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ABSTRACT

A numerical simulation of helicopter flight dynamics 1is
performed in order to get the dynamic characteristics of helicopters
which encounter a pair of trailing vortices of a preceeding large
airplane, such as a jambo jet airplane. Two types of helicopter
rotor, +that is, articulated and hingeless types, are analyzed to
make clear the effects of geometrical configuration of helicopter,
rotor blade stiffness, and flight condition on the helicopter
dynamic responses. The rotor aerodyvnamic forces which are fully
coupled with the body motion with sixX-degrees of freedom are
calculated by using the Local Momentum Theory (LMT) [11].

The time histories of the dvynamic¢ behavior of the helicopter
as well as the blade motion are presented for various parameters
such as the distance between helicopter and large airplane, the
type of helicopter rotor, and the flight path angle with respect
to the tip vortices ¢of the large airplane.

The dynamic response of helicopter are generally moderate in
comparison with those of airplane. The most severe response 1is
given 1in vertical direction with almost 29 load level, and the
flight path follows the shape of the vertical gust. The change of
the attitudes of the helicopter depend on the flight conditions
when the helicopter just hits the vortex core.

1. INTRODUCTION

When an aircraft penetrates a pair of rolled-up wvortices
generated by a large airplane, the aircraft is severely disturbed
by the strong induced velocity surrounding and inside the vortex
core in a fashion similar to that of a gust encounter [2].

Considerable analytic and experimental works have been done
to predict the velocity field to the wake vortices and the dynamic
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hehavior of a fixed wing aircraft interacting with the wake
vortices [31-[6]. However, a very few works have been devoted to
the possible problem of predicting the response of a rotary wing
aircraft to the vortex encounter [7]1-[10]. There works mostly
related to the response of helicopter penetrating the vortex with
the parallel flight along the vortex core. Then it Is Known that
the response of rolling and vawing motion of helicopter specifically
having a see-saw rotor is very mild when compared to a typical
response of airplane to the vortex core [111.

There are many Parameters which may give some influences on
the dynamic behavior of the helicopter encountering the wake
vortices of large airplane. They are mass ratio, m,/m,, span
ratio 2R/b,, speed ratio UH/U , hondimensional separation distances
X /by /b, and z,./b,;, glight pass angle Yy and 7, hub or
bﬁad@ sti?fn@ss w/Q aﬁd other dynamic characteristics of the
helicopter.

The sensitivity of the response to the different parameters
and the effect of the simplified feedback system to alleviate the
deviation from the trimmed flight on the time response of the
disturbed helicopter have been partly investigated by the present
authors [121,[131]. The purpose of this paper is to extend the
anaiysis to further wide range of parameters such as ah articulated
rotor helicopter and a hingeless rotor helicopter {flying in
different flight path angles with respect to the vortex core.

2. GEOMETRY OF THE TRAILING VORTEX

The trailing vortex wake system generated by a conventional
lifting wing of moderate sweep and aspect ratio is unstable and
tends to roll-up to a pair of oppositely rotating trailing vortices,
as shown an Figure 1. In this section, the model of a pair of
trailing vortices generated by a large aircraft is described.
Under the assumption that the flow 1is steady, axisymmetric,
laminar and incompressible, and the Reynolds number of the main
flow, Ux/v where X is the axial distance, 1is large, the axial
velocity g, radial velocity q,., rotational velocity qg can be

given byx solving the Nav?eruStokes' equation as follows
(131,01417:
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and where D_ and Y are the profile drag and the “effective
eddy viscosfty" rather than the kinematic viscosity respectively.
The value of vV is given by

Ve=v+a1"0 { 4)
where "“a" is an empirical constant, whosgaprecisg4value is very
difficult to define but is in the range 10 to 10 such as

a = 0.0002-0.002. In this analysis, the trailing vortices are
assumed to be frozen and disturbed by the blade motion.

