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Introduction

Helicopter rotors are subject to high vibratory
forces because of highly flexible rotating blaces
and a severe aerodynamic environment. This leads
to wear in various components of the rotor, reguir-
ing frequent inspection and replacement of dam-
age sensitive components leacding to high mainte-
nance costs. In fact, maintenance costs account
for about a quarter of the direct operating costs
of rotorcraft [1]-[2]. Health and usage monitoring
systems (HUMS) can reduce this cost. The he-
licopter industry has recently focussed on HUMS
to provide fault diagnosis for drivetrain, engines,
oil system and rotor system [3}-[4]. Current track
and balance systems can detect rotor faults to a
limited extent. For example, when track and bal-
ance adjustments o not alleviate a high vibration
problem, a faulty component may be indicated.
To develop a health monitoring system for a ro-
tor, the relationship between blade damage and
helicopter system behavior is needed. Since it is
difficult to obtain flight test data for a damaged
helicopter rotor, a physics based model offers the
opportunity to study the simulated behavior of the
damaged helicopter. Numerical simulations of the
damaged rotor system response can be used by ar-
tificial intelligence based techniques such as neural
networks to learn the relationship between rotor
faults and system behavior. The trained neural
network can then be placed online on the heli-
copter to detect and identify damage from rotor
vibration and response data.

The fault detection methodology approach dis-
cussed above focuses on global faults.  Global
faults are those which can be detected using re-
mote measurements of “global” system parame-
ters such as fuselage vibration and blade deflec-
tion. The theoretical bagis of global fault detec-
tion is that for an undamaged rotor all blades will
have identical response and only the N/rev loads
will be transmitted to the hub by a N-bladed ro-
tor. If however, one blade is dissimilar o the other
blades due to a fault then all harmonics of the ro-
tor loads are transmitted to the hub. In addition,
the response of the damaged blade will be different
from the undamaged blades.

Selected works on global fault simulation has been
reported in the literature [5]-[7]. Azzam and An-
drew [53] simulated rotor system faults for a five
bladed articulated rotor simiiar to the S-61 ro-
tor using a computer hased math-dynamic model.
Faults modeled include blade cracks, chordwise
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mass imbalance and defective lag damper. The
present authors [6]-(7] have applied a comprehen-
sive aeroelastic analysis based on finite element
in space and time to simulate a damaged rotor.
Numerical results were obtained in hover and in
forward flight for an articulated four bladed rotor
similar to the SH-60 rotor. Selected predictions of
rotor component loads were validated with flight
test data {6]. Faults modeled in Ref. (6] include
moisture absorption, loss of trim mass, damaged
pitch-control system, defective lag damper, dam-
aged trim tab and misadjusted pitch-link. Faults
modeled in Ref. {7] include aerodynamic mistrack-
ing, blade crack, stiffness defect, manufacturing
defect and chordwise mass imbalance. The influ-
ence of simulated rotor fauits on blade response
and vibratory hub loads was analyzed and sum-
marized in the form of diagnostic charts. It was
concluded that most rotor faults can be detected
by monitoring blade response and vibration. How-
ever, localized damage such as blade cracks are
difficult to detect from global system behavior.

The above studies focussed on caleulation of ro-
tor response due to simulated rotor system faults.
However, there iz a need to use the simulated
data to develop a fault detection methodology.
Addressing this issue, the present authors [9] de-
veloped a neural network based approach for ro-
tor system fault detection. Two neural networks
were used; the first network to classify the type
of fault and the second network to characterize
the level of damage. The neural networks are
trained from a numerically generated rotor sys-
tem fault database. One drawback of a neural
network trained with ideal data is that it classifies
ideal test data exactly but gives significant errors
whoen noise is added to the test data. This prob-
lem was overcome by adding noise to the analyt-
ical simulation during training. A fault detection
system based on noisy simulated data was found
to be more robust than that developed using ideal
simulated data because it accounts for the inher-
ent uncertainty in the real system. Testing of the
trained neural network showed that it can detect
and identify damage in the rotor system from sim-
ulated blade response and vibration data.

In addition to global fauits such as those discussed
above, there are local faults which are difficuit to
detect from global system behavior such as fuse-
lage vibration and rotor response{ll]. Localized
structural damage such as blade cracks and ce-
lamination are examples of local faults. Unde-
tected blade cracks can lead to catastrophic fail-
ure depending on erack location, fiight conditions
and load severity. Local fault detection methods
have evolved to detect such faults. The meth-
ods used for local fault detection include robust
laser interferometer, photoelastic techniques, ul-



trasonic technigues and acoustic emission sensors
[10]. Such local fault detection techniques comple-
ment the global fault detection approach discussed
in this paper. When combined together, they can
form a comprehensive approach to rotor system
health monitoring.

Rotor system health monitoring remains a very
challenging area for research because of the com-
plexity of the rotor. For example, pilot control
inputs to the rotor blades are transmitted by a
series of connecting rods, linkages, swashplates,
pushrods and control horns. These components
are exposed to wear and tear which can lead to
jamming and misalignment/freeplay. Also, the ro-
tor blades are attached to the hub via a series of
components that include bearings, pins, tie rods
and spindles.  Again, there is the possibility of
jamming or freeplay in these components due to
wear and tear. In this paper, the faults discussed
include friction in hinges and pitch-control system
and freeplay in the pitch-control system and in the
lag damper. Physics based models are developed
for each fault and their influence on rotor system
behavior are identified.

The damage detection techniques discussed in pre-
vious research focussed on primary faults {only
one type of fault on the blade) [9]. In this
paper, the detection of compound faults is ad-
dressed. Compound faults involve more that one
type of fault on the damaged blade. Detecting the
components with a compound fault is important
for distinguishing between benign faults (such as
track and balance problems) and potentially catas-
trophic faults (such as damaged lag damper).

