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ABSTRACT 
 

Structural health monitoring (SHM) is an important task in system health management applications for 
aeronautic and space transportation vehicles, manned and unmanned. The rotorcraft are also 
extremely needed in various fields of interest, from military to civilian (search and rescue, 
environmental surveillance and monitoring, entertainment). This work presents an innovative structure 
design and control through an inverse finite element method-based, which compute the full-field 
displacements reconstruction of a three-dimensional shell/plate deformations from experimentally 
measured surface strains. The full-field displacements are useful for the preliminary design and 
inspections of the rotorcraft loads, caused by maneuvers or gusts. Goal of this paper was to validate 
the high accuracy predictions of deformations afforded due to the inverse finite element method 
(iFEM). Overall formulation was based on the minimization of a least-squares functional that uses and 
compares the strains extracted due to embedded sensors with the strains of linear, first order shear-
deformation theory. The test article was a thin plate equipped with embedded sensors (strain gauge 
sensors) which permit to extract surface strains in real-time, used as input data for shape sensing. The 
plate was used to approximate a rotorcraft fuselage skin, in further work analyzed. 
 
Keywords: Structural Health Monitoring, Rotorcraft/Aircraft Design; Finite Element Method; Inverse 
problem, Linear Deformation Theory. 
 
 
 

1 INTRODUCTION 

 

Advanced structural health monitoring is 
generally regarded as a vital technology for the 
next generation of aeronautical and space 
systems (Noor et al., 2000). Aim of the 
structural health monitoring (SHM) is to prevent 
and avoid fatal structural damages through the 
determination of stresses and deformations 
(i.e. displacements) of whole structure or a 
specific component. It is clear that external 
loads and boundary conditions should be 
previously identified.  
The reconstruction of full-field structural 
displacements, i.e. shape sensing,  and 

external loads will be one of major area of 
interest for structural real-time researches and 
analysis. Future aircraft will be equipped with a 
health monitoring and actuation control 
systems;  for example, giving a feedback in 
real time in case of morphed-wing configuration 
in an space/aircraft or in an unmanned aircraft 
system (UAS). To make easy such capabilities, 
the load carrying structural components will be 
aided through a network of strain gauge 
sensors (SG) or fiber optic sensors (FOS). 
 Aim of this paper was to develop a finite 
element-based methodology (FEM) relating an 
inverse formulation which employs measured 
surface strains to recover the applied loads, 
stresses, and displacements on an aerospace 



 

 

vehicle in real time. The determination of loads, 
stresses, and displacements, using 
experimentally measured structural response 
(strains rosette or fiber optic sensors), were 
defined as an inverse FEM problem (iFEM). 
This methodology (iFEM) uses a least-squares 
variational principle, which is discretized by C0-
continous inverse triangular elements. 
The mathematical concepts applied in this 
paper may be found in Tichonov et al., 1977 
and Tarantola, 1987, however the main 
equations used will be proposed in the 
following sections. Considering small changes 
in the acquired data, Tikhonov and Arsenin, 
1977 formulated a method to have an 
approximate solution. 

Recently, Shkarayev et al., 2001, 
Bogert et al., 2003, and Tessler and Spangler 
1983 and  2005, using different least-squares 
approaches, focused on the inverse problem of 
reconstructing the three-dimensional 
displacements in plate and shell aerospace 
structures from in-situ strain-sensor 
measurements. Recent advances in the design 
of structural health monitoring (SHM) for 
aerospace applications are also discussed in 
Tessler and Spangler 2004 and 2005. 

The present work merges and compares a 
computational mechanics methodology with 
experimentally measured strain data from 
strain gauges (SGs), strain rosettes or fiber 
optic sensors (FOSS), in manner to determine 
the in-flight response characteristics of a 
rotorcraft fuselage skin panel. The sensors 
were embedded in the considered structure 
along specified patterns, in this case the 
wingspan, giving strain component 
measurements at specific locations. The iFEM 
takes advantage to strain measurements in 
manner to reconstruct the deformed shape of 
the plate, which was used to make easier the 
wing-box section. This methodology was also 
applicable, for example, to an aircraft landing 
gear structure in order to obtain stress and 
displacements induced by shocks during 
landing procedure. This will be addressed in 
further works. The methodology compare the 
displacements obtained through to the classical 
FEM, performed in MSC/NASTRAN software, 
and the iFem algorithm, using Matlab 

environment. The wing box, as mentioned, will 
be reduced in an equivalent plate shells, 
considering the Mindlin plate approximation. 
The iFEM method do not provide the use of 
material property (e.g. Young or Poisson 
modulus) and loads. Details about the test 
article configuration and related experimental 
results are described. Conclusion and further 
works will be reported in the last section. 
 