3. MODEL ROTOR AND FLIGHT CONDITIONS

Two types of helicopter rotor are used in this paper, which
are articulated and hingless rotors. The dimensions of these two
rotors are shown in Table 1. As the vortex generating aircraft,
Boeing 747 Jjambo Jjet airplane is used and its dimensions are
shown in Table 2. Any helicopter is assumed to penetrate one of
a pair of traling vortex such as the rotor hub hits the center of
the wvortex core with angle ¥y after started from an initial
position (xo,y +Z~) behind the airplane in the (x,y,z) coordinate
as shown in Figur 1. Since both the airplane and the helicopter
are moving forward with their own velocities, U, and U, respectively,
the distance of the disturbed helicopter behind the a?rplane is
more than xo when the rotor hub hits the center of the vortex
core. The wvelocity components along a horizontal line passing
through the core centers at the distance x = 10,000 and 2,000 m
are shown in Figures 2 (aj, (b) respectively by using the above
menticoned trailing vortex model.

The spatial CG position of the disturbed helicopter with
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where T, , T2 are transformation matrices from the body coordinate
(xB.YB.iB) of the helicopter to the initial body coordinate
(X 0’ O’Z }, which is the body coordinate at time t = 0 and
frgm tﬁé iﬁlgial body coordinate to the airplane coordinate
respectively, shown in Aprendix A. The relative position of the
rotor hudb with respect to the vortex core coordinate (x,y,z), the
origin of which is fixed to the respective wing tip, is givein by

X X | 0.0
A W SV L S R SN/ S G (6 )
*h e 2"ty oAl
h 2¢6 R ‘

where (1p,0.0,hp)T is the hub position with respect to the body
coordinat and "t denotes the left and right trailing vortices
respectively.

Various flight conditions of the vortex genarating airplane
and of the disturbed helicopter are given in Table 3.

4. EQUATIONS OF MOTION OF HELICOPTER

' By referring to Figure 3, equations of motion of a helicopter
with six-degrees of freedom can be given by [(13].

my {duH/dt + qw, - rv, }=F

H XB

+ - =
L {de/dt ruH pwH } FYB { 7

m, {de/dt + vV, - qu } o= FZB

dep/dt - JXZ {dr/dt + pq} - {(IZ . !Y)} qr = ”XB

2 3 i P'( 8 )
Iqu/dt + JXZ {p” - r'} + {(lX - IZ)/IY} rp = NYB
Izdr/dt - sz {dp/dt - qr} - {<|Y - |x>} pg = HZB )

where the mass (my), the moments of inertia (I,, I.,, I.,) and the
product of inerti (sz) are those related to %he Xeli%opter body
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the helicopter body
roduct of inertia (J,,) are those related to
Shich does not includézthe main rotor. In equations (7) and i%%io
the helilcopter is assumed to have a body of symmetric configula n.

(Fu.., Fups Foyn) and moments (Mys Munt Mon)
§?2 e§?3zﬂalfigﬁcf§e m§?n ro%gr th?gugh the hub, a X%aIIYBrot§§,

and vertical stabilizer and a fuselage. Detailed
232#332?3# of those forces and moments are given in Appendix B.
The blade motion is considered to be the flapping motion and
the lead-lag motion about the respective articulated hinges.
For the hingelessrotor, both the flapping and lead-lag motions
‘about eqivalent flapping and lead-lag hinges respectively are
considered in this analysis as follows:

1 :

2 2 =

- - k - = 0.0

Bt 0% 8 Rf)l‘(x X glux + k(B By € 8)
B

2 zj‘l
I‘,:Z; +k:QZ;+ HCQZ'R d(x-xc)dx

X

¢ ( 10 )

1
— 2 . -
+kt(2."é’0)-2kf>(‘x xc)(x-xB)QBBdm—O.O

4

The aerodynamic forces and moments at the rotor hub are
calculated by the LMT in which the spanwise and azimuthwise steps
are performed by AX = r/R = 1/20 and 4= 10° respectively. The
induced velocity generated by airplane is considered to be a
given gust velocity and is also disturbed by the blade motion of
the helicopter [121,[(131]. The blade motion and the body motion
of the helicopter are calculated by the Runge-Kutta method, The
timewise increment of the computation
is 2n/360Q2 second.

5. SIMPLIFIED LOAD ALLEVIATION SYSTEM

When the helicopter penetrates a three-dimensional gust
field, the thrust response is strongly affected by the vertical
velocity [i5]. To reduce the response, two simplified load
alleviation systems are applied. One is the Flapping Suppression
System (FSS) [163,[17] and the other 1s the Simplified Feedback
System (SFS) such as the automatic stability equipment [183,[19].

