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FOR THE AERODYNAMIC ANALYSIS OF 

PARALLEL BLADE-VORTEX INTERACTIONS OVER AEROFOILS 

ABSTRACT 

A. Visingardi 

CIRA, Centro Italiano Ricerche Aerospaziali 
81043 Capua, Italy 

A boundary integral formulation for the analysis of the non-impinging parallel BVI problem 
over aerofoils 1 for both incompressible and subsonic compressible fiows, is described and validated in 
the present paper. In the incompressible analysis the formulation is compared to a Discrete Vortex 
Method. The results obtained by the compressible analysis are compared with those obtained by 
Euler, Thin-Layer N.S. and the ATRAN2 T.S.D. codes. There is generally a satisfactory agreement 
between the present method and the others. 

1. INTRODUCTION 

Blade-vortex interactions (BVI) occur in helicopter rotors when a rotor blade passes in the 
vicinity or through a tip vortex trailing from the same or the preceding blade. Depending on the 
flight conditions, these interactions determine a strong variation in the loading that can be confined 
to the blade tip, for the case of hover, or extending to the entire rotor disk as for manoeuvers, low
speed forward flight and low-power descending flight. As a result of such vortex-induced variations 
in the loading, rotor higher harmonic loads and vibrations arise. Furthermore, they are considered 
as one of the mechanisms responsible for the high frequency noise, commonly referred as '<blade 
slap" [1]. 

The general blade-vortex interaction problem is three-dimensional and unsteady, and the 
curved-line vortex intersects the blade at various angles. Although oblique interactions represent 
the helicopter application more closely, two limiting cases of interactions are of fundamental interest. 
One limiting case occurs when the axis of the vortex is parallel to the blade leading edge, fig. la. 
The interaction is two-dimensional, the vortex is convected past the blade with the free stream and 
the problem is therefore highly unsteady. Another occurs when the axis of the vortex is normal 
to the blade leading edge, fig. lb. This interaction is highly three-dimensional but steady and no 
noise is therefore generated. Since a parallel interaction affects a larger span of the blade than a 
perpendicular interaction, it is reasonable to expect that a model for the parallel interaction is more 
crucial to predicting blade forces and moments during blade-vortex interactions. 

The parallel BVI problem was first looked at by Sears [2] using classical, incompressible, 
two-dimensional unsteady linear aerofoil theory. The lift on the blade was calculated from the gust
entry lift function of von Karmann and Sears [3] using Duhamel superposition. The vortex was 
kept at a constant vertical distance from the blade during the encounter. Parthasarathy (4], and 
Chow and Huang [5] have solved the incompressible problem using conformal mapping techniques 
in which the vortex is convected at the local velocity. Conformal mapping techniques have also 
been used by Meyer and Timm [6], Panaras [7], and Poling et alii [8]. Renzoni et alii [9,10,11] have 
solved the problem by a discrete free-vortex modelling of the vortex and wake based on the classical 
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incompressible, potential flow theory. A panel method has been used by Wu et alii [12,13] to solve 
the full N a vier-Stokes equations in the vorticity-stream function form for incompressible viscous 
interactions. The parallel interaction problem was first analysed in transonic flow by Caradonna 
et alii (14], and McCroskey and Goorjian [15] using unsteady transonic small disturbance theory. 
Jones [16], and Sankar and Malone [17] have modelled the interaction more accurately by applying 
the full potential equation without small disturbance and low-frequency assumptions. Srinivasan et 
alii [18,19,20], and Wu et alii [13] have developed more advanced interaction models by solving the 
unsteady, time-averaged, compressible Navier-Stokes equations. All of the methods described above 
are either incompressible or, when compressible) are rather time consuming. Such methods can
not yet very conveniently be extended to the analysis of the real three-dimensional, unsteady BVI 
problem. Furthermore, for most of them, the accurate description of the wake is a problem still open. 

The present paper describes a boundary-integral formulation for the analysis of the non
impinging parallel BVI problem over aerofoils in incompressible and subsonic compressible flow. It 
is a first step toward the analysis of the general BVI problem on helicopter rotors. Morino's B.E.M. 
code MODAIR HR-0 has been modified to take into account the presence of the vortex and the 
results obtained have been compared with other numerical formulations. 

