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Abstract: The paper deals with a nonlinear optimal control approach to analyze flight 
characteristics of helicopter. Two points boundary value problem, formulated as the necessary 
condition of optimal control, has been solved by a multiple shooting algorithm. The history of 
reference trajectory is given in prior as a function of time and the deviation from this 
trajectory is added to the integral part of the cost function, which converts the system 
optimality to an unconstraint optimal control problem. This paper focuses on the numerical 
methodology of solving optimal control equations, which is the most time consuming routine 
in the resolution of optimal control problems using the indirect method. The solutions with 
various methods such as a standard algebraic equation solver, the nonlinear programming, and 
a differential algebraic equation solver, are compared with the number of function call (right 
hand side of system ODE) and the computation time in order to measure the relative 
advantage of each method. The most favorable numerical method selected by using linear 
models is applied to a nonlinear helicopter mathematical model. The applications cover 
various helicopter mission task elements such as bob up, side step, turn, slalom, and 
deceleration after acceleration. The results can provides valuable directions for using optimal 
control approach to the analysis of helicopter mission task elements. 
 
INTRODUCTION 
 
The Aeronautical Design Standard ADS-33[1] defines a series of mission task elements and 
specifies the related performance standards in order to provide a basis for an overall 
assessment of the rotorcraft¡s ability to perform certain critical tasks. The assessment of 
ADS33 MTEs usually needs extensive flight test maneuvers which can be carried out at the 
final step of vehicle design and are hazardous to both the pilot and the vehicle itself. 
Therefore, reliable numerical methods have an essential role in allowing quick and low-cost 
design iterations at early design stages and to provide benchmark results in order to increase 
the productivity of future flight tests. 
 
Two usual methods for the analysis of helicopter maneuvers are the inverse simulation and 
dynamic optimization. The inverse simulation finds controls that enable the helicopter to 
follow in exact manner a prescribed flight path whose history is given in prior as a function of 
time. Various inverse simulation methods have been developed over the converse of last 
decade [2,3,4]. Among them, the integration inverse method, proposed by Hess et al. has 
popularly been used because of its lower dependency on model structure. But numerical 
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instability or oscillatory behavior in its solutions causes some difficulties in its application 
with a high fidelity helicopter model. 
 
Dynamic optimization [5,6,7] computes the controls, the state, and possibly the final time that 
minimize a cost function, subject to state equations and to various other constraints, as 
required by the problem at hand. The numerical solution of a dynamic optimization problem 
is usually solved via the direct method or the indirect method. This paper applies the indirect 
method where we first apply calculus of variation to find the necessary conditions which 
minimize a cost function. Then the problem is reduced to a TPBVP (two-point boundary 
value problem) in the infinite dimension and a suitable MSM (multiple-shooting method) can 
be used to resolve it in the finite dimension [7, 8, 9] 
 
Since the applications of the indirect method to rotorcrafts are relatively scarce, we describe 
the approaches used for analyzing mission task elements from optimal control formulation to 
its numerical methods used in this paper. The solution of optimal control equations derived by 
applying Pontryagin minimum principle is the most time consuming routine in the indirect 
method. The related equations can be formulated in the form of a minimization problem or an 
algebraic equation if no control constraints are active. So, various numerical methods can be 
selectable, depending on its formulation. This paper carries out trade-off study among the 
standard algebraic equation solver, the nonlinear programming, and the differential algebraic 
equation solver with linear helicopter model. The results using each method are compared 
with the number of function call (right hand side of system ODE) and the computation time in 
order to measure the relative advantage of each method and to select the most favorable one. 
The selected method is applied to the analysis of various helicopter mission task elements 
such as bob up, slalom, turn, side step, deceleration after acceleration maneuvers using both 
linear and nonlinear models. 
 