Formulation

Mathematical Model of Rotor-System

The helicopter is represented by a nonlinear model
of several elastic rotor hlades dynamically coupled
to a six degree of freedom rigid fuselage. Each
blade undergoes flap bending, lag bending, elas-
tic twist and axial displacement. Formulation is
based on a generalized Hamilton’s principle appli-
cable to nonconservative systems:

2
(6L - 6T — (SLV)(I*I[) = {1

¥y

The 617, T and §W are virtual strain energy, ki-
netic energy and virtual work, respectively. The
SU and &7 also include energy contributions from
components which are attached to the blade, e.g.,
pitch link, lag damper etc. External aerodynamic
forces on the rotor blade contribute to the virtual
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work variational, §W. For the aeroelastic anal-
ysis, aerodynamic forces and moments are caleu-
lated using an inflow distribution from the Scully-
Johnson free wake model [12] and unsteady effects
are accounted for using the Leishman-Beddoes
model [12].

Finite element methodology is used to discretize
the governing equations of motion, and allows for
accurate representation of complex hub kinematics
and nonuniform biade properties. After finite el-
ement discretization, Hamilton’s principle is writ-
ten as

by N
[ eu-sm-swyas=0 @

i=1

Each beam element has fifteen degrees of freedom.
These degrees of freedom correspond to cubic vari-
ations in axial elastic and (flap and lag) bending
deflections and quadratic variation in elastic tor-
sion.

The first step in the aercelastic analysis proce-
dure is to trim the vehicle for the specified oper-
ating condition. The blade finite element equa-
tions are transformed to normal mode space for
efficient solution of the blade response. The non-
linear, periodic, normal mode equations are then
solved for steady response using a finite element
in time method. Steady and vibratory compo-
nents of the rotating frame blade loads (i.e. shear
forces and bending/torsion moments) are calcu-
lated using the force summation method. In this
approach, blade aerodynamic and inertia forces
are integrated directly over the length of the blade.
Fixed frame hub loads are calculated by summing
the contributions of individual blades. A coupled
trim procedure is carried out to solve for the blade
response, pilot input trim controls, and vehicle ori-
entation, simultancously. The coupled trim proce-
dure is essential for elastically coupled blades since
elastic deflections play an important role in the
steady net forces and moments generated by the
rotor,

Modeling of Rotor-System Faults

The fauits modeled in this paper are shown in Ta-
ble 1 and are discussed below.

Freeplay in Pitch Control System

The pitch-control system is exposed to severe load-
ing conditions which can cause wear and looseness
leading to freeplay. Freeplay in the pitch-contrel
system is modeled by the nonlinear spring whose
characteristics are shown in Fig. 1. For the un-
damaged blade, the pitch-link load varies linearly
with displacement and the pitch-link stiffness is



Table 1: Potential Rotor Head Damage

Type of damage

Simutation of Damage

Freeplay in Lag Damper

Friction in Lag Hinge

Friction in Flap Hinge

Freeplay in Pitch Control System

Friction in Pitch Control System

Nonlinear Spring

Nonlinear Damper
Coulomb Damping
Coulomb Damping

Coulomb Damping

Baseline
Pitch-Control

e

/N

7 Pitch-Controt
F g with Freeplay

¢

Figure 1: Schematic representation of pitch-link
load for blade with freeplay in pitch-control system

K. However, for the blade with freeplay in the
pitch-control system, the pitch-link stiffness is zero
unless the torsion displacement exceeds a value ¢y,
thereafter, the stiffness is £,

0 for o <y
Kyl ~ ¢y} for ¢ = s

Al e
‘b =

il

{3)

Freeplay in Lag Damper The lag dampers used for
articulated rotors are typically hydraulic dempers,
These dampers have linear characteristics for most
of their operating conditions. Sloppiness in the
lag damper may cause the damper to loose its ef-
fectiveness at low values of lag velocity. This is
modeled by the damper whose characteristics are
shown in Fig. 2. For the undamaged blade, the
damper load varies linearly with lag velocity and
the damping value is Cp. However, for the blade
with freeplay in the lag damper, the damping is
zero unless the lag velocity exceeds a value 9,
thereafter, the damping is C¢. In mathematical
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Baseline Lag Damper

Fg \ ,

’
/ ‘
, Freeplay
/I in Lag Damper
Vs v

Figure 2: Schematic representation of lag damper
load for biade with freeplay in lag damper

form the damper force is:

Frg = 0 for o<

Ce(tr—vs) for © 20,

i

()

Friction in Hinges and Bearings Coulomb friction
damping is used to model friction at hinges or
bearing caused by lack of lubrication or wear. The
equations of motion for the baseline rotor blade
without any friction damping can be written as

(5)

When additional friction damping is added to the
systemn, the equations become:

Mi+Cq+Kqg=F

. . q - 5 .
M4 Clq+ ;'Lﬁ 4 g o= {6)
i
where jt Is a measure of Coulomb friction damping
in the system. Three cases are considerad: friction
in the fap hinge, friction in the lag hinge and fric-
tion in the pitch-control system.



Indicators of System Damage

It is assumed that one blade is damaged and the
other blades are undamaged. For the undamaged
rotor (assuming perfectly tracked blades), ali 4-
blades will have identical tip response {(magnitude
and phase). Also, for a perfectly tracked rotor,
only 4/rev and 8/rev forces and moments will be
transmitted by the undamaged rotor to the fuse-
lage,

In practise, however, there will always be some
level of fuselage response at 1/rev and at higher
harmonies due to the inability to perfectly balance
and track a rotor. Typically, a i/rev fuselage re-
sponse of 0.15 inch per second (ips), equivalent to
about 170 b, is representative of a well balanced
rotor. Vibrations in excess of 0.30 ips are con-
sidered significant and indicate the need to track
and balance the rotor. Approximate thresholds
for the moments transmitted to the fuselage can
be similarly obtained., Moments below 2500 ib-in
are representative of a well tracked and balanced
rotor. Moments above 5000 lb-in indicate the need
to track and balance the rotor.