2. INTEGRAL FORMULATION 

The governing equation for potential compressible flows, written in a body frame of reference 
(BFR, fixed with the aerofoil), is given by 

1 (8 8) 2 

\7 2¢-- - + Uoo- if;= (J 
a 2 

00 at ox x outside S(t) ( 1) 

where if; is the velocity potential such that v = \l if; and " indicates the nonlinear terms that are 
important only in transonic regime. S(t) is a surface outside of which the flow is potential and it 
consists of a surface Ss surrounding the aerofoil, a surface Sw surrounding the wake and a surface 
Sv surrounding the vortex. The boundary condition at infinity is that if;= 0. The surface Ss of 
the aerofoil is assumed to be impermeable hence 8¢/on = (vs- U00 i) · n where vs is the velocity 
of a point on the aerofoil and U00 the free stream velocity. The wake is a surface of discontinuity 
which is not penetrated by the fluid and across which there is no pressure jump. The second wake 
condition implies that !:>.¢ remains constant following a wake point xw, and equal to the value 
it had when xw left the trailing edge. The value of /:,.if; at the trailing edge is obtained by us
ing the Kutta-Joukowski hypothesis that no vortex filament exists at the trailing edge; this implies 
that the value of /:,.if; on the wake and the value of I:>.¢ on the body are equal at the trailing edge [21]. 

Applying the Green's function method to Eq. (1), neglecting the nonlinear terms("= 0), 
yields the following boundary-integral-representation for the velocity potential if; 

E(x.)if;(x., t.) =Is+ Iw + Iv (2) 

with 
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representing respectively the contribution of the aerofoil, the wake and the interacting vortex. E(x.) 
is a domain function defined as zero insideS and unity everywhere else, r represents the circulation of 
the vortex. Furthermore, 8/8ii = 8j8n- M · nM · \7, § = [gjl + M·a/ gJJ,._,, g = 111?11 = llx- x.jj 
and M = -U00 i/a00 , the Mach vector. The integrals are evaluated at t = t.- g where g = g(a00 is 
the time required for a signal emitted in x to arrive in x ... 

From a physical point of view, Eq. (2) can be interpreted as follows: the effect of the presence 
of the aerofoil can be simulated by replacing the aerofoil with a layer of sources on its surface plus 
a layer of doublets and rate doublets, also called "ratelets", on the surfaces of the aerofoil and the 
wake. Furthermore, the effect of the presence of a vortex in the flowfield is simulated by replacing 
the vortex with a doublet. 

The wake is modelled either by a "prescribed wake" modelling or by a "free wake modelling". 
With the first the wake is simply a surface generated by the aerofoil trailing edge during its motion 
at the free stream velocity and therefore its shape is assigned. In the free wake modelling, used 
only in the incompressible analysis, the influences of the aerofoil, the vortex and the wake itself are 
taken into account to determine the wake shape. A new position of the wake points is determined 
at each time step by knowing their position and velocity in the previous time step. Thus, the wake 
geometry is not known a priori and constitutes an integral part of the aerodynamic problem. 

An expression of the wake node velocities is obtained by taking the gradient of Eq. (2) in 
its incompressible form 

v. = \7,(£.¢.) =fie { '1. (4~~) ~~- '1. [:n (4~~)] ¢} dS 

(3) 

Once the velocities are computed the new location of the wake nodes is given by 

x.(t. + dt) = x.(t,) + v.(x., t.)dt (4) 

A Rankine vortex core model is used in order to avoid numerical instabilities in the wake. 
The velocity induced by a potential vortex is corrected as v = ex 2 ~, where ex = r 2 /c2 for r ::; c, 
being e the vortex core radius, and a == 1 elsewhere. 

The same procedure has been followed for the computation of the free vortex path. In par
ticular, the compressibility effects on the path have been computed by correcting the incompressible 
velocity as follows 

Vcomp = Vincomp 2 11 (3' . o e 
COS o + Slll~ 

(5) 

with (3 = )! - Moo 2 and g the inclination between the velocity vector and the axis normal to the 
aerofoil chord. 

A zeroth-order boundary element method (BEM) is used for the discretization of the integral 
equation, Eq. (2). The surface of the aerofoil and of the wake are divided into hyperboloidal 
quadrilateral elements. The vortex is explicitly modelled by a single panel of very high length 
extending from the vortex position to the far field. ¢, 8¢/8ii, t:.¢ are assumed constant over each 
element. Using the collocation method and setting the collocation points at the centroid of each 
element on the aerofoil, leads to a differential-delay equation for the velocity potential ¢ which in 
matrix form is 

[A){¢)= {b) (6) 
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where [A] is the matrix of influence coefficients at the current time t, ·{ ,P} is the vector of unknown 
velocity potentials, and {b} is a vector of terms known at timet. The elements of [A] and {b} are 
calculated analytically. The above system of simultaneous linear algebraic equations is solved for 
the unknown vector{¢} by inverting [A]. 