The FS8S i{s one of the active load alleviation system, in
which the deviation of the flapping angle is fedback to the
Individual blade pitch in the form of

8 =6 + 8 sint.bI + @

i Yol 1S cosyp, + L0, (11)

1Ci

42-5



AR +kudAB

Aé?i= k., AB + k; 3

B B

(i denotes the i-th blade)

In Reference 16, the reduction rate of the thrust deviation by
the wvertical gust became 50 to 70 % by using an appropriate
combination of feedback gains.

In the 5FS, the deviations of the body motion, for example,
linear acceleration, velocity, attitude deviations of the helicopter
are fedback to the collective, 1longitudinal and lateral pitch
controls. In this paper, the Attitude Hold System and the Velocity
Hold System are applied tc maintain the attitude and the flight
velocity of the helicopter. The values fedback to the pitch
angle of the blade are as follows:

collective pitch angle,

A8 0 = Gcﬁﬁ h + GAT' h N
longitudinal cyclic pitch angle,
= - + 'é
Aels G®(® @0) GG
(L\U)-G (AU)
x X
>( 12 )
lateral cyclic pitch angle,
AG = - - - G ¢
1 G¢(¢ @0) Géé
- A—- (A ) GA- (AUY)
Y Y
tail rotor collective pitch angle,
A90T=<-GW(W-WO) -G¢Q’ W,
where G denotes the feedback gain and suffix (0) denotes the
trimmed Saiu The velocity and acceleration are nondimensionalized

by RQ and RQ respectively. Each feedback gain is determined by
the stability analysis by means of the root locus method. The

?l?ck ?iagrams for each control system are shown in Figures 4
a., (b), (c).
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6. NUMERICAL SIMULATION

in this section, the results of the dynamic response of the
helicopter are presented and discussed. In the numerical simulations,
the dynamic behaviors of the helicopter were firstly calculated
for wvarious combinations of the helicopter control inputs. The
dynamic behavior of the trimmed flight is considered to be a good
reference to the disturbed flight of the helicopter. The responses
of helicopter with a see-saw rotor was precisely discussed in
References [123 and [13].

6-1 Response of helicopter with articulated rotor

In this section, let us consider the dynamic responses of
the helicopter with articulated rotor penetrating the vortex wake
of the 1large airplane. The detailed dimensions and flight
conditions of this helicopter are given in Table 1 and 3
respectively. Compared - with the helicoper with see-saw rotor,
the rotor size and the body size are fairly small.

Before performing the calculation of the disturbed flight,
the calculations of the dynamic response were examined in order
to find the control inputs for the trimmed flight. The vibratory
characteristics are reduced 1in comparison with those of the
helicopter with see-saw rotor given in References [121 and [13]
because-of four blades instead of two.

Shown in Figures 5 (a),(b) and (c} are the time responses of
this helicopter flying with the climbing angle of 18 for the
normal (Vy=800, the diagonal (¥,=30) and the parallel (¥ =0")
penetrations respectively. The Figure 5 are not identical to
those presented in reference [13]. In the present case, the
helicopter is considered to fly under uncontrolled state either
manually or automatically to compensate the vawing moment. Compared
with the case 0of the see-saw rotor, the shape of the responses is
appreciably different.

In the normal penetration, the thrust response of the rotor
is wvery miidg. Even though the helicopter flies with c¢climbing
angle of 10* , the helicopter seems to hit the second vortex core
as shown in Figure 5 (a). This i5 because the helicopter excursions
are very high and the attitude deviations from the trimmed values
are aprreciably large in comparison with the helicopter with see-
saw ‘rotor, The pitching ( @ ) and vawing (Y. ) angles of the
body have very large amplitudes ( almost 10 degrees for pitching
angle and + 10 degrees for yawing angles). However the rclling
angle (¢ ) changes a little (almost 3 degrees ).

In the diagonal penetration shown in Figure 5 {(b), the
tendnecy of the responses is similar to the case of the normal
penetration. The responses is more mild than that of the normal
penetrations to the vortex core. Since the elapsed time to
penetrate the vortex c¢ore is longer than that of the normal
renetration, the helicopter itself reacts very slowly to the gust
velocity field. Therefore the body attitude, specifically in
pitching and vawing angles, deviates very moderately with high
amplitudes of the responses.