2 INVERSE FINITE ELEMENT METHOD 

(IFEM) 

 

The iFEM was developed on triangular flat 
shell element, defined as iTRIA3 (Figure 1), 
where deformations were defined considering 
three components of the displacements vector 
u {u, v, w, θx,  θy}

T, in accordance to Mindlin 
theory (1951). This was defined in a three-
dimensional Cartesian coordinate system (x, y, 
z) : 
 

 

Figure 1. iTRIA3 inverse shell element, three nodes. 
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The displacements along x and y axis, u 

and v defined in Eq. (1), will be considered at 



 

 

the mid-plane and w will be the displacements, 
assumed constant, across the thickness range 

z∈ [-t, +t]; considering the total shell thickness 
as 2t. Instead, the rotations of the normal 
around  x and y axes are respectively θx and 
θy. 
The strain-displacement relations of linear 
elasticity theory, in xy plane (Noor 1974 and 
Zienkiewics 2000), by the subsequent system 
equations, were defined: 
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Considering the five kinematic variables, 
equation above will be: 
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 Assuming that structure was instrumented with N strain sensors (e.g. strain gauge rosette or fiber-
optic sensors), the strain were given by: 
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The subscript i=1,N  and superscript ε 

refer to the existence of an experimental error 
in strain measurements, thus in stretching of 
the middle surface ε and the bending 

curvatures κ . Thus, superscript “+” or ”–“, 
refers to SG position along the thickness, in 
detail “+” for on top SG positioning, vice versa 
for “–“ sign (see Figure 2). The SG, in this 



 

 

case, will be positioned in a back-to-back mode. 
 

 

 

Figure 2. Strain gauges (SG) positioning. 

 
Following Tessler and Spangler, 2004, the 
transverse shear strain g(u) was given by: 
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In this paper shear effects were not 
considered.  

The inverse finite element method 
(iFEM) reconstructs the deformed structural 
shape due to a weighted least square 
functional Φ containing the strains acquired 
during data collection, eε, and  e(u) defined by 
Eq. (2). The functional to minimize, as stated in 
Tessler and Spangler 2004 and  Gherlone et 
al. 2014, was: 
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Considering each iTRIA3 with a specific area 
Ae , the squared norms were the following: 
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Where n ≥ 1 was the number of strain 
gauge sensor locations in an iTRIA3 element 
domain, while λ ≥ 0 (range of 10-5-10-8) was a 
scalar penalty parameter, which provide the 
appropriate coupling among the bending and 
the transverse shear terms. Whereas, the (•)ε 
quantities represent the continuous 
“experimental” SGs measures. 

The shear deformation was not 
considered, if the second form of the 
transverse shear g(u) norm was applied, 
referring to thin plate and shell structures 
Kirchoff Theory, 1850. Due to classical FEM 
(Zienkiewics), the displacements can be 
expressed with the C0-continuous shape 
functions (linear function in x and y) matrix [N]. 
This was referred to the 2-D element (Figure 
1), which is also called linear triangular element 
or constant strain triangle (CST). 
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The strain-displacement relationship was given 
by: 
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replacing  Eq. (11) in Eq. (10): 
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where [B] matrix, for a three node element, has 
the following form: 
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considering the TRIA3 element area Ae as: 
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The notation xij=xi-xj and yij=yi-yj (i, j= 1, 2, 3).  
As stated in the introduction, the material and 
loads information were not required. But, if they 
were considered, it was possible to obtain the 
stiffness matrix [K]  or the loads on the 
structure: 
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Finally, the element force matrix {F} can also 
be readily computed: 
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Overall process was computationally 

efficient because the method, so far described, 
was based on linear equations (ref. Eq. (9)). 

In order to obtain the displacements 
field, in this work the case of pure traction was 
considered, so the functional to minimize 
Eq.(7) will be: 
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For whole structure, composed by n 

elements: 
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Considering: 
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 Where q was the displacement vector. 
Replacing Eqs.(19),(20) and (21) in the 

Eq.(18) and minimizing   0 eu : 
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 So the displacement field was 

extracted thanks to the Eq.(23). 
As stated in Tessler and Spangler 2004 

the boundary conditions were defined on the 
two parts of the shell boundary surrounding the 
mid-plane (t=0). 
 Next sections describe in detail the test article 
tested in the structures laboratory. 
 

