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Abstract 

It has been known for some time that the predic
tion of rotor forces and moments for flight dynamics 
applications is sensitive to the specific assumptions 
employed in modelling aerodynamics. This paper re
views several critical aspects of the most widely used 
models and the suggested extensions to them, with 
an emphasis on the prediction of helicopter control 
response. 

1 Nomenclature 

lR fixed wing aspect ratio 
B tip loss factor (0.97) 
C lift deficiency function 
CL aerodynamic roll moment coefficient 
CM aerodynamic pitch moment coeffid_ent 
CT thrust coefficient 
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normalized wing chord 
normalized blade inner radius 
inflow momentum flux matrix 
wake skew function 
K< in edgewise flow (K<(90")) 
wake translational deformation parameter 
Wake rotational deformation parameter 
normalized hub spring 
inflow added mass matrix 
wake rigidity factor 
normalized flight speed 
Glauert mass flow parameter 
generalized mass flow parameter 
disc angle of attack, positive for rearward tilt 
geometric angle of attack 
net 2D angle of attack 
2D induced angle of attack 
3D induced angle of attack 
bound circulation 
k-th aerodynamic integnl 
Pitt model paramet(!r 
inflow ratio, V sin a - v 0 

advance ratio, V cos a 
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normalized inflow velocity 
v = V 0 + v,jisin'lj; + Vcjicos'lj; 
rotor solidity 
inflow time constant 
wake skew angle 
normalized frequency 

Introduction 

This paper considers the influence of various aero
dynamic modelling assumptions on the prediction of 
the control response of single-rotor helicopters. In 
contrast to aerodynamic models for performance cal
culations, flight dynamics models are not generally 
expected to accurately capture all of the details of the 
complex flow of a lifting rotor. Flight dynamics ap
plications, which by nature involve unsteady fuselage 
motion and non-periodic rotor dynamics, continue to 
present an unmanagable challenge to the most so
phisticated numerical analyses. Therefore, we will 
be satisfied with models which offer a compelling an
alytical basis, and may be expected to provide an 
accurate representation of a physical phenomenon. 
In addition, there should be as few adjustable pa
rameters as possible, with a clear understanding of 
the factors which influence their values, to provide a 
quantitative description of the integrated effect of the 
phenomenon. 

Classically, there are two distinct and equally im
portant aspects to the aerodynamic modelling for 
flight dynamics: (i) computing the airload at a par
ticular blade station as a function of the local air 
velocity and blade motion; and (ii) computing the 
flow induced by a rotor which is generating aerody
namic forces and moments. In most flight dynamics 
analyses, linear, quasi-steady strip theory comprises 
the former, while momentum theory and/or dynamic 
inflow comprise the latter. The dominant physical 
characteristics of the rotor response are well repre
sented by these theories and their simplicity provides 
valuable insight. However, the completeness of these 
theories has been called into question by the need for 
unrealistic parameter values to match experimental 
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data, especially for the off-axis response to control 
inputs, in recent system identification studies [1, 2]. 
Therefore, the need for fundamental investigations of 
these theories continues. 

3 Unsteady Aerodynamics 

This section explores the relationship between vortex 
and unsteady momentum theories with the goal of 
clarifying the aforementioned conceptual division be
tween predicting unsteady loads and induced veloc~ty. 
In order to achieve the desired insight, it is most use
ful to consider the theories applied to a fixed wing. 
The conclusions for the fixed-wing case are directly 
applicable to the rotating wing for collective pitch in
puts. Although the concepts are roughly the same, 
the wake geometry of a rotor renders the response to 
cyclic inputs considerably more challenging, and we 
delay explicit consideration of this case to Section 5. 
Nate that all variables in this section have been nor
malized on density, the flight speed, and the span of 
the wing. 

Figure 1 shows a block diagram expressing the re
lationship between the geometric angle of attack and 
the lift for a finite wing, from the perspective of un
steady vortex theory. (The results are approximate 
as the wing is assumed to be elliptical and the de
tails of the spanwise distribution of circulation and 
lift are omitted.) The enforcement of the Kutta con
dition results in the static relationship between the 
total angle of attack and the wing circulation. The 
two-dimensional (2D) dynamic feedback of circula
tion, given in Laplace domain by H 2(s), represents 
the 2D induced angle of attack due the span wise vor
ticity she? into the wake, as described by Theodorsen 
[3] and von Karman and Sears [4, 5]. The three
dimensional (3D) dynamic feedback of circulation, 
H3( s ), represents the dynamics of the stream wise tip 
vortices which trail a finite wing, as discussed by 
Jones [6]. Finally, the relationship between circula
tion and lift, H 1(s), results from using the unsteady 
velocities to find the unsteady pressure distribution 
(i.e. the unsteady Bernoulli equation). It should 
be noted that the two-dimensional added-mass terms 
have been neglected in this description. 