Similarly, for the blade tip response, most real ro-
tors display some degree of variation in tip dis-
placements between blades even when the rotor is
considered to be in a ‘tracked’ condition. In this
study, we assume thet variations in tip deflections
less than a quarter of an inch are negligible, and
changes in clastic twist of less than a quarter of
a degree are considered too small to be of practi-
cal value, These measures for system response are
shown in Fable 2.

The vibratory hub loads and blade response pre-
dicted by the math-model are assembled into the
following vector form:

pe A Aw A Fy By F, M, My M, |" (7

Blacde response harmonics greater than & and load

harmonics greater than 10 are very small and are

neglected. The change in blade tip response be-

tween the damaged and undamaged blade is ex-

pressed in the form (for flap response):

Aw = [Awy ADwyie Awis Dwge Awes

A Aty Awge Awagy Awse A‘wss_}"

(8)

The blade lag and torsion response can be simi-

larly expressed. The vector for the longitudinal

force is given as

.l 3 -1 al \J Al a
}‘:r: e [P:no ir*:vlc P:!:ls F;z:'jc F:H'Zs I133C J!:u:%s
F:n:dc FJ;:ISP:US(: -Fr:{')s -F:u(i(: F:::Gs Eu?c -F:l:?.r,‘

‘1 - T
F:csc. Fn:&&s Fﬂ:!]c F.’uf)s J-u:::ll)c 'F'il?l()sj (0)
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Similar vectors define the other forces and mo-
ments. The vector p in Eq. 7 has 159 clements and
contains the needed information about the dam-
aged rotor system in mathematical form.

To simulate data contaminated by noise, zero-
mean white noise with a normal distribution is
added to p. The noise is added to each element of
the p vector as follows:

Pni = Pi +picve = pi(1 + o) (10)

where ¢ iz a random number between -1 and 1 from
the normal distribution and « is the noise level. A
value of o of 0.05 is refered to as five percent noise
and implies an uncertainty of & percent in the data
for p;. The noisy response vector is denoted by p,.

Neural Network Architecture

Two neurai networks are used for the damage de-
tection problem. Both networks consists of an in-
put layer, a hidden layer and an output layer. A
schematic of the network is shown in Fig. 3. The
first network (called Network A) is a pattern clas-
sifier. Network A determines the type (or types)
of damage, for example, whether the damage is
moisture absorption or a defective lag damper, or
a combination of both. For Network A, the hid-
den layer and the output layer consist of nonlin-
ear logarithmic sigmoid neurons, an architecture
known to be suitable for pattern classification {14].
These neurons use sigmeoid activation functions of
the type:

1

ey

(1)
The second network (called Network B) is a tunc-
tion approximator. For Network B, the hidden
layer consists of nonlinear log-sigmoid neurons and
the output layer consist of linear neurons, an arti-
tecture known to be suitable for function approx-
imasion problems. Network B assumes that Net-
warle A has isolated the type of damage, and uses
this information to determine the magnitude of
damage. This procedure is shown schematically
in Fig. 4.

A backpropagation algorithm with added momen-

tum and an adaptive learning rate is used [15].
The error measure of the networks is defined as
. !

e

i
where ¢ is the desired target vector and ¢}, is the
output vector produced by the network a$ the end
of the kth iteration and where |}.}| is the Euclidean
norm. The algorithm is assumed to have con-
verged when the error becomes sufficiently small
(ep == 0,00001).

e = (12)



Table 2: Quantitative Measures for System Behavior

Measure | Tip flap, lag | Tip torsion | Forces | Moments Phase Symbols
{units} (inch) (degrees) (ib) (Ib-in) {degrees)

Negligible < 0.25 < 0.25 < 170 < 2500 < 10 ~

Moderate 0.25.0.50 0.25-0.50 170-340 | 2500-5000 10-30 )

Significant >0.50 >0.50 >340 >5000 =>30 O

Input
Layer

Hidden
Layer

Output
Layer

Figure 3: Schematic representation of mulsi-layer
neural network

Rotorcraft
Simulation

Control
inputs
Flight
Condition

l

System
Response

l

Neural

Network A

Damage
Detection

v

Neural
Network B

. { "‘Quantify )
Damage

Figure 4: Schematic representation of model based
damage detection procedure
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Blade 2
{undamaged)

Blade 3
{undamaged)

Blade 1
damaged
‘( ged)

(undamaged)

Figure 5 Schematic representation of damaged

blade

Training Database

Three representative rotor faults are used to train
the neural network: moisture abscrption, defective
lag damper and damaged pitch-control system. In
each case, training data are generated by start-
ing with an undamaged rotor and progressively
increasing the damage intensity on Blade 1 (see
Fig. 5).