The collocation method is then applied again in order to obtain a discretized expression for 
the wake nodes and vortex velocities. 

3. RESULTS AND DISCUSSION 

The parallel encounter between a helicopter blade tip-vortex in forward flight and the fol
lowing blade can be approximated by the unsteady, two-dimensional interaction of a concentrated 
vortex with a stationary aerofoil. In the present paper such an interaction is considered between a 
potential vortex and Joukowski and NACA 0012 aerofoils. The present method is validated on a 
test case that has been extensively studied by other investigators. 

The incompressible BVI analysis is performed on the Joukowski aerofoil and the results are 
compared with those obtained by Renzoni's Discrete Vortex Method (D.V.M.) code [9] based on 
a discrete free-vortex modelling of the vortex and wake within the framework of classical incom
pressible, potential flow theory. The subsonic, compressible BVI analysis is performed on the N ACA 
0012 aerofoil and the results are compared with those obtained by Srinivasan's Euler and Thin-Layer 
Navier Stokes codes [19,20] and McCroskey's Transonic Small Disturbances (T.S.D.) ATRAN2 code 
[19,20]. 

Two kinds of vortex interactions are considered. In the first case, called "forced-interaction", 
the vortex is convected downstream along a prescribed path with the free stream velocity. In the 
second case, called "force-free interaction", the vortex is convected downstream along a force-free 
path with the local velocity of the flow. 

The aerofoil is discretised by 80 panels and set at zero angle of attack so that no lift would 
be generated in absence of the vortex. The wake, extending 10 chords downstream of the T.E., 
is discretised by 60 panels. The interacting vortex, having a nondimensional circulation of r =0.2 
(positive in the clockwise direction) is initially positioned 0.26 chords below the aerofoil and 5 chords 
upstream (x,jc =-5, y,jc =-0.26). In order to save computational time and to have a higher level 
of accuracy only in the vicinity of the aerofoil, where the BVI effects are stronger, a variable time 
step is used. Therefore, a f:!.t = 0.10 is used from upstream (x,jc =-5) to one chord ahead of the 
aerofoil and from one chord behind it to further downstream (x,jc ::::5). A f:!.t = 0.05 is used in the 
remaining part of the vortex path (-1 < x,jc < 1). 

The code has been run on a CONVEX C3860 computer in vectorial mode. Typical average 
computational times expressed as CPU time are as follows: BVI with prescribed wake = 80 sec and 
BVI with free wake = 1000 sec. No significant differences have been observed between incompressible 
and compressible analysis. 

3.1 Incompressible BVI analysis- Joukowski aerofoil 

During a vortex interaction the flowfield around an aerofoil is subjected to changes that 
strongly influence the path of the vortex itself. In fig. 2a the result of such an influence is shown. 
The altered flowfield of the aerofoil induces a downwash increasingly stronger as the vortex ap
proaches the L.E. (leading edge) so that it is pushed down while moving downstream along a 
force-free path (F.P.). Once under the aerofoil the flowfield induces an upwash and the vortex is 
pushed up. Beyond the T.E. (trailing edge), the vortex interacts with the wake. Depending on the 
wake modelling two different effects can be observed. In the "prescribed-wake" modelling (P.W.) 
the upwash is still quite strong and the vortex is convected downstream on a rising path. In the 
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"free-wake" modelling (F.W.) the upwash is sensibly reduced. This can be explained by the fact that 
now the wake, free to move, is able to partially absorb the effects of the main vortex determining, in 
this way1 a weaker influence on the vortex itself. The case of a "prescribed-vortex path" interaction 
with a "prescribed-wake" modelling (P.P, P.W.) is shown for completeness. In this case the aerofoil 
flowfield has no effect on the vortex since its path is assigned. 