1. OPTIMAL CONTROL FORMULATION 
 
The formulation of a general optimal control problem is covered in numerous textbooks, such 
as Bryson and Ho[10], Kirk[11], and papers. Here, key concepts related to the present study 
are reviewed. The optimal control problem, which takes the following standard Bolza form, is 
to find states )(* tx , controls )(* tu , and possibly final time *

ft that minimize a cost function )(J : 

min dtttutxftxtuxJ ft
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The operating cost function OPf  usually includes the quadratic function of controls to 
minimize control effort. If optimal controls calculated with this type of cost function are well 
within their limits, the control constraints can be deleted in the formulation. Also to avoid the 
difficulty of handling state inequality constraint 0)),(( ttxs in the indirect method, a 
quadratic penalty function method is used in this paper, where trajectory deviations from a 
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prescribed maneuver path are penalized and reflected in the cost function. With the penalty 
cost SCf for state constraints, the original optimal control formulation can be rewritten as the 
following unconstrained optimal control problem in Mayer form: 
 

min )()),((),,( fCOff txttxtuxJ                          (3) 
s.t.   
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The first-order necessary condition for system optimality can be derived from applying 
calculus of variation to the cost function. Based upon the formulation in Ref.10 and Ref.11, 
optimality conditions can be expressed as the following TPBVP with state 
variables 1)](),([)(  nT

CO Rtxtxty , costates 1)(  nRt , Lagrange multiplier kRt )( , and 
Hamiltonian )),(),(()()( ttutygtH T : 
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where the algebraic equations for optimal control are: 
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u

                            (7) 

or 
0),,,( **





u

tuxH 

                                   (8) 
 

2. NUMERICAL METHODS 
 
The shooting algorithm [7, 8, 9] is commonly used for resolving a TPBVP in ordinary 
differential equations. Since the application of a single-shooting method to unstable systems 
like helicopters is found to result in numerical divergence, the MSM(Multiple-Shooting 
Method) is a appropriate choice of a numerical method. The MSM refers to the discretization 
of a trajectory into a number of sub-intervals, each of which contains a separately defined 
initial value problem. Successive iterations follow until both the boundary conditions and the 
continuity of the state variables at each sub-interval node are satisfied. This study follows the 
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procedure of the BNDSCO software[9], which has been developed by Oberle et al. and the 
detail description can be found in their report.  
 
The most time consuming routine of the optimal control calculation is the evaluation of the 
Hessian matrix uuH . If an optimal control is obtained by solving Eq. (7) with an efficient NLP 
approach using first-order methods, rather than Eq. (8) with the Newton method, it is possible 
to avoid the explicit calculation of the full Hessian matrix because the efficient NLP requires 
only the first-order gradient information. Also DAE(Differential Algebraic Equation) solvers 
can be used to simultaneously resolve both the ordinary differential equations, Eq. (5), and the 
algebraic equation, Eq. (8). Because a MSM numerically calculates an approximate Jacobean 
matrix by perturbing the system¡s initial states one at a time at each shooting node, The 
solution using DAE solvers needs the computation of consistent initial conditions at every 
time step. Finally, If system equations are affine in controls and a quadratic cost function is 
used for control effort with positive definite weighting matrix R , then from a modeling 
perspective, the Hessian, uuH , can be approximated with RCO , requiring no further function 
calls. It can also be a good approximation for the system nearly affine in the controls, which is 
the typical case even for nonlinear rotor dynamics equations. 
 
Based upon the above consideration the following four numerical procedures to resolve the 
optimal control equations are investigated with suitable algorithms. 

(1) Traditional Newton method to solve EQ.(8) with approximate Hessian, RH COuu   
(2) Unconstrained optimization method to solve EQ.(7) with given states and costates 
(3) DAE solver, RADAU5, to solve both EQ.(5) and EQ.(8) simultaneously 
(4) Traditional Newton method to solve EQ.(8) with full Hessian matrix computation 

 
3. HELICOPTER MODEL AND THE DEFINITION OF COST FUNCTION 
 
The helicopter flight dynamic models in this paper are based on previous research results of 
Ref.13, where rotor dynamic equations for flap, lead-lag, and RPM dynamics have been 
formulated in fully implicit form. A rotor was modeled with rigid blades with spring and 
damper. Nonlinear quasi-steady aerodynamic theory has been applied through table look-up 
procedure. Trim calculations of the Bo-105 helicopter have been carried out using the 
harmonic balance method or a partial periodic trimming algorithm in which a DAE solver was 
used for time integration. The linear models used in this paper are derived by linearizing 
helicopter motion equations at a calculated trim condition. A state equation is approximated in 
time invariant form by averaging both state and control derivative matrices over one rotor 
revolution. The nonlinear model has been derived by the using linear aerodynamic theory 
rather than the quasi-linear aerodynamic theory in Ref.13. 
 