The transfer functions, Ht, H2, and H3 are quite 
complicated, generally involving Bessel functions, 
and have been given in various forms in the above 
cited literature. For the present purposes, it will suf
fice to indicate crude approximations to these func
tions which produce the correct qualitative behavior. 
Because the effects of the shed wake should vanish in 
steady state for the 2D case, we must have H2(s)--> 0 
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Figure 1: Block Diagram of Unsteady Vortex Theory 
for Finite Fixed Wing 

H1(s) H2(s) Ha(s) 

r1s + 1 r2s 1 
'r311'+1 

Table 1: Approximations to Aerodynamic Transfer 
Functions 

as s --> 0. In addition, the 2D closed-loop response of 
r to a, should roughly appear as a first-order system. 
Thus, we may take H2(s) ""r2s, and, because the 2D 
unsteadiness is governed by the convection of the shed 
vorticity, we expect the value of r2 to scale with c. In 
steady state, the relationship between circulation and 
lift must approach the well-known Kutta-J oukowski 
theorem, implying that H 1 ( s) -> 1 as s --> 0. Also, 
H 1 must introduce a lead in the lift for non-zero fre
quencies. Thus, we take H 1 ~ r1 s + 1, and from 
the more detailed theories we expect the value of Tt 

to be about ! the value of r 2 • Finally,_the 3D feed
back dynamics may be represented as a simple first
order lag, corresponding to the delayed buildup of the 
finite-wing induced velocities as the trailing vortices 
convect downstream. We take Ha(s)"" 1j(r3s + 1), 
and expect that r3 will be on the order of 1 (since the 
convection time of the trailing vortices should scale 
with wing span and the inverse of freestream speed). 
These relationships are summarized in Table 1. 

The block diagram of Figure 1 can be rearranged to 
allow a more conventional interpretation, commonlY 
referred to as the momentum (actuator disc) the
ory, as shown in Figure 2. From this point of view, 
the lift is directly responsible for the generation of 
the three-dimensional downwash, represented by the 
feedback block, and there is an unsteady relationship 
between the effective 2D angle of attack, a 0 , and the 
lift. Provided the appropriate transfer functions are 
used in each of these separate blocks, the momen-
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Figure 2: Block Diagram of Actuator Disc (Momen
tum) Theory for Finite Fixed Wing 

tum perspective is exactly equivalent to the vortex 
theory. Note, though, that dynamic inflow is clearly 
phenomenologically distinct from the unsteady rela
tionship between angle of attack and lift. 

Using the foregoing approximate expressions, the 
complete transfer function from geometric angle of 
attack to lift is given by 

2L (T,s + 1)(r,s + 1) 
aaa 

(1) 

with the corresponding time response of lift to a step 
input in cr. a shown in Figure 3. The response is char
acterized by an initial jump equal to ~ of the 2D 
steady value, followed by a rapid increase, due to the 
dynamics of the 2D shed vorticity, and finally by a 
relatively slow decay, due to the dynamics of the 3D 
trailing vorticity. In light of the fact that r, (and 
also rl) are much less than T3 1 by approximately a 
factor of c, which is about one order of magnitude for 
typical aspect ratios, the theory is often simplified by 
setting 7\ and r2 identically to zero. In this case, the 
forward block in Figure 2 becomes a static relation
ship ("quasi-steady strip theory") and the feedback 
block becomes the usual first-order dynamic inflow 
("unsteady momentum") theory. This approxima
tion, which is very widely used in flight dynamics, 
yields a step response as shown in Figure 3. Thus, 
we see that the usual model is in fact a low~frequency 
approximation which captures the dominant dynam
ics of the lift response, neglecting only a small lag in 
the response due to 2D shed wake effects. 

Although the incompressible theory applied to a 
typical rotor blade suggests that r 2 will be quite 
small, there is evidence (7, 8] that r 2 increases with 
Mach number. In that case, the 2D shed wake ef
fects may introduce enough of a time lag in the lift 
response to be relevant in rotorcraft flight dynamics 
analyses. See (1] for evidence that such a lag seems to 
be present in the off-axis response of recent flight test 
data. Appropriate modelling ofthe 2D time-lag effect 
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Figure 3: Time Response of Lift to Step Increase In 
Geometric Angle of Attack (Nt = 8). Solid = Com
plete Theory; Dashed = Neglecting 2D Unsteadiness 

for flight dynamics applications is being investigated 
further. 

Having justified the conceptual division of aerody
namic modelling into the distinct problems of calcu
lating unsteady loads and induced velocity, we now 
turn attention to a detailed examination of the cur
rent state-of-the-art of the latter. 

4 Dynamic Inflow Modelling 

This section presents a brief survey a£. the develop
ments in theory and applications which ultimately 
led to the most widely used dynamic inflow model, 
originally reported in [9], hereafter referred to as "the 
Pitt model." The review is not intended to be com
prehensive, nor are we especially concerned here with 
the historical context, but rather attempt a pointed, 
critical examination of the theoretical basis of the 
current inflow theories. Historical information and 
additional comparisons to test data are in {10), froll). 
which selected conclusions wm be drawn. 

4.1 Inflow Terminology 

As defined in Section 1, all quantities here follow [11, 
Appendix I], except that all dimensional quantities 
have been normalized on OR. In particular, note the 
sign convention for the disc angle of attack, a:, and 
the definition of the inflow ratio, ). ~ V sin a - Vo· 
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Much of the theory to follow relies on the notion 
of the "rotor disc," a concept which is seldom pre
cisely defined. A consistent choice for the rotor disc 
is the tip-path plane, because the behavior of a cen
trally hinged, fully articulated rotor is invariant un
der changes in tip-path plane tilt in hover [12]. The 
plane normal to the shaft is an improper choice. 

N ole that the algebraic complexity of coupling in
flow variations to the equations for the blade motion 
is greatly reduced if the inflow is assumed to be nor
mal to the local blade span, rather than normal to the 
tip-path plane. (This simplification does not alter the 
aforementioned in variance.) 

4.2 Shaft-Fixed Results 

Most of the analytical work concerning the flow in
duced by a rotor producing aerodynamic forces and 
moments presumes the rotor to be in a steady transla
tional flight condition, which is analogous to a shaft
fixed rotor operating in a wind tunnel. These analy
ses are conveniently grouped into the axial and non
axial flight cases. 