 

3 TEST ARTICLE 

3.1 DIRECT FEM 

  
To have an accurate numerical solution, 

and a comparison, the direct FEM was 
considered. The analysis was performed 
thanks to the MSC/NASTRAN environment. 
The direct FEM study was carried out 
considering three different types of mesh 
refinements, using NASTRAN triangular 
elements (TRIA3), for evaluating the 
displacements. The first one, a fine mesh 
composed by 1280 TRIA3 elements and 693 

nodes; the  second one, a intermediate mesh 
(NASTRAN automatic suggested 
discretization),  consider 56 elements and 40 
nodes, the third one, consider only 24 elements 
and 21 associated nodes. A preliminary 
comparison (Table 2) confirms the differences 
between fine, intermediate and coarse mesh 
(e.g. experimental) produce an error  < 1%, on 
maximum bending (wMAX) value. These results 
suggest the low-fidelity mesh can also be 
utilized for the inverse formulation due to 
iTRIA3 elements, remembering that iTRIA3 has 
the same kinematic interpolation functions of 
TRIA3 (Zienkiewics 2000).  

 
 

Table 2. Comparison on maximum bending of different plate discretization. 

Mesh Type No. Elements  No. Nodes 
Maximum bending (w) 
[mm] 

Fine 1280 693 1.0864394E+02 

Intermediate (NASTRAN 
auto) 

56 40 1.0814259E+02 

Coarse (experimental) 24 21 1.0816554E+02 

   Error <1% 

 



 

 

       
a)                                                                                            b) 

Figure 3. a) Coarse mesh (experimental) used for strain gauge positioning and mounting,  b) fine mesh (used for 
comparing). 

   

 
Therefore, the coarse mesh 

configuration (experimental) was selected, as 
reference, for SGs positioning on the test 
article, for its simplicity and higher 
computational efficiency. The instrumented test 

article (Figure 4a) was an aluminum alloy plate 
(2024 T3) which measures 360 x 225 mm with 
a thickness of 2 mm. The test article was 
loaded as cantilever, clamped, on the test rig, 
by means 6 bolts at one side and vertically 
loaded on the other end (Figure 4).  

 

 

                     

Figure 4. Test article, aluminum 2024 T3 and details of the test bench setup. 

 

 



 

 

 

 

3.2 STRAIN GAUGES SETUP 

 
For demonstrating the method 

estimation capability of structural 
displacements, strain gages were opportunely  
positioned on the test article.  

According to the coarse mesh in Figure 
4a, the positioning of the SG on top surface, 
was done. The SGs were centrally located with 
respect to the iTRIA3 element area (centroid). 
The iFEM model extracts displacements 
considering strains extracted during tests from 
strain gauge sensors, which were installed 
according to the scheme in Figure 6 and the 
Figure 4a (coarse mesh). 
 

 

 

Figure 5. Scheme of the test article for strain gauge sensors positioning. 

 

Not all elements were equipped with a 
SG sensor. They were positioned mainly near 
the clamp, where bending (strain-curvature) is 
max, vice versa the deflection will be close to 
zero. This latter assumption has been validated 
considering  the w distribution between the 

strain gauges positioned on overall elements of 
the plate (24 elements – Full SG), and the 
strain gauges position of the scheme in Figure 
6 (12 elements-Partial SG). The Figures 8a 
and 8b show the two cases previously 
described: 

 



 

 

 

Figure 6. Strain interpolation due to a polynomial function (shape-sensing). 

 

     
                                             a)                                                                                                     b)    

Figure 7. a) partial SG (adopted for experimental session), b) Full SG.   
  

 

  The strain gauge sensors were represented 
by blue triangles, in Figures 8a and 8b above. 
The error on z-displacement (Table 3) was less 
than 1%, therefore, it was possible to consider 
only 12 SGs and extract the missing elements 
strain considering a polynomial function 
(shape-sensing) obtained from the known 
strains. In this case it was considered a p(x) of 
2th order polynomial function (Kreyszig 1993) 
Eq.(24), for curvature reconstruction along the 
structure involved. 
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Table 3. Strain-displacement comparison full/partial 
strain gauges on  plate. 
 

No. strain wmax [mm] 

24 108.2405 

16 109.0840 

 



 

 

 
Figure 8. Test article top view with SGs ID, mapping and  locations. 

 

 

The SGs were installed in the Airframe 
Laboratory of Leonardo Company, Figures 
10b, 11a and 11b show the plate 
instrumentation, during various stages. The 
SGs utilized were CEA-13-250UW-350 (Figure 

10a), universal general-purpose strain gauges 
with a strain range of 5%,  gauge factor of 
2.130, transverse sensitivity of 0.2, gauge 
resistance of 350 Ω and a temperature range 
from -75° to 175°C  (-100° to 350°F) [15]. 

 

 

 

                  
a)                                  b) 

Figure 9. a) Strain gauge CEA-13-250UW-350.  b) Structure cleanup with partial SG mounting. 

 



 

 

   
      a)        b) 

Figure 10. a) Test article fully SG-equipped. b)  test article mounted on the test bench. 