The training target vectors are defined as:

d=10 0.1 0.2 0.9 1.0] (13)

The value 0 corresponds to the undamaged case
and 1.0 corresponds to significant damage. Inter-
mediate values of d represents a linear variation in
the damage magnitude between these extremes.
For moisture absorption, d; = 1 corresponds to an
increase in mass of the damaged blade by 3 per-
cent, compared to the undamaged blade. For the
defective lag damper, d; = 0 corresponds to a lag
damping constant C; = 3000 Ib sec/in, and d; = 1
corresponds to a lag damper constant C¢ of the
damaged blade equal to zero. For the pitch-control
system, damage level is represented by a linear re-
duction in pitch-link stiffness from 100 percent for
the undamaged blade to 12 percent for the dam-
aged blade. This corresponds to a reduction in the
haseline torsion frequency from 4.31 per rev for the
undamaged blade {(d; = 0) to 4.0 per rev for the
damaged blade (d; == 1). The variation of the first
torsion mode [requency with pitch-control system
damage level is shown in Fig. 6. The acroelastic
analysis is performed for the values of d defined
above and for each case the system response vec-
tor p defined by Eq. 7 is calculated. These data
form the simulated fault database. The database
is divided into two parts depending on the value
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4.3+
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{perrev) |
4.2+
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Increasing damage level
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[¢] 0.2 0.4 0.6 0.8 1
Undamaged Significant
d Damage

Figure 6: First rotating torsion frequency of blade
with damaged pitch-control system

of d. One part is used for training the neural net-
work (Eq. 14), and the other for testing the trained
neural network (Eq. 15).

dyr =

dtcst =

10 0.2 0.4 0.6 0.8 1.0}
10.1 0.3 0.5 0.7 0.9]

(14)
(15)

For each damage type,six damage levels used for
training and five damage levels used for testing.
When there is more than a single fault on the
damaged blade, the data needed for training the
neural network becomes large ag the number of
faults increases. For example, for two faults on
the damaged blade, there are 36 (NxN) combina-
tions of damage levels for training and 25 (5x5)
for testing the neural network.

Damage Detection

Neural Network A is used for damage detection.
The input to the neural network is the vector p,
defined at N damage levels (Eq. 14), for the three
damages being considered. The input matrix P is
given as

P=[P Py Py Py Pz Py (16)
where
P [y p2 .. .pn] for damage 1
Py = [p1ps...pn] for damage 2
Py = [pips...pn] for damage 3

Each matrix P, shown above has 159 rows and
N columns and represents a single fault on the
damaged blade. For the case with two faults on
the damaged blade, the input matrices are

P2 = [puip2 - N

P21 P2z - PanN



(17)
PN1DPN2 - PNN]
for domage 1 and 2
Pz = [Pu Piz - PIN
P21 P2z - P2y
(18)
PNLPNZ - PNN]
for damage 1 and 3
Pz = [pupz .. min
Pa1 P2z - P2N
(19)
PN1PNZ - PNN]
for damage 2 and 3
(20)

Each matrix P;; has 159 rows and N 3V columns.
The element p;; represent the system response vec-
tor p for two damages at damage levels ¢ and §. In
each case, 1 and j range from 1 to N. The target
vector T’ is given as

L) 1of (o] (1] ix] (0]
T=| (0] (1] [o] |1} (o] |1] (21}
1of Loy 4 (o} i [1]
where
1= {11 ...1} (22)
I0f={00 ...0} (23)

Here | 1] and |0] are row vectors of size N or size
N x N depending on the nature of the fault (pri-
mary or compound). The row in which 1I’s are
present in the T matrix correspond to the type of
damage. The neural network performs a mapping
of training vector P into target vector 1" and can
be written as

T = N(P) (24)

where A is the neural network mapping. The ef-
fect of noise is included by defining an augmented
training matrix

P, =P P P P (25)

where P’ and P are noise contaminated sig-
nals defined as (P); = (P); + (P); 0.05¢ and
(P"); = (P); -+ (P); 0.1¢ represent 5 percent and
10 percent noise contamination, respectively. The
augmented training matrix contains two copics of
the ideal matrix and two noisy matrices. These in-
puts are all matched to the same target outputs.
The augmented target vector is obtained as

Ty =TT T T (26)
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‘The network mapping with noisy data can now be
represented as

Lo = No(Pn) (27)
For each fault, the pattern from only ideal data
is expanded by adding noise contaminated data.
The neural network is trained to map these pat-
terns with the faults causing them. For training
the network, the following procedure is followed.
First, the network is trained using ideal data as
shown in Bq. 24. Next, the network is trained
on noisy data for ten cycles, as shown in Eq. 27.
For each training cycle, the converged weights are
used as the starting values from the previous cy-
cle. For each cycle, a different randomly generated
seed value is used by the random number genera-
tor to form the noisy data. The ten cycles provide
considerable noisy training data and generalizes
the input patterns mapping onto the faults. Fi-
nally, to ensure that the network recognizes the
ideal vectors, it is again trained on ideal data. The
training of the network on several samples of noisy
data increases generalization capability and makes
the network more robust [17].

it is clear that the above procedure can be ex-
panded to include a higher amount of noise by
further augmenting the training and target matri-
ces with noisy data. This method of training using
augmented matrices is known as batch training in
contrast to pattern training where the inputs are
given sequentially to the network. Utilizing batch-
ing operation is often more efficient and provides
a more accurale estimate of the gradient vector
used in backpropagation [14].

Damage I[dentification

Neural Network B is used for damage idensifica-
tion. The input to the neural networlk is the ma-
trix P corresponding to the damage (or damages)
detected by Network A. A seperate network is used
for each damage type. Once the type of damage is
known, the problem is to determine the extent of
damage. The target vector is defined in Eq. 14 for
a single fault. For a compound fault, the target
vector is a combination of the damage levels de-
fined by Eq. 14. For example, for Damage k, the
neural network is trained for the following map-
ping:

dip = N( i) {28)

The issue of noisy data is also addressed for the
damage ilentification network., This is done by
defining the augimented matrix

Py, =P Pe Py P} (29)
and the augmented target vector
A, = {doy diy dyp diy (30)



Table 3: Helicopter Properties

Rotor Radius 26.8 ft
Flap and Lag Hinge Offset | 15 in
Number of Blades 4

Blade Chord 20.76 in
Linear Aerodynamic Twist | —18°

o] 6.0 o

Cy 002 + 2 a°
C 0.0

Lock Number 8.00
Solidity 0826
Biade Attachment Point 41.5 in
Rotor Tip Speed 725 I /sec
Helicopter Weight 16500 b
Blade Mass 235 1b

where P| and P} are noisy signals generated using
b percent and 10 percent noise contamination, re-
spectively. The network tmapping with noisy data
is therefore given as

dir = No(Pr,,) (31)
Again, the ideal and noisy vectors have the same
input targets. The network is first trained using
ideal data (Eq. 28), then trained using ten cycles
of noisy data (Eq. 31), and finally trained with
ideal data again.