The trajectory description with polynomials and trigonometric functions is a widely used 
method in studies on inverse simulation of the helicopter because of its analytical simplicity 
and smoothness [2,14,15]. This paper also uses similar analytical descriptions to those for 
inverse simulation. The trajectory can be expressed as the sum of states at maneuver entry and 
its variation during maneuver.  
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Trigonometric functions can be good basis functions for trajectory generation because of their 
smoothness. In this paper the trajectories of bob up and side step maneuvers are generated 
with Eq.(11) and that of the slalom maneuver with Eq.(12), respectively. Also the polynomial 
function of Eq.(13) is used to define the variation of height for the vertical (bob down after 
bob up) maneuver and velocity for the deceleration after acceleration maneuver. 
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A typical maneuver can be described by its different maneuver phases such as entry stage, 
steady maneuver phase, and exit phase. To describe these different maneuver phases 
Thompson et al[15] proposed a piecewise polynomial method. By changing the time required 
for the entry phase and the exit phase, we can control the level of maneuver aggressiveness. A 
turning flight with a constant turn rate is an example of the steady maneuver phase. Here we 
apply this method to trajectory generation for a turn maneuver with following mathematical 
description: 
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The requirements for maneuver accuracy are commonly specified with the boundary 
deviation from a constant reference value in flight speed, altitude, sideslip, heading, and 
positions, etc. In the same way, this paper uses these quantities to define the reference 
trajectory for other axes. 
 
The quadratic cost function for control is generally used in dynamic optimization. As 
previously mentioned, this paper penalizes state constraints in the same manner as control 
constraints to avoid the difficulty of its numerical implementation in the indirect method. The 
resulting cost function can be expressed as: 

arg arg( ( ), ( ), ) 0.5( ) ( ) 0.5( ) ( )T T
CO R R t et R t et TRIM TRIMf x t u t t x x Q x x u u R u u       (15) 

Where  
Rx     : reduced rigid body states 

ettx arg  : target states 
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The target states )(arg tx ett  are set to be trim states TRIMRx )(  except those which need the 
description of their time variation for a specific maneuver. The same control weight 
matrix R is used throughout this paper with its diagonal components as: 

 
600,900,900,3600

110


TRSC
rrrr   

 
The positive semi-definite weight matrix Q has its components as listed in Table.1. The 
components show small variation in their value, depending on the required tracking accuracy 
for a specific maneuver. 
 

Table.1 Diagonal components of the state weight matrix 
 

uq  vq  wq  pq  qq  q  
200 7.5 4.5 7.5 15 200 

q  q  q  xEq  yNq  Hq  
100 500 35 0 100 30 

Note: The components are the same for all MTEs except 
1. qq  = 40 for side step 
2. q  =400 and q =350 for turn 
3. yNq = 0 for turn 

 
The initial conditions for state variables can be specified with the results of trim analysis 
because maneuvers in this study are started from a steady trim condition and their terminal 
conditions can be defined with target states at the end of a maneuver. 
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4. APPLICATIONS 
 
The present approaches have been applied to representative flight maneuvers for Bo-105 
helicopter configuration. The bob up, bob up and bob down, side step, and deceleration after 
acceleration maneuvers start its maneuver from hover and the slalom and turn maneuvers 
from steady level flight at a forward speed of 60 knots and 120 knots, respectively. Time 
integration is carried out using the 4-stage Runge-Kutta method with fixed time step size. The 
number of shooting nodes is determined to guarantee the numerical stability of MSM. 
Because the state and costate variables for flight trajectory are not available, those variables at 
each shooting node are initialized with the same values. For linear models, they are simply set 
to zero except a costate variable corresponding to cost equation with 1.0 and trim states are 
used as initial guesses for the analysis using the nonlinear model.  
 
Fig.1 presents the calculated trajectory using linear models for various mission task elements 
and the present results shows a good comparison with the prescribed trajectories. The 
trajectory deviation from the prescribed one can be reduced by adjusting the components of 
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state weighting matrix. In this case the heuristic tuning is required because of the sensitivity 
of its parameters to numerical convergence of the indirect method.  
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Figure 1. The calculated trajectories with different linear models 

 
The most time consuming routine using the indirect method is that of calculating optimal 
controls, which requires the numerical approximation for the Hessian matrix. The following 
four different approaches are studied in order to select a candidate for its applications to the 
MTE analyses using nonlinear helicopter models. 
 