In the case of the parallel penetration shown in Figure 5
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(c), the responses of the rotor hub are completely different from
the other two cases. First of all, the thrust deviatlop is very
little and others are similarly small. However, the yawing ang%e
deviates very much from the trimmed values (almost 15 degrees 1in
the yawing angle), This phenomena is almost same as that of ?he
see-saw rotor's case [Ref.13]1. Since the amplitude of the‘yawxng
angle of the body depends on the aerodynamic characteristics of
the vertical wing , it must be paid attention to the aerodynamic
chracteristics of the vertical wing operating in high angle of
side slip in the analysis.

In all Figures, the spike of the response near the origin of
time can be seen. This came from the step response of the helicopter
because the gust velocities near the time origin were considered
to be finite,

6-2 Response of helicopter with hingeless rotor

In the case of the helicopter with hingeless rotor, elastic
flatwise, chordwise, torsional deformation must be taken into
account because the blades are attached to the rotor hub without
mechanical hinge. In the present calculations, the equivalent
flapping hinge and lead-lag hinge areintroduced in the manner of
section 4. However the torsional deflection is not considered in
this study. The detailed dimensions and flight conditions of
this helicopter are shown in Tables 1 and 3.

It was found from the calculation of the trimmed flight that
the vibratory characteristics is same as that of the helicopter
with articulated rotor,.

Shown in Figures 6 (a), (b)) and (¢) are the dynamiC responses
of the helicopter with hingeless rotor in climbing flight ( 7 =
10*) for normal, diagonal and parallel penetrations to the vortex
core respectively. The tendency of the dynamic responses is very

similar to that of the helicopter with articulated rotor. In
this case, the helicopter seems to hit the second vortex core
generated by the left wing tip of the large airplane,. This is

resulted from the downward shift from the flight course. The
hortzontal and side forces greatly react to the gust velocity
when the helicopter hit the vortex core. In the case o©of the
helicopter with see-saw rotor, these forces showed change little.

In the normal penetration shown in Figure 6 (a), the attitude
of the helicopter change a little except the yawing angle. Sichne
the vortex core has very strong suction flow {qx). the yawing
moment due to the vertical wing has a great value when the helicopter
penetrates the vortex core. The vertical acceleration (or the
thrust) at the rotor hub fluctuates from 0.59 t0 1.79 during the
penetration of the vortex core. The helicopter excursions
showed that the vertical deviation is much lager than others.

In the diagonal penetration shown in Filgure 6 (b)), the
dynamic responses of the helicopter are mild in comparison with
the normal penetration.

In the case of the parallel penetration shown in Figure 6
{c), the attitudes of the helicorter show the great changes in
rolling and yawing angles of the body (almost 25 degrees and *10
degrees respectively). According to the change of rolling angle,
the helicopter shows a great sideward excursion. At the same
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time, -the vawing angle of the body changes {from negative to
positive values.

6-3 Effect of the feedback system
* Here let us consider two feedback systems, FSS5 and SFS5, to

alleviate +the responses of a helicopter with see-saw rotor.

Shown in Figures 7 (a),(b) are the results for the equipped
with these feedback systems. In Figure 7 (a), the feedback system
is FSS and the input is added to the conventinal control 1nput as
equation (I'1). In this calculation, the values of kg . kg and
Xp . were -0.5%, -1.0, 0.0 respectively. It is clear from the
results that the effect of this feedbak system on the dynamic
response is little. The flpping deviation slightly reduced. The
roll angle and the lateral velocity of the disturbed helicopter
body are slightly improved.

- In Figure 7 (b)), the dynamic behaviors of the disturbed
helicopter installed with the SFS are shown. From this figure,
the effect of this control system on the responses of the helicopter
are ‘predominant. In this calculation, the following feedback
gains were used,

(G, G=, Gy + Gy + GAU- GA(+ G¢ - Gg . GAD+ GAU -
Gane G450 Go 0 AU GAuy G ¢ -+ GAy, Gau

Y Y
GW ] Gi’ ) = { _S-Dg ‘1.5, —0.5, _Q-5$ -2-5i _102-

_002‘ ”Och -0.8. "1-2' —0059 “0.25)-

Since the SFS system is composed of the attitude held control
and the velocity hold control, the reduction of the attitude and
velocity deviation due to the trailing vortex 1is specifically
predominant. .Instead, the horizontal, lateral! forces, and C
and the flapping angle deviation increase appreciably. @he hu
moments, and C_ are not effected by this control system. In
the thrust }espons@ the shape of the deviation is greatly changed
in order to maintain the steady flight and 1its deviation is
highly reduced.