4.2.1 Axial Flight: Theory 

For a rotor in axial flight, it is possible to perform 
a convincing analysis based on a control volume for
mulation, with the axisymmetry of the wake allowing 
either of 2 well-defined control volumes to be chosen 
(see [13, 14]). The resulting equations can be put in 
the following form 1 

The first term represents the acceleration (angular 
acceleration for the harmonics) of the fluid within the 
control volume. The numerical values of the added 
mass matrix, [ M], cannot be evaluated by the control 
volume formulation; typically, the added mass values 
for an impermeable disc are used: 

[ 

8 
3~ 

[M] = ~ 
0 
16 

- 4511'" 

0 
(3) 

While these values are an appropriate linearization 
for the case of a non-lifting, hovering rotor, ((the 
analogy with the accelerating impermeable disc is 
not strictly valid after a slipstream has formed" [15]. 
Nevertheless, a credible adjustment of the mass terms 

1 Note that this equation is nonlinear if fJJ depends on Vo. 

in the presence of the slipstream has yet to be pro
posed. (The 1'corrected" mass matrix presented in [9) 
is also based on a linearization for zero lift in hover, 
but with a different pressure distribution than the 
impermeable disc.) 

The second term in Equation (2) accounts for the 
flux of momentum (and angular momentum) across 
the boundaries of the control volume, with [J] given 
by: 

[J] = Vmau [ ~ 
0 
N -., 

0 
(4) 

where Vmau = -.A in axial flight. The wake rigidity 
factor, N, has a value between 1 (rigid wake) and 2 
(non-rigid wake). The "rigidity" of the wake actually 
depends on whether the harmonics are included in 
expressing the mass flow through the disc. It should 
be noted that the multiplier of N (! in Equation 
(4)) depends on the assumed radial distribution of 
the harmonic inflow (here linear), so it is perhaps 
best to regard N as a parameter whose precise value 
is to be established by experiments or more elaborate 
analyses. 

The terms on the right-hand side of Equation (2), 
representing the thrust and aerodynamic moments 
generated by the rotor, couple the inflow equations 
to a particular application through the modelling of 
the rotor aerodynamic loads. 

4.2.2 Axial Flight: Applications 

In hover, steady uniform inflow reduces the thrust 
produced by application of collective pitch. In the 
dynamic case, for example following a step input in 
collective, the time delay in the build up of the inflow 
causes a delay in this thrust reduction, resulting in an 
overshoot of thrust relative to the steacJy value (see 
the dashed line in Figure 3). In addition, it can be 
shown that unsteady uniform inflow generally reduces 
both the natural frequency and the damping ratio 
of the collective flapping mode, by amounts which 
depend on the disc loading of the rotor. 

An early evaluation of the influence of unsteady 
uniform inflow is presented in [15], which includes 
a concise theoretical exposition and measured values 
of collective flapping, thrust, and induced velocity in 
response to a variety of rapid collective pitch inputs. 
While the predicted flapping and thrust show gener
ally very good agreement, the predicted response of 
the inflow to the sudden loading is faster than the 
measured response. Because the paper presents only 
the ratio of the inflow to its steady value, it is not 
possible to precisely identify the source of the dis
crepancy, although it suggests that the added mass 
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term is too small. Note also that [15] includes £,;, . v. . 3 0 
m rna.u, under the assumptiOn that the rotor disc is 
attached to the blades at the ~-radius point. The con
sequences of this assumption are a further decrease 
of about five percent in the collective flap natural fre
quency and damping ratio. These small changes are 
not clearly observable in the data, so the validity of 
this assumption remains unsubstantiated. 

The effects of steady harmonic inflow components 
!n axial fli_gh: were examined analytically in [16]. The 
mflow vanatwns alter the flapping response to control 
in.puts, with the m~gnitude of the change increasing 
w1th the first flappmg frequency (there is no change 
for a centrally hinged rotor). The effects can be rep
resented by~ modified (or ''reduced") Lock number, 
so that the p1tch and roll damping of the rotor would 
also be expected to change. Comparisons between 
the theory and test data for a rigid propeller in hover 
at several thrust levels clearly demonstrate the im
portance of the harmonic inflow variations and the 
ability of the static momentum theory, with N = 2, 
to account for the effects. 

Finally, we consider experimental evaluation of the 
added mass terms for the harrllonic inflow in axial 
flight. A series of papers [17, 18, 19, 20] provides con
vincing evidence for the importance of these terms. 
Parameter identification was used to match the mea
sured response of blade flapping to unsteady pitch in
puts with the calculations, which included dynamic 
harmonic inflow in the form of Equation (2). The 
identified parameters corresponded to the added mass 
and the wake rigidity factor in the present formula
tion. The clearest exposition, including precise def
initions of the notation, is given in [19], where the 
identified values are shown to be in close agreement 
to the t~eoretical values2

• In particular, the added 
mass matrix is well represented by Equation (3) and 
the wake rigidity factor is shown to be about N = 2. 

4.2.3 Non-Axial Flight: Theory 

Whe_n the rotor is in n?n-axial flight, it is no longer 
possible to define a satisfactory control volume, and 
the preceeding momentum analysis is difficult to ex
tend in a comparably rigorous fashion. Qualitatively, 
we may expect the equations to have the same form 
with the mass flow governed by V in high-speed for~ 
ward flight. Based on this notion, Glauert proposed 

2 The identified values ccrrespond closely to the theoretical 
values only when the measured values of v 0 are used. Steady 
momentum theory overpredicts v 0 (given in Table 3 of the ref
erence) by about a factor of two, probably due to the proximity 
of the rotor to the ground. It is therefore somewhat less than 
completely satisfying that the momentum theory applies with
out a ground-effect correction in the dynamic case. 

that mass flow in an arbitrary flight condition be cal
culated using 

Va = VJi.z + ;.z (5) 

Alth~ugh thi~ expression cannot be rigorously justi
fied, 1t does g1ve the correct limiting values including 
consistency with the vortex theory for the ~elocity in
duced by a non-rotating wing. Therefore Equation 
(2), with Vmau in Equation (4) replaced' by Va, is 
w1dely referred to as ccmomentum theory" a label 
which we will maintain. Note that the wake will be
come "rigid" (N = 1) in forward flight, as the mass 
flux is nearly independent of the induced velocity. 