Results and Discussion

For results, a 4-bladed articulated rotor with prop-
erties similar to a SH-60 helicopter is selected (see
Table 3). The rotor blade is modeled using thir-
teen spatial finite elements along the bladespan
{Fig. 7). Six time finite elements with fourth or-
der shape functions are used along the azinwuth
to calculate the blade response. The results are
obtained for a normalized rotor thrust coefficient
Cpjo = 00726 and a rotor advance ratio of
jo = 0.3. Selected validation of rotor component
loads using this simulation for a baseline configu-
ration are provided in Ref. {7].

Damaged Rotor System Behavior

The baseline flap and lag response of the undam-
aged rotor is shown in Fig. 8. The lag response
has a predominant 1/rev component and the flap
response has a 1/rev and 2/rev component. The
baseline elastic twist of the undamaged rotor is
shown in Fig. 9. The torsion response has a sig-
nificant 1/rev componen$. For numerical results
with a freeplay in the pitch control system ¢, of
(.19 degree is used (Eq. 3). This is about half of
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Harmonics

Figure 8: Flap and lag deflection for undamaged
blades

Elastic twist

0 | 2 3 4 ]

Harmonics

Figure 9: Elastic twist for undamaged blades

the steady elastic twist. For freeplay in the lag
damper ¥, Is equal to half the 1/rev lag velocity
(eq. 4). For friction, a value of p = 300 is used
(Eq. 6).

The harmnonic content of the difference in blade
response between the undamaged and damaged
blade is shown in Figs. 10-12. For an undam-
aged blade the diffevence is response of the four
blades is zero. The information in these figures
is summarized in the diagnostic chart (Table 4}
The symbols used in the diagnostic table is definec
in Table 2 and the ‘4" and *-' signs in the diag-
nostic sables refer to an increase or decrease in
the given quantity, respectively. Freeplay in the
pitch-control system causes a moderate increase
in the 1/rev flap deflection of the damaged blace
and a moderate decrease in the 2/rev elastic twist.
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Figure 7: Finite element model of rotor blade (element length shown in percent span)
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Figure 10: Difference in lag deflection between un-
damaged and damaged blades

Freeplay in the lag damper causes a moderate in-
crease in the 1/rev elastic twist. Friction in the
lag hinge causes a moderate increase in the 2/rev
lag response and the 1/rev flap response. Friction
in the flap hinge causes a moderate decrease in the
2/rev lag response, an increase in the 1/rev flap
and torsion response and a decrease in the 2/rev
flap response. Friction in the pitch bearing causes
a moderate reduction in the 2/rev lag response
and the steady and 1/rev flap response.

The harmonic content of the hub loads of the un-
damaged and damaged rotor are shown in Figs. 13-
18  The first four and the eighth harmonic are
shown in these figures. The fifth, sixth and sev-
enth harmonics are negligible for the damages con-
sidered and are not shown. For an undamaged ro-
tor, only the 4/rev and 8/rev harmonics are trans-
mitted by the rotor to the fuselage. The infor-
mation about hub forces in these figures is sum-
marized in Table 5. The effect of fresplay in the
pitch control system on the hub forces is negligi-
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Figure 11: Difference in flap deflection between
undamaged and damaged blaces
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Figure 12: Difference in torsion deflection between
undamaged and damaged blades
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Figure 13: Longitudinal hub force for the undam-
aged and damaged rotor
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Figure 14: Lateral hub force for the undamaged
and damaged rotor

ble. Freeplay in the lag daunper causes a moderate
increase in the 4/rev lateral force and a moder-
ate reduction in the 4/rev vertical hub force. The
friction in the lag hinge causes a moderate redue-
tion in the 4/rev vertical force. Friction in the
Hap hinge causes a moderate increase in the 4/rev
longitudinal and vertical forces. Friction in the
pitch-bearing causes a moderate increase in the
4/rev longitudinal force and a significant increase
in the 4/rev vertical force.

Figure 6 shows the diagnostic table for the hub
moments.  Freeplay in the pitch-control system
leads to a moderate increase in the 4/rev rolling
and pitching moments. Freeplay in the lag damper
causes a moderate increase in the 4/rev pitching
moment and a significant increase in the 4 /rev yaw

98-11

12000
B Undamaged rotor
10000 i £ Freoplay in Pitch-Condrol
¥ (3 Freeplay in Lag Damper
8000 - -
() Friction in Lag Hinge
lM:_(HI 6000 4 (9 Friction in Flap Hinge
{lb-in) 1 Friction in Pitch Bearing
40060 -+
2000 -+
0 l"\l"gﬂE — ‘F‘Ja{ —
1 2

Vertical hub force

1200
1600 _ B Undamaged rotor
p {0 Freeplay in Pitch-Control
200 i i Freeplay in Lag Damper
IF 1 [3 Friction in l.ag Hinge
('g}' 600+ [% Friction in Flap Hinge
A Friction in Pitch-Bearing
400+
200+
D_
1 2 3
Harmonics

Figure 15: Vertical hub force for the undamaged
and damaged rotor

Hub roll moment

3
Harmonics

Figure 16: Hub rolling moment for the undamaged
andd damaged rotor

moment. Friction in the lag hinge causes a mod-
erate increase in the 4/rev roll moment. Friction
in the flap hinge causes a moderate increase in the
d/rev roll and pitch moment and friction in the
pitch-control system causes a moderate increase
in the 4/rev pitching moment.