7. CONCLUSTONS AND RECOMENDATION

-The Local Momentum Theory has been extended to ahalyze the
dynamic respaonses of the +three +types of helicopter which
penetrate a pair of trailing vortices of a preceding airplane at
the distance of 10,000m from the airplane. The wake vortices are
assumed to be a frozen gust but disturbed by the blade motion and
the helicopter dynamics is allowed to have six-degrees of freedom.
The simplified feedback system is aprlied to alleviate the vibratory
deviation of the helicopter from the trimmed flight.

The major results in this study are drawn as follows;:
(1) The maximum meanh-vertical-acceleration is less than 29 at the

distance of more than 2,000 m from the airplane. It is degenerated
by reducing the flight path angle (lyw) from the normal penetration
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(2) The vertical acceleration is severe in the norma; penepration
whereas the rolling and vawing excursions are predominant in the
parallel penetration.

(3) In both the normal and diagonal penetrations, the attitude of
the helicopter shows similar responses for two types of helicopter.

(4) In the parallel penetration, the rolling angle of the body
attitude shows greatest amplitude for the helicopter with hingeless
rotor.

(5) The dynamic responses of the helicopter penetrating the
vortex wake of the large airplane strongly depends on the gust
velocity field.

(8) For the simplified feedback system to alleviate +the gust
responses of the helicopter, the simplified feedback control
system has great effect on the wvibratory response reduction
rather than the individual blade pitch control system.

In the present study, the calculations in the limited cases were
performed. It is, however, necessary to calculate the responses
of the various helicopters penetrating the trailing vortices 1in
various flight conditions for much bhetter understanding of this
Problem.
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NOMENCLATURES
a empirical constant of effective eddy viscosity
b number of blades
ba wing span of aircraft
Ch drag coefficieni of wing
Cy H-force coefficient
Cy. lift coefficient
o rolling moment coefficient at rotor hub
CMr.XB coefficient of fuselage moment
CMF.vB coefficinet of fuselage moment
CMF.ZB coefficient of fuselage moment
Coy : pitching woment coefficient at rotor hub
Cq torque coefficient
Cr thrust coefficient
Cy Y-force coefficient
Dy profile drag of aircraft
(Fyg+Fyg Fzgd  external forces given by eq.(7)
g acceleration of gravity
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hH position of horizontal wing

g hub height

7 height of tail rotor

hy height of veriical wing

(o by, I moments of inertia of the helicopter

IB » moment of inertia of a blade about flapping hinge

iS inctipation of rotor shafit

JXZ product of inertia

I(B spring stiffness at flapping hinge

L _ Tift

I fongitudinal position of horizontal wing

Ig hub poasition

I longitudinal position of tail rotor

Iy longitudinal position of vertical wing

(Myg,Myg,M7g)  external moments given by eq.(8)

HB mass moment of a blade about flapping hinge

L] mass of aircrafi

my mass of helicopter

m g mass of blade

n load factor

p rolling angutar velocity

q pitching angular velocity

(qx,qy.qz) longitudinal, radial and circumferential gust components
shown in Fig.l

(qi,qi,qg) tongitudinal, radial and circumferential gust componenis
at core center

R rotor radius

r radial position or yawing angular velocity

p¥ core radius of tip vortex

S rotor disc area

Sa wing area

TI transformation matrix given by Appendix A

To transformation matrix given by Appendix A

t time

Up flight speed of airplane

Uy flight speed of helicopter

U longitudinal flow speed shown in Fig.!

Uy longitudinal flight speed of helicopter

v lateral flow speed in Fig.l

VH lateral flight speed of helicopter

§ non-dimensinal weight = mHg/pS(RQ)2

W vertical flow speed shown in Fig.l

Wi vertical flight speed of helicopter

Xeg longitudinal position of the center of gravity of helicopter

(X.Y.2) coordinate system fixed to airplane shown in Fig.1

(Xp+Ypsip) coordinate system fixed to helicopter shown in Fig.!1
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(XCG’YCG’ZCG)

(x,¥,2)

X
(XCG’YCG’ZCG)