Of course, the effects of forward flight are not con
fined to changes in the mass flux through the rotor. 
There is also the well-known non-uniformity in the 
~ore-aft distribution of inflow (i.e. non-zero vc), even 
m the absense of an aerodynamic pitching moment. 
The effect can be expressed in either of the following 
two forms: 

(6) 

(7) 

The former expression is typically favored whenever 
the effect is calculated using a vortex theory while 
the latter expression results from the actuator disc 
(linearized potential theory) point of view. Provided 
the flight speed is high enough that Va "" V and 
the momentum expression for v 0 is used, these two 
representations are equivalent and it remains only to 
consider the theories for J( c. 

Many such theories have been proposed, with a 
summary [10] shown in Table 2. The simplest and 
most well-known of these, due to Coleman et al., is 
based on a linear geometric skewing of a constant
strength vortex tube wake, giving 

K, =tan:>;: 
2 

(8) 

A more credible calculation was performed by Man
gler and Squire [21]. By linearizing the incompress
ible Euler equations in high-speed steady flight, they 
obtained Laplace's equation for the pressure field 
which they solved using the Kinner functions to es~ 
tablish a specified distribution of pressure difference 
across the disc. Mangler and Squire considered a 
pressure distribution which results in thrust only (no 
moments). The perturbations in fluid velocity were 
calculated by integration of the pressure gradient 
along lines which are parallel to the freest ream. The 
result 7 which they carefully and correctly stated ap
plies only for lightly loaded rotors (CT/V2 «: 1), is: 

K _ 157r 1 + sin a 
c - 32 1- sin a 

(9) 
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AUTHOR I 
X 0 

Coleman tan~ 1/2 = 0.500 

Drees i tan X 
3 2 2/3 = 0.667 

Payne t tanx 
10/9 = 1.111 %+tanx 

Blake v'2sinx v'2 = 1.414 

Pitt 15'11" tan X 
32 2 15·n"/64 = 0. 736 

Howlett • 2 
sm X 0 

I AVERAGE I N/A 0.738 

Table 2: Models for First Harmonic Inflow Due to 
Wake Skewing (Following Table 2 in [10]. Drees de
pendence on 11- omitted for simplicity.) 

It must be emphasized that a is the disc angle of 
attack. 

The Pitt model, as originally reported [9], was a di
rect extension of the Mangler-Squire result to incor
porate pressure distributions which give rise to pitch 
and roll moments. The result rnay be expressed in the 
same form as the momentum theory, with Equation 
( 4) replaced in high-speed flight by 

[J] = (10) 

0 
sin c:r-1 --.-

0 

where '"(; E3 15?r /64. Note that the Pitt model is lin
ear in both the inflow velocities and the thrust and 
moments. 

Subsequent modifications of the original Pitt model 
amounted more or less to the incorporation of two 
observations, both of which were contemplated in the 
original paper [9, page 33]. First, since X = 90' +a in 
forward flight, it is possible to rewrite Equation (10) 
as 

expression, a univeral theory (applicable from hover 
through high speed flight at arbitrary disc angle) re
sults. 

For a rotor generating only thrust, the third row of 
the [J] matrix given by Equation (11) is equivalent3 

to Equation (7) with 

X 
Kc = 2·n tan 2 (12) 

Thus, the modified Pitt model recovers the functional 
form of Coleman et al. for the relationship between 
K, and X· (It will be convenient for further compar
isons to define Kc as the value of Kc at X = 90°; 
Coleman has K, = 1, while the modified Pitt model 
has Kc = 2-y; = 1.47.) 

It should be noted that while the replacement of 
the disc angle with the wake skew angle is perfectly 
acceptable at high speed, extension of the functional 
form of [J] to near-hover flight conditions based on 
this substitution does not carry with it the analyti
cal rigor of the original Pitt model. Furthermore, the 
complicated mass-flow parameter is, like the Glauert 
value, essentially a conjecture which satisfies the lim
iting conditions. Therefore, both of these changes 
must be validated through the demonstration of im
proved correlation with experimental data. 

4.2.4 Non-Axial Flight: Applications 

The first issue to be considered is the prediction of 
the uniform portion of the induced velocity using mo
mentum theory with the Glauert mass flow parame
ter. Based on the data summarized in [10], the theory 
seems to be reasonably good at low forward speeds 
( CT /V2 2: 2), but becomes quite poor at advance ra
tios exceeding about 0.2 (see, e.g., Fi,ggres 13 and 34 
and Table 4 in [10]). 