It is interesting to note that the changes in the hub
loads occur for the 4/rev component primarily for

the freeplay and friction faults discussed above.

Faults Used For Damage Detection

Three faults are selected in this study to study
the detection of compound faults using neural net-
works.  These are damaged lag damper, dam-
aged pisch control system and moisture absorp-



Table 4: Rotor System Diagnostics in Forward Flight - Blade Tip Response

Damage Ay &Y Aw Lw Ag Lep
Free Play in Pitch Control ~ ~ I-ot 1-O%F | 207 ~
Free Play in Lag Damper ~ ~ ~ ~ Lot | 1-O0F
Friction in Lag Hinge 20t | 20~ 1ot ~ ~ ~
Friction in Flap Hinge 2-07 | 2-OOF | 1-oF, 2w07 ~ 1-0F ~
Friction in Pitch Control System | 2-07 | 2-07 | 007, 1-0~ ~ ~ ~
Table 5: Rotor System Diagnostics in Forward Flight - Hub Forces
Damage | AFpy | | dFen | [AFyu | LFyn | [ AFp | | LFuy
Free Play in Pitch Control ~ ~ ~ ~ ~ ~
Free Play in Lag Damper ~ ~ 4-0* 4-0~ 40~ 4-0"
Friction in Lag Hinge ~ ~ ~ ~ 4-0” oo™
Friction in Flap Hinge 4-oF ~ ~ ~ 4-07 4ot
Friction in Pitch Control System 40" ~ ~ ~ -0t | 4Ot
Fabie 6: Rotor System Diagnostics in Forward Flight - Hub Moments
Damage | AMo || LMy | Aﬂ/f?,]; | éMyH | AM | ¢ LMoy
Free Play in Pitch Control d-ot d-0™ 4-o 4-0F ~ ~
Free Play in Lag Damper ~ ~ 4-o't 4-0” 4-0OF 4-(-
Friction in Lag Hinge 4ot 4 ~ ~ ~ ~
Friction in Flap Hinge d-o% 4Ot d-ot d-0~ ~ ~
Friction in Pitch Control System ~ ~ 4-oF 40~ ~ ~
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Figure 17: Hub pitching moment for the undam-
aged and damaged rotor

Hub yaw moment
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Figure 18; Hub vawing moment for the undam-
aged and damaged rotor
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tion. Several combinations of faults on the dam-
aged blade are also considered.

Number of Neurons Training for both Network A
and Network B is started using one neuron in the
hidden layer. The number of neurons in the hid-
den layer is progressively increased from one and
the ervor for generalization of the network is mon-
itored. The error for generalization is defined as

g = Heest — toutpuell (32)
“ttest”

where freq is the desired output and foyepus Is

the estimated output of the trained network when

presented with test data. The lower the value of

£y, the better the network is at generalizing from

training data.

Both ideal and noisy data are used for training
and testing the network. All training data is pre-
sented to the network simultaneously for all dam-
age levels defined by d;.. Once the network has
trained, test data are presented to the trained nes-
work simultaneously for ali damage levels defined
by diese. Both primary and compound faults are
considered. The ervor for generalization is shown
in Fig. 19, ag the number of neurons in the hidden
layer is increased, for Neural Network A and Neu-
ral Network B (three combinations of damages).
As the number of neurons increases from two, the
error for generalization first decreases rapidly and
reaches a minimum after which it starts increas-
ing slowly, For Network A, e, is minimum at 12
neurons and for Network B, around 18 neurons
(for three damage combinations). Therefore, Net-
work A and Network B display good generaliza-
tion characterigtics with twelve and eighteen neu-
rons, respectively. Further results in this study use
twelve neurons in the hidden layer for Network A
and eighteen neuwrons for Network B.

Damage Detection

Training and Testing Network A is trained using
simudated fault data for the three damages over
the full range of damage level dp,. (Eq. 14}, This
mcludes both individual as well as combinations
of the damages. Training data for the three dam-
ages at damage levels d;, are simultaneously pre-
sented to the neural network as matrix F,. Once
the network is trained, the ability of the network
to fit the training data exactly is verified. Then,
the test data corresponding to damage levels d;.
(Eq. 15) are analyzed. Both ideal and noise con-
taminated test data are used. The test data is also
simultaneously presented to the trained network
for the three damages at damage levels defined by
diest- For ideal test data, the network identifies
the damage perfectly. Perfect identification im-
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Figure 19: Network error for generalization with
increasing number of neurons in hidden layer, nor-
malized by error of generalization with two neu-
rons (all test data presented simultaneously to the
trained network)
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Figure 20: Number of errors in pattern classifica-
tion with increasing noise level for neural network
trained on ideal data and noisy data (all test data
presented simultaneously to the trained network)
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plies that the target matrix T" has the 1's and 0's

" in the correct places, as shown in Eq. 21.

The trained network is also used to identify dam-
age from noise contaminated data. For noise con-
taminated test data, the network may make errors
as noise levels are increased. As noise levels in the
test data are increased, some of the elements of
the target matrix are placed into the wrong posi-
tion by the neural network. The number of errors
made by Network A is defined as the number of
columns in target matrix T where the 1’s and 0's
are misplaced, and is denoted by N.. Fig. 20 shows
the number of errors made by the network with
increasing noise levels in the test data. For com-
parison, results from a network trained on icdeal
data alone are also shown. For a network trained
on ideal data alone, it is found that the network
begins to misidentify damage even in the pres-
ence of low levels of noise (as low as 2 percent)
in the test data. However, the network trained
on noisy data produces no classification error for
noise less than 10 percent and relatively small er-
ror at even higher noise levels, compared to the
network trained on ideal data alone. This illus-
trates the benefits of training the neural networlk
using noisy data. Note that the network is trained
on noisy data corresponding to five percent and
ten percent noise contamination only, for ten cy-
cles.