= @
o @ -3

Ar\/\/\f\gso-@..e L= SR TR R w R~
< E =y

longitudinal,lateral and vertical position of helicopter
center of gravity in (X,Y,Z) coordinate system
coordinate system fixed to rotor shaft shown in Fig.l
coordinate system fixed to wing tip shown in Fig.1
nondimensional radial position =r/R, or horizonial distance -
longitudinal,lateral and vertical position of the center
of gravity of helicopter in (x,y,2) coordinate system
flapping hinge offset

spanwise position of blade center of gravity

spanwise position

angle of attack

flapping angle

longitudinal flapping angle

lateral flapping angle

flapping angle of No.l blade

coning angle

preconing angle

circulation

circutation of aircraft at midspan
flight path anglie of helicopter
small increment

setting angle of horizontal wing
efficiency

pitching angle of helicopter body
initial setting angle of body frame
blade twist angle

advance ratio

kKinematic viscosity

effective eddy viscosity

air density

rofling angle of helicopter body
initial setting angle of body frame
yawing angle of helicopter body
flight path angle of helicopter with respect to wake

initial setting angle of body frame

azimuth angle

rotor rotational speed

natural flapping-{freguency

quantity concerning fuselage

quantity concerning horizontal wing or concerning helicopter
quantity concerning tail rotor

guantity concerning vertical wing

time derivation
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Appendix A. The transformation matrices, Ts and Te

The transformation matrices Ti and Te in section 2 are given by [13]

cos@cosV¥ sin®sin®cos¥ cosPsin@cosW¥
- cosdsin¥ + sindsin¥
Ty = cos@sinVy sindsin®@sin¥ cosdsin@siny
+ cosdcosVy - sindcos¥
- 8in@ sind®cos® cosdcos@
cos@. cosV¥, cos®, sin¥, - 5in®,
T @ - cosd, sinV, cos®, cos¥, sin®. cos®,

+ Sinéo Sineo cosV, + sin®, sinBG, Siano

sind, sin¥, - sin®, cos¥, cosd, cos@,
+ cosP, sin®, cos¥W. + cosd, sin®, sin¥,

and where (¥o , @o , . ) are the inertial setting angles of the body
coordinate with respect to the (X, Y, Z) coordinate.

Appendix B. External forces and moments

External forces (Fxe, Fve, Fzs) and moments (Mxs, Mve, Mzs) acting on the
helicopter body are expressed as follows [13]:

FXB = pS(RQ)2 [CTSiniS'CHCOSiS'?;!TCHT'FCLFSinaF'l'CLHSina H‘*‘CwSil’ldy
~CDFcosaF—CDHcosaH“CDVcosav-Qéin@]

-bu g Cutqw-rv-RQ{TB ot Chp/RI}(a/ Q 2y] (B-1)
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PSRQ)Z [Cy+ 7 707-Cyp-Clycos @y-CoysinaytWSind cos® ]

-bm g Cvtru-purR Q 2(XB o+ (hg/R)}(p/ @) (B-2)

pS(RQ )2 [-CTcosi S“CLFCOS o F'CLHCOS o H+CDFsi ha F+CDHSi nay
+Cpycos aytitos PcosO]

-bw g [w+pv-qu+R522(IR/R)(Qf$22)] {B-3)

PSRQIR [-C)cosig-Casini g+Cy(hg/RM+ 7 1Crphe/R3+Cye v
-(Cpycos ay#Cpysinay)X1y/R)]
+h g hg [-(viru-pu)-RQ2{XP o +(he/R)}p/ 2]

+hm g (RQ)Z{(1/2)x gi(p/sﬁ)} (B-4)

Myg = PSRQIZR [CycosigH(Cycosig-Crsinig)(hp/R)

-(CreosigtCysinigI(1p/R)
+7 {Cqp¥Cyrcosa pChp/R)-Cyrcos o p(14/R)}
Oy, yg-CCppcos a ptCppsina y)(1,/R)
+HCpyeos ay-C ysinay)(1y/R)
-Cpysina KHy/RM+Cpy cos ayChy/R)]

+bm g e [(utaw-rv)-RQ2{ZB gHhe/RI}a/ 2]

+bu g (RQDZ{(1/2)x g}/ @)}

-bm g 1 CCwtpv-qu)tRQ2(1/R)Ma/ 2] (8-5)
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Mzg = 0SRQZR [Cqeosig-C sinig-Cyllg/R)- 77CrCI4/R)+Cyr, 78

+(chos (4 V+CDVS' na V)( [ V/R):l

-bng g C-(viru-pw)-RQ 2R B g+(hg/RIY(p/ @ 2)]

+tm g (RQDZ [xE-(r/ @ 2-(1/2) B 15(a/ @ DH1/2) B0/ 2 DYT (86

where nondimensional rotor forces and moments (Cr, Cu, Cv, Cq, Ci, Cm) are those
including the inertia! components ( caused by the blade motion ) as well as the

aerodynamic components.