The consequences of the steady cosine harmonic 
inflow due to thrust have been known for some time, 
and were substantiated with the well documented 
measurements reported in [22). Because the rotor re
sponds approximately 90-degrees out-of-phase to the 
aerodynamic inputs, th(;! fore-aft variation in induced 
velocity causes a pronounced change in the lateral 
flapping. The theory focuses our efforts to quantify 
this effect on functional form of the relationship be-

[J]= 
0 

-(1+cosx) 
4 

0 

tween Kc and the wake skew angle, X· Unfortunately, 
(11) there is very little information in the literature which 

-,~_ +~(:Y,1''-'_'!!i~~f'-,0-,- ] allows firm conclusions to be drawn, largely because 
r, ;· x of the very rapid increase in the wake skew angle with 

-(l+cosx)/2 advance ratio for rotors with typical disc loading [23]. 
~~+(2-rf) cosx For example, of all the data summarized in [10], the 

Second, if V in the Pitt calculations is replaced by a 
general mass flow parameter, similar to the G lauert 

smallest non-zero wake skew angle is 61 degrees, and 

3 sinx/(1 + cosx)::::: tanx/2 
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this occurs at an advance ratio of only 0.067! There
fore, using these data to evaluate the proposed func
tional forms of Kc given in Table 2 is not realistically 
possible. Indeed, the evaluation in [10], based on an 
overall impression from the data, suggests only that 
the Coleman value of K, is too small by a factor of 
about 2, implying that the Pitt value is too small by 
about 36 percent. 

Similar difficulties hinder verification of the com
plex functional forms of the elements of the [J] ma
trix in the modified Pitt model. The most well known 
validation [24] includes comparisons to forward flight 
data for a wake skew angle of 90 degrees only. (All of 
the data are for an unlifting rotor at zero disc angle.) 
Therefore, the comparisons provide no validation of 
the modifications to the original Pitt model. Never
theless, the data do enable a comparison of the quite 
different structures of the original Pitt and momen
tum [J] matrices for edgewise flow (EF): 

0 
1 -:;: 

0 

0 
N -., 

0 

.l. ] 
,, 
0 

-,~l 
(13) 

-~~] (14) 

Because of the known importance of the fore-aft in
flow variation for a thrusting rotor, which is not in
cluded in the momentum theory, a third theory of 
interest, which we will refer to as the modified mo
mentum theory, replaces the (3,1) element of the 
[J]EF=o= matrix with K,N/2, using K, = 2, as sug
gested by [10]. 

With these three inflow models, the comparisons 
with test data presented in [24] are revisited here. 
The complete 9-state dynamic model used for the cal
culations is detailed in the Appendix. Comparisons 
are presented only for those cases where the most sig
nificant differences between the momentum and Pitt 
models are evidenced, namely selected static roll mo
ment control derivatives and the frequency response 
of roll moment to collective pitch [24, Figures 9 and 
12]. The main objective is to establish the extent to 
which shortcomings in the momentum theory are due 
to the omission of the wake skewing effect. 

Shown in Figure 4 is a comparison of the predicted 
and measured values of a(~~(au) presented as a func
tion of advance ratio. From basic notions of lifting 
rotor response to forward speed, one generally ex
pects the rotor to flap back and to the right, so that 
the rolling moment would be expected to be posi
tive and increasing with f.J.· However, the large flap
ping frequency (1.17) and low Lock number (4.2) of 
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Figure 4: Steady Roll Moment Response to Collective 
Pitch Inputs, after Figure 9a in [24]. Solid Line = 
Momentum; Dashed Line = Pitt; Dot-Dashed Line= 
Modified Momentum. 'Y = 4.2, K~ = 0.369, 1-' = 0.36, 
acr = 0.79. 

this rotor significantly reduce from 90° the phase dif
ference between applied moments and rotor flap re
sponse. Thus, the nominal lateral response to collec
tive pitch, predicted with momentum theory, is flap
ping to the left, with a resulting negative rolling mo
ment. Given the well known dependence of lateral 
flapping on Vc, it is not surprising that momentum 
theory alone (k, = 0) shows poor correlation with 
the data. That the Pitt model shows slightly better 
agreement with the data than the modified momen
tum theory, despite the fact that the Pitt value of 
Kc is only 1.47, is the result of the structure of the 
Pitt [J] matrix. In the momentum theory with wake 
skewing, the pitching moment which accompanies the 
longitudinal flapping in forward flight reduces the co
sine inflow harmonic substantially, resulting in the 
need for a much larger value of Kc to match the flight 
data. The Pitt model, on the other hand, predicts 
that aerodynamic pitching moments affect only the 
uniform inflow, so that the cosine inflow due to thrust 
is not reduced. Although this conclusion is based only 
on a simple calculation and comparison to only one 
data set, it seems that previous conclusions about the 
magnitude of the wake skewing effect (i.e. the value 
of Kc) may need to be revised if they were based on 
calculations performed with momentum theory. 

Figure 5 shows the comparisons of a(CLfao) 
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Figure 5: Steady Roll Moment Response to Longi
tudinal Cyclic Pitch Inputs, after Figure 9b in (24]. 
Legend and Numerical Values as in Figure 4 

Though none of the models is adequate, the Pitt 
model fares best, with only a small part of the differ
ence between Pitt and momentum being attributable 
to the wake skewing effect. 

Finally, we turn attention to the dynamic case 
in forward flight, represented by the frequency 
response4 shown in Figure 6 for an advance ratio of 
0.36, which is representative of the data at other ad
vance ratios (24, Figures 11, 13]. The momentum the
ory correlates quite poorly with the data. Except for 
small differences in magnitude for frequencies below 
0.1 per rev, the Pitt and modified momentum models 
are quite similar and correlate reasonably well with 
the test data (though the log scaling makes the errors 
appear smaller than they are). 

Mathematically, the effect of wake skewing appears 
as a change in the location of the zeros associated 
with the progressing cyclic flap mode. The Laplace 
transforms of the cyclic flapping equations with only 
collective pitch inputs are 

(15) 

4 The traditional logarithmic scaling employed here reveals 
the differences between the theories and the data quite starkly. 
The correlation between the Pitt model and the data here ap~ 
pears somewhat better than in (24, Figure 12]; see the Ap~ 
pendix for a possible explanation. 
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Figure 6: Frequency Response of Roll Moment to 
Collective Pitch Inputs ( a<c;,';/oau)) after Figure 12 in 

[24]. Legend as in Figure 4. 'Y = 4.25, Kp = 0.3225, 
f.'= 0.36, a<J = 0.79. 

