow seperation, leading to different dy-
namic stall behavior. This is a result of the corrected
handling of the elastic torsion angles.

6 CONCLUSIONS
A generalized, high performance mesh deformation
library has been developed, that is suitable for struc-
tured, unstructured and overlapping meshes. Radial
basis functions are used to interpolate displacements
of the mesh nodes based on the deformation of a sur-
face. A major achievement is the flexibility, re-usability

(a) top side, overview

(b) top side, tip

0.0002 0.0014 0.0026 0.0038 0.005 [-]

(c) scale

Fig. 17. ∆cp at ϕ = 216° between Hermite and RBF
deformation after 24 trim iterations

and the opportunity for use in a highly distributed en-
vironment.

The possibility of setting up a slotted flap has been
demonstrated and will be investigated in its aerody-
namic phenomena in the future. More sophisticated
surface setups are thinkable, but exceed the limits of
this paper.

The library has been tested on multiple cases of
application including trimming a fast-forward isolated
rotor flight case in comparison to the previously used
and extensively validated algorithm. Results show
that the aerodynamic solution is quite the same with
a slight difference that come from a misinterpretation
in the former application of torsion angles.

Future expansion of the library includes the op-
timization of the distribution process, so that coef-
ficients are only distributed to the CPUs that need
them. A load integration method, that can handle un-
structured and overlapping meshes, is currently under
development.

Especially when the mesh resolution increases,
the importance of a reduction of the surface points
becomes a high priority to shorten computation time.
The amount of mesh nodes required to perform an
adequate mesh deformation only depends on distor-
tion smoothness and spatial extent rather than the
spatial discretization. To find a selection of surface
points, that have in general the same average dis-
tance to each other, an octree based grid coarsening
algorithm has been implemented. A fast multipole-
method [14] may be applied in the future to reduce the
computation time even more.



Further research includes the testing of different
basis functions with regard in performance and mesh
quality.

Acknowledgments

The authors wish to thank Jonathan Martin for
his work on the octree implementation.

Copyright Statement

The authors confirm that they, and University of
Stuttgart, hold copyright on all of the original material
included in this paper. The authors also confirm that
they have obtained permission, from the copyright
holder of any third party material included in this
paper, to publish it as part of their paper. The authors
confirm that they give permission, or have obtained
permission from the copyright holder of this paper, for
the publication and distribution of this paper as part
of the ERF2014 proceedings or as individual offprints
from the proceedings and for inclusion in a freely
accessible web-based repository.

REFERENCES
[1] Kroll, N., Eisfeld, B., and Bleeke, H., “The Navier-

Stokes code FLOWer,” Notes on Numerical Fluid
Mechanics, 1999, pp. 58–71.

[2] Benoit, B., Kampa, K., von Grunhagen, W., Bas-
set, P.-M., and Gimonet, B., “HOST, a Gen-
eral Helicopter Simulation Tool for Germany and
France,” Proceedings of the 56th Annual Forum
of the American Helicopter Society, Vol. 56, (2),
2000, pp. 1110–1131.

[3] Johnson, W., CAMRAD II Comprehensive ana-
lytical model of rotorcraft aerodynamics and dy-
namics, fourth edition, 2009.

[4] Dietz, M., Simulation der Umströmung
von Hubschrauberkonfigurationen unter
Berücksichtigung von Strömungs-Struktur-
Kopplung und Trimmung, Ph.D. thesis, Institut
für Aerodynamik und Gasdynamik, Universität
Stuttgart, 2009.

[5] Wurst, M., Keßler, M., and Krämer, E., “De-
tached Eddy Simulation Using the Discontinu-
ous Galerkin Method,” New Results in Numerical
and Experimental Fluid Mechanics IX, edited by
A. Dillmann, G. Heller, E. Krämer, H.-P. Kreplin,
W. Nitsche, and U. Rist, Vol. 124, Notes on
Numerical Fluid Mechanics and Multidisciplinary
Design, Springer International Publishing, 2014,
pp. 435–442.

[6] Buhmann, M. D., Radial Basis Functions: The-
ory and Implementations, Cambridge University
Press, Cambridge, 8th edition, 2008.

[7] Beckert, A. and Wendland, H., “Multivariate
interpolation for fluid-structure-interaction prob-
lems using radial basis functions,” Aerospace
Science and Technology, Vol. 5, (2), 2001,
pp. 125–134.

[8] De Boer, A., Van der Schoot, M., and Bijl,
H., “Mesh deformation based on radial basis
function interpolation,” Computers & structures,
Vol. 85, (11), 2007, pp. 784–795.

[9] Hounjet, M. and Meijer, J., Evaluation of elas-
tomechanical and Evaluation of elastomechan-
ical and Evaluation of elastomechanical and
Evaluation of elastomechanical and aerody-
namic data transfer methods for non-planar con-
figurations in computational aeroelastic analysis,
National Aerospace Laboratory NLR, 1995.

[10] Rendall, T. and Allen, C., “Efficient mesh motion
using radial basis functions with data reduction
algorithms,” Journal of Computational Physics,
Vol. 228, (17), 2009, pp. 6231–6249.

[11] Samet, H., “The Quadtree and Related Hier-
archical Data Structures,” ACM Comput. Surv.,
Vol. 16, (2), June 1984, pp. 187–260.
doi: 10.1145/356924.356930

[12] Hierholz, K.-H., Ein numerisches Verfahren zur
Simulation der Strömungs-Struktur-Interaktion
am Hubschrauberrotor, Ph.D. thesis, Institut
für Aerodynamik und Gasdynamik, Universität
Stuttgart, 1999.

[13] Buchtala, B., Gekoppelte Berechnung der Dy-
namik und Aerodynamik von Drehflüglern, Ph.D.
thesis, Institut für Aerodynamik und Gasdy-
namik, Universität Stuttgart, 2002.

[14] Rokhlin, V., “Rapid Solution of Integral Equations
of Classic Potential Theory.” Journal of Compu-
tational Physics, Vol. 60, (2), 1985, pp. 187–207.


	NOMENCLATURE
	Introduction
	Deformation Algorithm
	Radial basis function interpolation
	Implementation

	Performance and surface reduction
	Reduction with simple method
	Reduction of surface points by using a three dimensional search tree (octree)

	Examples of deformation structures
	Overlapping meshes
	Hinges

	Validation
	Comparing deformation between Hermite and RBF interpolation
	Trim validation

	Conclusions