Table 1. Dimensions of the two types of helicopter

{tens Articulated Hingeless
Gross mass e (kg) 1,089 2,830
Koment of inertia of body 1x  (kgs?) 431 2,380
Mowent of inertia of body v (kge?) 1,18 7,314
Mosent of inertiz of body |z  (hgm?) 11 5,560
Hinge stiffness k0 (Na/rad) 0 148.0
¥y (Ne/rad) 0 816.0
For Main Rotor
Rotor radius R (o) 4.0 5.5
Hugber of blades b ] 4
Blade chord c (u) 0.178 0.32
Blade twist g (depd -0.14 -3.0
Rotor rotational speed Q Cradss) 50.7 40.15
Blade mass B8 (kg) 16.9 31.95
Mosent of inertia of blade 18 (kge?) 70.6 212.66
Inclination of rotor shaft i,  (deg) 3.0 5.0
Hinge offset xB 0.035 0.129
xt 0.0 0.145
Lock rnumber T 4.40 9.83
Solidity g 0.0543 0.074
Preconing angle B. (deg) 0.0 2.5
For Tail Rotor
Rotor radiyg Re () 0.65 0.95
Husbzr of blades br 2 2
Blade chord or (m) 0.122 0.18
Blade twist Guvr (deg) -8.0 0.0
Rotor rotational speed 2 (rag/s) 21,0 .2
Blade wass ar (kg 1.2 0.94
Homent of inertia of blade §8: (kge?) 0.147 0.28
&3 angle §3r (deg) 30.¢ 45.0
Lock number rrT 1.03 3.63
Solidity 0 0.12 0.12
For Horizontal Wing
Ving arez S (e 0.7T14 1.0
Chord o (@ 0.419 0.4
Aspect ratio ARw 4.08 6.25
Efficiency M 0.7 0.1
For Yertical Ving
Ving irea S (@) 0.522 2.4
Span w  (m) 1.985 1,28
Chord cy  (a) 0.268 1.75
Aspect ratio ARy 7.4 5.73
Efficiency v 0.8 0.8
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Table 2. Dimensions of a preceding airplane

LT-T%

ttens Dimensions
Wing spah ba  (m) 59.6
Ving area Sa (m2) 511.0
Flight speed Ua (m/s) 94.4
~ Mass me  (kg) 3.51x10%, 2.11x108
Aki Table 3. Flight conditions of’the vortex generating
airplane and the disturbed helicopter
Dimensions :
B 2R/ba Un /Ua (%o /ba, Yo /ba, 2o /ba) Yy (deg) 7 (deg) Su{deg) | w/Q Flight
Figs.
5-(a) 0.00516 0.13¢ | 0.322 (168.0. 0.758, -0.147) 80.0 10.0 2.0 Climb
(b) 0.00516 0.13¢ | 0.322 (168.0. 0.338. -0.133) 30.0 10.0 2.0 1.03 | Climb
(c) 0.00516 | 0.13¢ | 0.322 (168.0, 0.0, -0.134) 0.0 10.0 2.0 Ctimb
6-(a) 0.0135 0.184 0.435 (168.0. 0.925, -0.188) 90.0 10.0 -1.5 1.15 Climb
() 0.0135 | @.184 0.435 (168.0, 0.422, -0.178) 30.0 10.0 -1.5 . Clisb
(c) 0.0135 0.184 0.435 (188.0. 0.0.  -0.200) 0.0 16.0 -1.5 i.15 Climb
7-(a) 0.0142 0.225 0.482 (168.0. 0.677, -0.03) 90.0 0.0 -3.5 1.0 Level
(b) 0.0142 0.225 0.482 (168.0. 0.877, -0.03) 90.0 0.0 -3.5 1.0 Level
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