-(2s + 2r3 - 2f.'2 r,)a1 , + (s2 + 2r3 s + Kp)h, = 
2 8 2 

- I''Yr219, + ~f.'r,v, + ~r3v, (16) 

The quantities on the right-hand side may be approx
imated by their quasi-static values (i.e. expressed 
in terms of al.'!, blJ, and their time derivatives, and 
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19,). In high-speed flight, the locations of the flapping 
poles are found to change only slightly due to these 
substitutions, so that a reasonable approximation to 
the transfer function is obtained by simply replacing 
the right-hand sides of Equations {15, 16) with 1<,19, 
and K.ISiJc" respectively, where ~'i.e and K.s are constants. 
The zeros in the lateral flapping response to collective 
are thus somewhat naively approximated by 

The value of K.s is generally negative, due mostly to 
the direct appearance of 19, in Equation {16). The 
value of Kc is generally positive due to the positive 
response of coning angle to collective pitch; it is made 
significantly more positive by the cosine- inflow if the 
wake skewing effect is included in the calculation. A 
sketch of the variation of the zero locations as K.c in
creases is shown in Figure 7. For rotor parameters 
corresponding to the data of Figure 6, it turns out 
that the value of K.c due to coning (tJ.Lr2a 0 in Equa
tion {15)) places the zeros almost exactly on the imag
inary axis (solid circles in Figure 7). Addition of the 
wake skewing {~r3v, in Equation {15)) increases "'" 
moving the zeros well into the right-half plane (open 
circles in Figure 7). Therefore, the momentum theory 
shows a near zeroing of the roll moment response at 
a frequency of about 0.5 per-rev, while the theories 
which include the wake skewing (both modified mo
mentum and Pitt) show a smoother variation in the 
magnitude. Note that the phase curves are quite sen
sitive to the precise location of the zeros with respect 
to the imaginary axis; calculations in [24] place the 
zeros of the momentum model just barely in the left
half plane, causing a misleading change in the shape 
of the phase curve. 

4.3 Coupled Inflow-Rotor-Body Dy
namics 

The ultimate motivation for considering dynamic in
flow for flight dynamics applications is the potential 
impact it has on the prediction of fuselage response 
to control inputs. The most direct approach for com
puting these effects is to increase the number of dy
namic states to accomodate the inflow equations in 
the form of Equation {2), with the [J] matrix, taken 
either from the momentum theory or the Pitt model, 
evaluated in trim. The calculation of rotor loads must 
also be modified to reflect the presense of the non
constant induced velocity. We will begin with a dis
cussion of results based on this direct approach and 
then describe some more recent results using a differ
ent implementation. 

Im(s) 

X 
2?g. (s) 

X 

Figure 7: Approximate Variation in Lateral Flapping 
to Collective Pitch Zero Locations with 1<,. Solid Cir
cle = Momentum; Open Circle = Modified Momen
tum; x = Regressing Flap Poles. 

4.3.1 Some Fundamental Results 

The effects of unsteady uniform inflow on the verti
cal acceleration response to collective pitch inputs in 
hover were examined in [25]. The thrust overshoot 
observed in the shaft-fixed experiments [15] becomes 
a vertical acceleration overshoot in free flight. The 
overshoot is not predicted by either the quasi-steady 
inflow or the no-inflow models, but is well described 
by the momentum theory. 

Concerning the importance of dynamic harmonic 
inflow, [12] presents a simple 3-degree of freedom 
model for the coupled dynamics of the inflow, ro
tor and fuselage. The results indicate that the in
flow time response is of increased importance for stiff 
rotors (i.e. large equivalent hinge offset). This is con
sistent with the increased coupling between the rotor 
and body modes which results from the higher con
trol power of a stiff rotor. The paper also shows that 
models which include flapping dynamics must also 
include inflow dynamics to obtain a consistent repre:. 
sentation, although no flight test data are available to 
firmly establish the correct time constants. Concern
ing the value of the wake rigidity factor, [12] shows 
that it can significantly impact the time response, 
and [26] finds improved correlation with flight data 
for N = 1 {rigid wake). 

There is a conspicous lack of fundamental investi
gations concerning the effects of dynamic inflow on 
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control response in forward flight. The effects are 15 ,---~---~-----------, 
generally expected to diminish as forward speed in-
creases, but no definitive conclusions are available. 

4.3.2 Wake Distortion Effects 

Incorporating dynamic inflow, the theory for which 
is based on a steady, translational flight condition, 
into a flight dynamics model warrants closer atten
tion. If Equation (2) is properly linearized, considera
tion must be given to perturbations in the [J] matrix. 
The nature of these [J] perturbation terms can be 
seen by considering the wake skewing effect in near
hovering flight, where the wake skew angle will be 
small (X"" uhjv,), and the effect can be represented 
as 

(18) 

Similarly, -vh leads to vJ. More generally) with an 
arbitrary functional form for Kc, we have 

(19) 

The conclusion of Section 4.2.4 was that the func
tional form of Kc is only very poorly known 1 with 
considerable uncertainty surrounding even the value 
of K,. Indeed, the difficulty of assigning a meaningful 
value to dKcfdx can be seen in Table 2, where each 
of the six theories for calculating Kc gives a different 
value of the derivative, ranging from identically zero 
to 1.41, with a mean value of 0. 738 and a standard 
deviation of 0.45. Based on this uncertainty, it is per
haps best to consider alternative means of including 
these terms in the inflow equations. 