Method 1: affine approximation in controls, RH COuu   

Method 2: optimization based on DFP (Davidon-Fletcher-Powell) method [13] 
Method 3: DAE (Differential Algebraic Equation) solver, RADAU5[14] 
Method 4: full Hessian matrix calculation 
 

Fig.2 and Fig.3 compare the computation efficiency of each method for the linear 6-DOF and 
12-DOF models. The number of function calls and the computational time are the average 
value for one iterative step of MSM. Even though the DFP method needs no explicit 
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calculation of Hessian matrix, the efficiency is nearly the same as Method 4. Whereas the 
design optimization problems generally allow relatively low numerical precision enough to 
guarantee the design improvement, the optimal controls should be calculated with high 
precision for its use in succeeding forward simulation. If the controls calculated with low 
precision are used in the indirect method, the succeeding analysis generally suffers from 
numerical divergence, which degrades the numerical efficiency of DFP method in design 
optimization. The method 3 shows the worst performance among four methods. The DAE 
approach has an advantage of simultaneously solving both the ordinary differential equations, 
Eq.(6), and the algebraic equation, Eq.(8). But the computation of consistent initial conditions 
at every shooting node can reduce the efficiency of DAE solvers. Moreover, a tight step-size 
control adopted in this application is likely to increase the number of function calls and fails 
to continue the time integration when a calculated step size is less than the specified step-size 
tolerance. 
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Figure 2. Relative number of function calls     Figure 3. Relative computational time 
 
Fig.4 and Fig.5 represent the convergence history of MSM with different helicopter model. 
The bob up maneuver is analyzed with 500 shooting nodes. The method 1 and method 4 
denote the same convergence history and show better convergence than the method 2 and 
method 3. Especially, the method 4 is difficult to get a converged solution for the 12-DOF 
linear model. Because the efficiency of each method depends on the problems at hand and 
there are so many parameters to set in each solver, the direct comparison is not so simple. But 
regarding above comparison, the method 1 which shows the best efficiency for the present 
application is chosen for the later applications.  
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Fig.6, Fig.7, and Fig.8 present the history of linear velocity components, and the 
corresponding costates, and controls for the bob up maneuver. The analyses are carried out 
with 1500 shooting nodes, 6 integration nodes and with variation of helicopter models. The 
results using linear models are summed up with trim states and trim controls in order to give 
direct comparisons.  
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Figure 6.Linear velocity with different models    Figure 7.Costates with different models 
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Figure 8. Controls with different models        Figure 9. Controls with different models 

(bob up maneuver)                         (slalom maneuver) 

 



 - 10 - 

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

40

60

time(sec)

 
(d

eg
/s

ec
)

 

 
 6-DOF linear
12-DOF linear
12-DOF nonlinear

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

6

time(sec)

 
(d

eg
/s

ec
)

0 1 2 3 4 5 6 7 8 9 10
-20

-10

0

10

20

time(sec)


 (

de
g/

se
c)

    

0 1 2 3 4 5 6 7 8 9 10
-20

-10

0

10

20

30

time(sec)

 

 

 
 6-DOF linear
12-DOF linear
12-DOF nonlinear

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

100

150

time(sec)

 

0 1 2 3 4 5 6 7 8 9 10
-400

-200

0

200

400

time(sec)

 

 
Figure 10.Attitude and heading with different   Figure 11.Costates with different models 

models(slalom maneuver)                     (slalom maneuver) 
 

 
Fig.9, Fig.10 and Fig.11 show the results of slalom maneuver analysis with the same analysis 
condition as above. These comparisons enable us to determine the applicable flight range of 
linear models.  

 
5. CONCLUSIONS 
 
This paper has studied nonlinear optimal control approaches to the analysis of helicopter 
MTEs. The results showed the predicted optimal trajectory well tracked the prescribed one, 
which proved the validity of the penalty function approach. The comparative studies on the 
four different methods of resolving the optimal control equation have been carried out to 
select the most efficient one for the present applications. The approximation of Hessian matrix 
under the assumption that the system at hand is affine in control has shown the superior 
efficiency to the other methods. The same approach is used for the analyses using the 
nonlinear helicopter model. The optimal solution for each MTE presented big differences 
depending on the model used. So the further studies related to the high fidelity helicopter 
models seem to be required. 
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