Reduction in System Parameters used for Training
The neural network uses all 159 rows of the train-
ing vector p corresponding to the first five har-
monics of the lag, fHap and torsion response and
the first ten harmonics of the three hub forces and
three hub moments. However, many of the ele-
ments in p are negligible and it is likely that the
neural network malkes the pattern classification us-
ing only a subset of the system characteristics it
receives, To reduce the size of the input vector,
the rows of input matrix P and P, for which all
elements are negligible are deleted. The definition
of negligible is given in Table 2. The remaining
rows in the input matrix corresponding to system
parameters that are moderale or significant, for at
least one damage case, are shown in Table 4. By
removing the negligible components of the input
data, the number of rows in P is reduced from 159
to 70. After deleting the negligible system parame-
ters, the network is again trained and tested using
the reduced data. The network gives the same
resubls after removal of the negligible inputs, com-
pared to when alf inputs are used. This reduced
set of network input is used for subsequent results.

Minimum Higher Harmonic System Parameters

To determine the absolute minimum of inputs nec-
essary, each input is eliminated one by one. Higher
harmonic inputs are eliminated first. The final




Table 4 - Moderate and Significant Harmonics of System Parameters (per rev)

Av | Dw | Ap | AF, | AF, | AF, | AM, | AM, | AM,
0 0 3 1 1 1 0 1 0
1 1 4 4 5 2 1 4 4
3 5 6 3 2 6 5
6 8 5 4 8 6
9 8 6 10

10 10

Table 5 - Lowest Harmonics of System Parameters Needed for Detection (per rev)

Av | Aw | Ad T AF, | AF, VAF, | AM, | AM, | AM,
] 0 @ 1 1 1 4 1 1
1 1 4 3 4

data sct which is able to satisfy training and test-
ing criteria consists of steady lag response, steady . .
and 1/rev flap and torsion response, 1/rev and f[\)/lgtlggil;%g?sﬁgﬂt;glnNSelﬁcoeds(sfuIly
4/rev longitudinal and lateral force, 1/rev and
3/rev vertical force, 4/rev rolling moment, 1/rev
pitching moment, and 1 /rev and 4/rev yawing mo- 1%
ments. These system parameters define the lowest
harmonics of the system parameters which must Noise 10
be monitored to detect the three damages con- Lg\:,sé?
sidered in this study {Table 5). The elements of in Test
Table 5 are a subset of the elements in Table 4 and Data &
can be usged to lower the number of rows in the P
matrix from 70 to 26. However, if more damage o
types are present than the three considered in this
study, additional system parameters may have to Undamaged '~ s 25 95 45 o5 65 76 a5 o8

be monitored.

Sequential Testing The results discussed above
were for cases when the neural network was simul-
tancuosly presented with test data for the three
damages at ten damage levels each. This proce-
dure of “batch” or “parallel” testing is useful in
determining the network generalization capability
and in network sensitivity studies discussed ear-
lier. However, in an actual helicopter, any damage
will manifest itself by changes in system parameter
veetor p corresponding to any one damage at one
damage level. The damage detection scheme must
be able to detect damage from the input vector
p. To simulate this condition, the neural network
trained using system paramebers in Table 5 is se-
quentially presented with system response vector
p for a given damage at a damage level selected
from dyes. The correct network cutput is then a
vector ¢ which is {1, 0, 0} for moisture absorption;
{0, 1, 0} for lag damper damage; and {0, 0, 1},
for the damaged pitch-control system. If the cor-
rect output is obtained when the network is pre-
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Increasing Damage Level

d

Figure 21: Detection of moisture absorption by
trained neural network when sequentially pre-
sented with rotor-system response test data at sev-
eral damage levels

sented with vector p, the network has “detected”
the damage. Figures 21, 22 and 23 summarizes the
detection resulis for fest data p at several noise
levels and damage levels. The shaded squares in
these figures indicate successtul detection of the
damage by the neural network, at a given noise
level and damage level. The blank portions of the
figure indicate a misdetection.

For ideal test data, moisture absorption can be de-
tected for damage level d > 0.15, and for damaged
tag damper and damaged pitch-control system, for

Significant
Damage



Detected by Neural Network

Lag Damper Damage Successfully

15
10
Noise
Level
in Tests
Data
0
Undamaged Significant
) 05 15 25 35 45 .55 .65 75 85 .95 Damage
| asing Pamage Lavel
nere |gd g -
Figure 22: Detection of damaged lag damper

by trained neural network when sequentially pre-
sented with rotor-system response test data at sev-
eral damage levels
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Figure 23: Detection of damaged pitch-control
system by trained neural network when sequen-
tially presentecd with rotor-system response test
data at several damage levels
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d > 0.25. As the noise contamination of the test
data increases, it becomes progressively difficult
for the neural network to correctly detect faults at
small damage levels. It appears from these figures
that moisture absorption is easier to detect than
the other damages, and that faults with high dam-
age levels (d > 0.85) can be detected even when
the system response data has significant noise con-
tamination.