Recently, a prescribed vortex wake calculation was 
used to show that there are additional wake distortion 
terms due to hub pitch and roll rates [27]. These 
effects are large in hover but rapidly diminish with 
forward speed. The momentum formulation of the 
harmonic inflow equations in hover can be rewritten 
(((extended momentum theory") to explicitly include 
all the distortion terms: 

2 . 
TV,+ v .• = --N CL- KTVh + KR(P- b,) (21) 

v, 

where T = 45:'fvv" and the values of KT and KR are 
of order unity in hover. 

Figure 8 and Figure 9 show comparisons with flight 
test data of the on- and off-axis responses, respec
tively, of body rate to lateral cyclic pitch for the 
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Figure 8: Effect of KT and KR on Body Roll Rate 
Response to Lateral Cyclic Inputs (On-Axis); Solid 
Line = Flight Data; Dotted Line = Momentum The
ory; Dot-Dashed Line = Momentum + Translation; 
Dashed Line = Momentum + Translation + Rota
tion (Extended Momentum Theory). KT = 15,./64, 
KR = 2.3 (best fit to data). 

UH-60 in hover, predicted with the momentum the
ory, Equation (2), and with the extended momentum 
theory, Equations (20, 21). The wake distortion ef
fects have only a small impact on the (already well
predicted) on-axis response, but they have a dramatic 
impact on the off-axis response, with incremental im
provements offered by both the translational and ro
tational effects. Note that only by including the rota
tional effects (KR) is it possible to obtain the correct 
initial (high frequency) off-axis response. 

That the value of KR giving the best match to the 
test data is much larger than the theoretical value is 
consistent with other studies [1]; additional research 
is being performed to p•·ovide a more rigorous an
alytical foundation for the calculation of the wake 
distortion parameters, KT and KR. The main con
clusion to be drawn from the simple analysis is that 
the parameters are of order unity and that the effects 
of wake distortion have a pronounced impact on the 
off-axis control response. 

The wake distortion effects due to shaft translation 
and rate cannot be recovered in a simple way from 
the Pitt model. The attempt in [28] to present a non
linear version of the Pitt theory incorporating shaft 
motion effects has several deficiencies. The claim 
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that the Pitt model formally applies in wind axes 
is not correct for unsteady flight conditions. Con
sider for example a rotor in forward flight generating 
only thrust. The steady inflow in this case would 
consist of uniform and cosine harmonic components. 
Suppose the rotor shaft were acted on by an impul
sive force, instantaneously changing its direction of 
motion by 90 degrees {i.e. to sideslip at the same 
speed) in the shaft frame of reference. From the wind 
axis perspective, there has been no change, so the 
wind-axis inflow components would be unchanged. 
Therefore, in the shaft azimuth, the cosine harmonic 
would instantaneously vanish while the sine harmonic 
would instantaneously acquire a steady value. This 
is clearly not the expected physical response, which 
would more realistically be represented by a first
order time constant5 • From a more practical point of 
view, their generalization of the Pitt model fails be
cause the angle between the shaft axes and the wind 
axes (their ~ angle) is not defined in hover, making 
the perturbation formulation in terms of changes to 
this angle inherently ill-posed for the flight condition 
where these effects are most important. 

0Derivations in [28] actually do introduce a first-order time 
lag in the response to changes in wind direction by omitting 
the [T] term in their Equation (23). An attempt to incorpo
rate the Pitt model in a nonlinear simulation using wind axes 
(without the analytical omission of the [i'] term) showed unre
alistic and rapid changes to the shaft-azimuth harmonic inflow 
components due to shaft velocities [29]. 

5 Vortex Theories and Har
monic Loading 

This section considers the relationship between the 
vortex and actuator disc (momentum) theories in the 
case of first harmonic loading. 

Considering the hovering case, the aerodynamic 
roll and pitch moments on the rotor can be found 
from blade element theory: 

= 

{22) 

{23) 

where ( )q., is used to denote the 11quasi-steady" mo
ments which depend only on the geometric angle of 
attack of the blade and the flapping motion {inde
pendent of the induced velocity). To complete the 
analysis, it is necessary to relate the induced veloc
ity components to the blade loading, which can be 
done using the actuator disc {momentum) theory of 
Equation {2). The result can be used to define the 
steady-state lift deficiency function 

{24) 

If a and N are respectively chosen as 27r and 1, this re
sult is equivalent to the zero-reduced-frequency limit 
of the Loewy lift deficiency function since the forcing 
frequency is equal to the rotor rotation rate (30, 9]. 
This agreement is somewhat remarkable in light of 
the fact that the Loewy result is based on a two
dimensional vortex theory while the actuator disc re
sult follows from a three-dimensional analysis. 

This unexpected agreement betweetrthe two dis
tinct approaches can be clarified by examining the 
work of Miller (31] who treated this problem using 
a three-dimensional vortex model. Considering the 
case of first harmonic blade loading (i.e. bound blade 
circulation is a first harmonic in blade azimuth), the 
induced velocity at the rotor was computed by inte
grating both shed and trailing wake vorticity compo
nents, where the shed wake was properly truncated to 
account for finite blade radius. The bound circulation 
is also directly related to the blade aerodynamic load
ing, giving a complete theory. In the limit of a rotor 
with infinitely many blades, which is analogous to the 
actuator disk assumption, the resulting lift deficiency 
function is identically equal to that given by Equation 
(24). Thus, the contribution of the trailing vortices 
is equal and opposite to the change brought about 
by truncating the shed vorticity, so that Loewy's 2D 
theory gives the correct result. 
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In Miller's original analysis, the vorticity is con
vected downstream at the mean induced velocity 
(rigid wake), so that N = 1; it can be shown that the 
effect of including harmonic inflow terms in the vor
ticity convection (non-rigid wake) results in N = 2. 
Although the analysis assumed that the circulation 
was independent of radius, it can also be shown that 
a radial variation in bound circulation will only affect 
the induced velocity distribution but will not change 
the resulting lift deficiency function. 