In fig. 2b the vortex interaction in terms of C, is shown. When the vortex is in front of the 
aerofoil, it determines a downwash effect giving as a result a negative value of the effective angle 
of attack which in turn causes a negative lift. While moving under the aerofoil, the effect changes, 
the upwash that the vortex now determines gives a positive effective angle of attack and so the 
lift becomes positive. The vortex position and especially its rate of change, determines the most 
dramatic effect in about one chord around the aerofoil, as shown in the figure. The use of a P.P. 
or a F.P. with a P.W. or a F.W. shows no differences on the C,. The only exceptions occur around 
the L.E., where the P.P., being closer to the aerofoil with respect to the F.P., determines a higher 
negative lift, and around the T.E. where the P.P. determines a slightly lower lift. The P.P. also 
determines a slightly higher Cd, fig. 2c, whereas the CmL.E. shows a tendency to overestimate the 
pitch-up and to underestimate the pitch-down, fig. 2d. 

In fig. 3 is shown a comparison of results obtained by B.E.M. and those obtained by a 
D.V.M. code, using for both methods a F.P., F.W. modelling. Fig. 3a shows the comparison in 
terms of c,. The agreement is fairly satisfactory even though the local change in slope that occurs 
in the D.V.M. results around the T.E. is not present in the B.E.M. results determining, in this way, 
a considerable gap between the two. Some discrepancies are also present in fig. 3b where the Cd 
diagram is shown. The drag coefficient computed by B.E.M. is overestimated almost everywhere 
with respect to D.V.M .. In figs. 3c and 3d are then shown the Cm diagrams respectively referred to 
the L.E. and to c/4. Considerable differences are observed. Even the smallest differences in terms 
of C, and Cd are amplified, especially for the Cm,14 that is usually the most difficult to predict 
correctly. In particular, the change in the concavity present around the middle of the aerofoil in the 
D.V.M. results of fig. 3c is hardly visible in the B.E.M. results, and also positioned toward the L.E .. 
Such a difference is then observed more evidently in fig. 3d where an inversion of Cm between the 
two methods is present around the T.E .. 

Fig. 3e presents a comparison between the vortex paths obtained by using the two different 
methods. It can be seen that, the wake modelling determines great differences. The analysis per
formed with the D.V.M., using a "free-wake" modelling (F.W.), compared with that one performed 
by D.V.M., using a "prescribed-wake" modelling (P.W.) puts into evidence the same behaviour no
ticed in fig. 2a for the B.E.M. results in the same conditions. However, the effect here is much more 
dramatic even determining an inversion in the path. 

A comparison of Cp between the two methods in four different locations of the vortex is 
shown in fig. 4. The agreement in all four cases is quite satisfactory. A general consideration that 
can be drawn is that the pressure distribution on the upper part of the aerofoil is rather insensitive 
to the presence of the vortex, remaining more or less the same for all the locations. The passage of 
the vortex under the aerofoil is shown by the presence of a small kink that arises on the lower part 
of the Cp at xv/c =0.50, fig. 4c. While moving downstream, the vortex determines first a higher 
suction effect on the lower part of the aerofoil and then on the upper part with the result that the 
lift from the negative value becomes positive. In fig. 4d is shown the Cp at x,jc =1.0. Here the two 
methods show some differences. In the D.V.M. the Cp intersects about at the mid-chord whereas 
with B.E.M. this effect doesn't occur showing just a gap at the T.E .. 

3.2 Compressible BVI analysis- NACA 0012 aerofoil 

The effects of a subsonic compressible BVI are analysed by B.E.M. using both a P.P., P.W. 
modelling and a F.P., P.W. modelling. In particular, in fig. 5 are shown the results obtained with the 
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F.P., P.W. modelling. In fig. 5a the effects of compressibility on C1 determines an increase, in abso
lute value, in the lift at the L.E. and T.E., and a decrease just after the T.E. to further downstream. 
The higher is the Mach number, the stronger this effect is felt. In particular, compressibility seems 
to accelerate the process of restoring the initial condition of cl =0 that was present far upstream. 

During the study, a problem arose while increasing the Mach number. Some numerical in
stabilities have been observed on the solution. An analysis of the problem has localised the source 
of such instabilities in the ratelet terms. Furthermore, it has been observed that the problem could 
be reduced, at a given Mach number, by increasing the time step but losing, in this way, accuracy 
in capturing the real unsteadiness of the problem. This solution has been applied for the case at 
M =0.5. The extremely high value of C1 observed in this case around the T.E. can therefore be 
explained as the result of a not-fully unsteady treatment of the problem. 

Fig. 5b shows the Cd behaviour. In this case compressibility also determines an increase 
in magnitude. The computation of the pitching moment around the L.E. shows instead that not 
only it is increased by compressibility but also that the inflection point, that is present about at the 
mid-chord when M =0, moves toward the L.E. and to the zero value of Cm, fig. 5c. A different be
haviour is shown for Cm,14 , fig. 5d. In this case, compressibility first reduces the strength, M =0.3, 
and then determines an inversion of the whole curve. 