Next, combinations of the faults are investigated.
To simulate this condition, the neural network is
presented with the system response vector p for
two damages at two damage levels. The correct
network output is then {1,1,0} for moisture ab-
sorption and damaged lag damper, {1,0,1} for
moisture absorption and damaged pitch control
system and {0, 1, 1} for damaged lag damper and
damaged pitch-control system. If the correct out-
put is obtained when the network is presented with
the vector p, the network has detected the dam-
age. Fig. 24 shows the detection resuls at several
ncise levels and several damage levels for the com-
pound fault consisting of moisture absorption and
damaged lag damper. Results are shown for four
cases with noise levels in the test data increasing
from zero to 15 percent. Successful fault detection
by the neural network is represented by the shaded
squares shown in the figure. The blank portions in
the figure show misdetection. At low noise levels
even smail damage levels can be detected. How-
ever, as the noise level in the test data increases, it
becomes difficult to detect damages at small dam-
age levels. Similar results for moisture absorption
and damaged pitch control system are shown in
Fig. 25 and for damaged lag damper and damaged
pitch control system are shown in 26,

amage entificati
Damage Identification

Training and Testing Once the damage has been
detected, the next step is damage extent identifica-
tion, i.e. to estimate the degree of damage. Neural
Network B is used for this damage identification.
The reduced data set of system parameters shown
in Table b is used for training and testing the net-
work. The neural network is trained to map the
sraining data to the rotor system parameters cor-
responding to the damage level dy.. Both ideal
and noise contaminated training data are used.

Figures 27-29 shows the identification ervor vary-
ing with the noise level in the test data for three
damages. The identification error is defined as

Cid = Hdtssl h dout'put”
h ”dtﬁs.'.H

where dieq is the desired output of the trained
network when exposed to test data and doyipus 18

(33)
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Figure 24: Detection of moisture absorption and damaged lag demper compound fault by trained neural
network when sequentially presented with rotor-system response test data at several damage levels and noise
levels
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Figure 25: Detection of moisture absorption and damaged pitch-control system compound fault by trained
neural network when sequentially presented with rotor-system response test data at several damage levels

and noise levels
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Figure 26: Detection of damaged pitch-control system and damaged lag damper compound fault by trained
neural network when sequentially presented with rotor-system response test data at several damage levels
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Figure 27: Errvor in damage identification for mois-
ture absorption with increasing noise level in test
data

the actual output of the network. For compari-
son, these figures also shows the error of a net-
worl trained on ideal data alone. For a noise tevel
below 2 percent, the network trained with ideal
data shows zero error. However, as the noise level
increases above 2 precent, the network trained on
ideal data shows increasing ervor in identification,
The identification error for the network trained
with ideal data is relatively higher for the dam-
aged pitch-control system and least for moisture
absorption, with the damaged lag damper being
in between. In contrast, the network {rained on
noisy data gives almost zere error for noise levels
less that ten percent, and low error even at noise
levels of 15 and 20 percent, for all three damages.
Note that the noisy training data includes five per-
cent and ten percent noise contamination only, for
ten cycles.

Figures 30-32 shows the ervor in identification of
the compound fauit consisting of combinations of
moisture absorption, damaged lag damper and
damaged pitch-control system. In each case, the
neural network trained with noisy data gives supe-
rior performance compared to the network trained
on only ideal data.

Conclusions

A. physies based model of the helicopter rotor sys-
tem is uscd to analyze the influence of selected ro-
tor system faults. Faults modeled include freeplay
in the pitch-control system and lag damper and
friction in the flap and lag hinges and the pitch
contro} system. In addition, simulated fault data
from the damaged rotor system is used to develop
a neural network based approach for rotor-system
damage detection. Damages used for traing the
neural networlk inclide moisture absorption, dam-
aged lag damper and damaged pitch-control sys-
tem. Both single faults and multiple faults are
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Figure 28: Error in damage identification for dam-
aged lag damper with increasing noise level in test
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Figure 29: Error in damage identification for dam-
aged pitch-control system with increasing noise
level in test data
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Figure 30: Error in damage identification for mois-
ture absorption and lag damper compound fault

with increasing noise level in test data



0.008
o 005: % Network Trained using ideal Data
T+ Network Trained using Noisy Data
0.0041 .
0.003+ x
i 0.002]
] x %% .
X
0.00%+ % %
] x +
0.000F wx Eoa v+ 4+ 4y
«0.001 4—-r— S ST NS M }
G 5 10 15 20

Noise Level in Test Data (percent)

Figure 31: Error in damage identification for mois-
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Figure 32: Error in damage identification for dam-
aged lag damper and damaged pitch-control sys-
tem compound fault with increasing noise level in

test data
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considered on the damaged blade. The following
conclusions are drawn from this study.

1.

[y

Freeplay in the pitch control system and the
lag damper can be detected by monitaring the
/rev flap response and the 1/rev and 2/rev
torsion response of the damaged blade, and
the 4/rev hub loads.

. Friction in the flap and lag hinge and pitch

control system can be detected by monitor-
ing the 2/rev lag response, steady, 1/rev and
2/rev flap response, 1/rev torsion response
and 4/rev hub loads.

A feedforward neural network using back-
propagation learning and one hidden layer
can detect and quantify damage after being
trained on simulated ideal and noise contam-
inated data obtained at several damage levels.
Damage can be detected for both single faults
and muitiple faults on the damaged blade.

For accurate estimation of the type and ex-
tent of damages, it is important to train
neural networks with noise contaminated re-
sponse data. A neural network trained on
ideal simulated data shows large errors when
even small amount of noise is presented in the
test data.

. For the faults considered in this study a neu-

ral network with an input fayer, a hidden
layer and an output layer is used. The num-
ber of neurons in the input and output layers
is fixed by the size of the input and output
data, For damage detection twelve neurons
in the hidden layer are found to be give a low
error of generalization. For damage identifi-
cation, eighteen neurons in the hidden layer
is found to give low error of generalization.

When the blade tip response, hub forces
and hub moments are used together to train
the network, damage can be detected with-
out relying significantly on higher harmonic
data. For the damages investigated it was
found that monitoring the steady lag, flap
and torsion response, 1/rev flap and torsion
response, 1l/rev and 4/rev iongitudinal and
lateral forces, 1/rev and 3/rev vertical forces,
4/rev rolling moment, 1/rev pitching moment
and 1 /rev and 4/vev yawing moment data was
sufficient for detection and identification.
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