The equivalence of the steady three·dimensional 
vortex theory and the steady actuator-disc (momen
tum) theory gives credence to the extended momen
tum formulation discussed in Section 4.3.2. Although 
the wake distortion effects were calculated with a 
simple vortex theory, it is reasonable to suppose, in 
light of the present discussion, that these effects may 
properly be superimposed with the usual dynamic 
inflow calculations. Conceptually, we observe that 
unsteady momentum theory computes the induced 
velocity due to azimuthal variations in blade circula
tion with the shaft fixed, while the wake distortion 
vortex theory computes the induced velocity varia
tion resulting from constant circulation but allowing 
tip-path plane translation and rotation. Therefore, 
extended momentum theory, which directly superim
poses these two effects, can be viewed as a linearized, 
physical wake model for a rotorcraft in flight. 

It should be noted that this section has considered 
only the steady response to harmonic loading. Based 
on the results of Section 3, we expect that there may 
be additional effects resulting from the unsteady rela
tionship between local angle of attack and local blade 
lift. Most notably a lag in the response of the blade 
lift may result in a phase lag in the response of the ro
tor which cannot be obtained with the usual dynamic 
inflow theOry which produces a lead in the rotor re
sponse. As discussed above, an adequate representa
tion of these effects for the harmonic loading case is 
under investigation. 

6 Conclusions 

• A complete unstea.dy vortex theory was shown to 
be equivalent to a combination of unsteady blade 
element theory and unsteady actuator disc ( mo
mentum) theory. Most flight-dynamics applica
tions employ quasi-static blade element theory 
and dynamic inflow theory, which was shown to 
be equivalent to neglecting the high-frequency 
dynamics of the 2D shed vorticity. This low
frequency approximation may need to be reex
amined in light of evidence which suggests the 

neglected effects are of greater importance at 
high Mach number. 

• The original Pitt model is better able to pre
dict the control response of an isolated rotor in 
an edgewise flight condition than the momen
tum theory. Addition of the wake skewing (Cole
man) effect to the momentum theory improves 
the predictions, but, based on a limited compar
ison with test data, does not appear to render 
them as accurate as the Pitt model. 

o Wake distortion terms due to hub velocity and 
angular rate have a significant impact on the 
prediction of off-axis response of body rate to 
cyclic inputs in near-hover flight conditions. The 
Pitt model cannot he readily modified to include 
these effects. 

• The values of the constants used to represent 
wake distortion effects in the extended momen
tum theory are not well known either in theory 
or from test data. More research is necessary. 

o The extended momentum formulation is further 
justified in light of the equivalence of vortex and 
momentum theories for predicting the steady ro
tor response to first harmonic loading. 
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?~-tr2 -11:~ 0 "' -,-(r, + 4 rl) 0 -ira -2 0 0 ir3 
0 i(ra- f.rt) -K~ !1-1r2 2 -iTa ~llr1 ~.r3 0 

0 0 0 - a.2ur2 0 a.:J.Lr1 - e.;r1- J1,1 -at llrl - lt,2 -11,3 

' 0 "'t(ra- .!frt) 0 a.
4
u J...tr2 0 -

4,.""ra a.4t;T J.Lr1 - J2,1 a::r3 -:- J2,2 -J2,3 

a.; J.J.r2 0 -~-(ra + ~rt) 0 _a..;ra 0 -13,1 -13,2 a..;ra- Ja,a 

Table 3: Flapping-Inflow Dynamic Model [F] Matrix. 

0 0 0 

0 0 0 

0 0 0 

' ~(r, + !fr,) 0 iJLf2 
' 0 -?(r, + 'fr,) 0 

--yl'r, 0 3 ' -~(r, + "'fr,) 
' a.;cr2 + 1fro) 0 a.2u JLf 1 

- a.2a J-Lf2 0 -a.: era+ ¥rt) 
' 0 - •;(r, + ifr,) 0 

Table 4: Flapping-Inflow Dynamic Model [GJ Matrix. 

Appendix Rotor Model 

The model used in the main text to describe the 
shaft-fixed coupled flapping-inflow dynamics is based 
on a centrally hinged, spring-restrained, untwisted 
rigid blade assumption, and is linearized about the 
non-lifting forward flight condition. The form of the 
model is 

[DJ:i:= [F]x+[G]u (25) 

where x is 

[ ao a1, b111 Q 0 Ul,s b!J Vo V 11 Vc }T 

(26) 
and u is 

(27) 

The matrices are given in Table 3, Table 4, and 
Table 5. The aerodynamic integrals in the equations 
are defined by 

(28) 

Note that tbe assumption of centrally hinged blades 
(no kinematic hinge offset) will cause the flap damp
ing to be incorrect. This is a possible source of small 

differences between the present model predictions and 
those of [24]. 

For a centrally hinged, spring-restrained rotor, the 
normalized hub moment coefficients are expressed 
simply in terms of the cyclic flapping: 

CL =-Kpb1, 
au 21' 

(29) 

eM Kp --=--a,. 
au 21' 

(30) 

Table 5: Flapping-Inflow Dynamic Model [D] Matrix. 
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