An important role is played by compressibility also on the vortex path. As can be observed 
in fig. 5e, the path after the T.E. tends to rise with a higher slope as the Mach number increases. 
Furthermore, it is also clear that compressibility influences in a greater way the wake since the dif
ferences in the vortex path are more evident in the region where the interaction between the vortex 
and the wake is stronger. 

A comparison between B.E.M. results and those obtained by Srinivasan and McCroskey 
[19,20] is also performed. A Mach number equal to M =0.3 is considered and the analysis is per
formed by using a P.P., P.W. modelling. In fig. 6a is represented the C1 diagram. The agreement is 
generally satisfactory. However, B.E.M. result shows a higher negative value of the lift around the 
L.E. whereas, around the T.E., the local change in slope that occurs is not followed by the other 
methods. Finally, just after the T.E., it is important to notice how close is the agreement of the 
present method with the T.S.D. ATRAN2 results. 

In fig. 6b is shown the comparison in terms of Cm,14 . Here, once again, the difficulty in 
predicting correctly the moment coefficient is evident. The agreement can be considered sufficient 
up to the L.E. After it, the main differences appear. In particular, the gap present in the C1 curve 
around the T.E. between B.E.M. and the other methods reflects itself in determining a pitch-up 
instead of a pitch-down moment. 

A Cp comparison between B.E.M. and T.S.D. ATRAN2 results for four different locations 
of the vortex is shown in fig. 7. When x,fc =-0.50 and Xv/C =0.0, figs. 7a, 7b, the Cp for both the 
methods follows the same behaviour even though B.E.M. results are such that the corresponding 
lift is more negative, especially when xv/c =0.0. Once the vortex reaches the position xv/c =0.50, 
fig. 7c, it can be observed that the Cp distribution in the upper part of the aerofoil is in practice the 
same whereas the kink in the B.E.M. results, indicating the presence of the vortex, is not captured 
by the T.S.D. method. However, the corresponding lift is equal for both the methods. Under the 
T.E., fig. 7d, the Cp distribution on the upper part remains the same as in the previous case. In the 
lower part, instead, B.E.M. tends to overestimate the suction effect giving as a result a smaller lift 
than that obtained in T.S.D. As in the incompressible case, the vortex determines big differences 
only on the lower part of the aerofoil, leaving the upper part almost unaltered. 
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4. CONCLUDING REMARKS 

The aim of the paper has been the analysis of a boundary integral formulation approach to 
the non-impinging, parallel BVl over aerfoils. The study of this phenomenology, two-dimensional 
but strongly unsteady, is intended as a first step of fundamental importance toward the prediction 
of blade forces and moments that arise during the real three-dimensional and unsteady BVI problem 
that takes place on helicopter configurations especially during low-speed forward and descent flight. 

Morino's MOD AIR HR-0 B.E.M. code has been modified for an incompressible and subsonic 
compressible analysis of the parallel BVI problem. The results obtained by the incompressible anal
ysis have been compared with Renzoni 1S Discrete Vortex Method. The agreement has been generally 
satisfactory. Some significant differences have been observed in the Cmc/4. comparison. The free 
wake modelling of D.V.M. has shown a stronger effect on the vortex path than that observed by 
B.E.M. free wake modelling. 

In the compressible analysis, numerical instabilities have arisen that amplify with increasing 
Mach number and/or decreasing time step. Such a problem, caused by the ratelet terms, has lim
ited the applicability of the method to Mach numbers at or below M = 0.5. The solution of this 
problem is of primary importance. The comparison with Srinivasan's Euler and Thin-Layer N.S. 
codes, and McCroskey's ATRAN2 T.S.D. code has shown a good agreement also for compressible 
BVI. However, also in this case significant differences have been observed in the Cmc; 4 comparison. 
This problem has again put into evidence the difficulty of correctly predicting the Cm,;4 . 

The simplicity with which the boundary integral formulation allows the modelling of the BVI 
phenomenology, together with the encouraging results obtained to date, makes the present method 
a promising tool for the understanding of the aerodynamic aspects of the problem and for providing 
reliable data to the aeroacousticians for the noise prediction. 
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Figure 2.: B.E.M. results with different wake and vortex modelling. Joukowski, M = 0., 
a:= 0., r = 0.2, Xo = -5., Yo= -0.26 
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