 

 

4 EXPERIMENTAL RESULTS – FEM VS. 

IFEM 

 
The experimental sessions were performed 

in the Airframe Laboratory of Leonardo 
Company in order to verify the effectiveness of 

the iFEM method. Various step of loads on the 
free end (tip) of the test article were considered 
and, in the same time, the strain 
measurements were acquired considering the 
equations considered in the section 2, the 
Figure 11 resume how the displacements field 
were extracted: 

 

 

 

 

 

Figure 11. Displacements field extraction thanks to the iFEM. 

 

 The first condition consider the effects of the test article under its own weight, strain data were 
stored (Figure 13a).  

 



 

 

    
a)                 b) 

Figure 12.  a)  Initial plate configuration, b) clamping system and container for weights. 

 

 

 The static loads were applied by means 
an aluminum basket (Figure 13b) which was 
able to contain the weights for each load step 
case. Table 4 shows the load case number, 
oriented like gravitational acceleration (g), and 
the measured deflection during test.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 4. Load cases on plate tip. 

Load Case 
[N] 

Direction 

10 downward 

20 downward 

30 downward 

40 downward 

50 downward 

 
The deflection w was obtained by 

integrating the rotations (ref. Eq. (4))  
measured during the tests. 

 

 
 

 

 The LC (load case) data, from a load 
cell were measured. 
Thus, it was possible to insert strain data 
measurements in the iFEM algorithm, 
extracting the z-displacements and comparing 
them with the FEM predicted z-displacements. 
Firstly a shape-sensing analysis was required, 

in manner to extract the missing strain data, 
where SG were not present.  
 The Figure 13 shows the known strain 
gauge data (black stars), in terms of curvature 
κx, the polynomial functions (red triangules), 
useful for strain interpolation (shape-sensing), 
and the comparison with NASTRAN strain data 
(blue circles). This, for each array of SGs from 
SG1 to SG12 (ref. Figure 9). 
 

 

 



 

 

 

Figure 13. Shape sensing for 50 N step load and FEM (NASTRAN) comparison at various plate station. 

 

The differences between the data acquired 
from SGs and the predicted from direct FEM 
were depicted in the Figure 13, confirming that 
the strains values were quite similar. The last 

step was to insert SGs data in iFEM algorithm 
and extract the plate z-displacements. The 
results were depicted in the Figure 14: 

 

 



 

 

 

Figure 14. z-displacements on the center line comparison, direct (FEM) vs. inverse (iFEM). 

 

 

Figure 15. Overall plate z-displacements comparison, direct (FEM) vs. inverse (iFEM). 

 

Considering the maximum z-displacement,  
considerations on the error was done, 
comparing the direct method with the inverse 

method. The Table 6 shows the maximum z-
displacement and the error. 

 

 

 

 
Table 6. FEM vs. iFEM error estimation. 
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Load-step 
[N] 

Max z-
displacement 

[mm] 
 

Error 
[%] 

(Load cell 
read) 

FEM iFEM  

20.91 -26.4442 -26.3962 0.18151 

31.54 -40.0942 -39.8877 0.51504 

41.96 -53.0655 -52.8295 0.44473 

52.54 -65.3954 -66.4467 1.607605 

63.28 -77.7033 -77.3323 1.47746 

73.45 -92.8899 -89.0562 4.12714 

84.50 -106.8645 -101.6750 4.85615 

 

 

An error of about 4% on this type of 
analysis was acceptable.  

5 CONCLUSIONS AND FURTHER 
WORKS 

 
The full-field reconstruction of three-

dimensional displacements from real-time 
strain measurements (i.e. shape-sensing), for 
an aluminum skin panel, has been validated, 
confirming a maximum error of about 4% 
between the direct FEM and iFEM on 
maximum deflection. This work, as previous 
(Papa et al., 2017), was fundamental and it has 
important implications for the aircraft design 
and monitoring of structural integrity. 
As mentioned in the introduction, the iFEM has 
been applied to the shape-sensing of an 
aluminum 2024 plate for which experimental 
measurements were obtained in the Leonardo 
Company Airframe Structures Laboratory. A 
Mesh size sensibility  and SG distribution have 
been analyzed in order to have a good 
accuracy of the predicted shape. Good 
correlations have been obtained through an 
equivalent plate configuration, of the skin 
fuselage, with a distribution of few strain gauge 
sensors on top surface of the skin.  

Further works will point toward the 
opportunity of monitoring a full wing box 
configuration, landing gear structure during 
drop-tests, and also apply the iFEM in 
presence of torsion/combined loads, through 

the possibility of instrumenting the external and 
internal surfaces. Aims will be always focused 
on the structure health monitoring (SHM) for 
the airframe design and performance 
information systems. 
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