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1. INTRODUCTION 

This paper deals with some recent developments of a boundary integral equations methodol­
ogy for the analysis of irrotational and rotational transonic flows. The presence of vorticity, in the 
transonic regime, is caused both by viscous effects inside the boundary layer and by the curvature 
of the shock. Commonly, viscous effects are taken into account in the interactive boundary layer 
techniques, whereas the shock curvature vorticity is the main issue in Euler method analyses (for a 
review on the subject, see [1] and [2]). Whenever the transonic flow is such that the shock generated 
is weak, then the vorticity beyond the discontinuity is negligible and the interactive boundary layer 
methodology can satisfactorily predict the dynamics of the flow. This is the case that we intend to 
analyze in this work. 

Here, the effects of the rotationality in the field are evaluated by using a potential-vorticity 
decomposition introduced in [3] which. As shown in [4] and [5], for negligible shock-induced vorticity 
and for high Reynolds number flows, this decomposition reduces to the well-known transpiration 
velocity approach introduced by Lighthill [6]. This implies a source-sink distribution over the body 
and wake surfaces in order to take into account the influence of the rotationality of the flow on the 
external solution. 

For the irrotational term in the decomposition, the aerodynamic analysis is performed by using 
a boundary integral formulation for the conservative full-potential form of the wave equation for the 
velocity potential, introduced by Morino and lemma [7] and applied to helicopter rotors in hover in [8]. 
In the numerical implementation only the region of the flow close to the body (where the non-linear 
effects are important) has to be included in the computation. The method is shock-capturing and 
artificial dissipation is introduced in the supersonic region of the field by a flux-upwinding technique. 

The boundary-layer flow is here analyzed by an integral approach. The laminar region is 
studied by a modification of the simple, but realistic, Thwaites' formula [9], whereas the turbulent­
flow evolution is described by the lag-entrainment method, introduced by Green, Weeks and Brooman 
[10]. 

The boundary-element full-potential formulation has already been validated for steady, three­
dimensional flows. Some results for fixed wings [11] and recently obtained results for hovering rotors in 
the transonic regime are presented here. The formulation for viscous flows is presented for the general 
case. The validation is limited to steady two-dimensional attached flows; as mentioned above, in this 
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case the formulation reduces to that by Lighthill [6] (transpiration velocity approach). Specifically, 
two-dimensional subsonic viscous flow configurations are considered first in order to test the interactive 
technique introduced here. Finally, results for viscous transonic flows around airfoils are obtained by 
matching the full-potential formulation with the above mentioned technique for the analysis of the 
viscous effects. 

2. BOUNDARY INTEGRAL FORMULATION FOR EXTERNAL FLOW 

Here, we give an outline of the boundary integral formulation for potential transonic flows. 
For the sake of simplicity, we limit ourselves to fixed wing analysis (the formulation for rotary wings 
described extensively in lemma, Gennaretti and Morino [8] is very closely related to that for fixed 
wings). 

The differential equation governing the motion of an isentropic irrotational flow is the full­
potential equation, which is written here in the form of a non-linear wave equation. In a frame of 
reference rigidly connected with the body translating with velocity VB = -U00 i, we have 

(1) 

where a represents all the non-linear terms, whereas dB/dt = 8j8t + U008j8x is the time derivative 
following a point in a frame of reference fixed with the undisturbed flow. Equation 1 is derived by 
combining the conservative form of the continuity equation with Bernoulli's theorem for isentropic 
potential compressible flow, and by taking into account the isentropic density-enthalpy relation. The 
expression for a is 

where 

8b 
a='V·b--

8t 

[ (
. ) llh-1 whereas pj p00 is obtained from the Bernoulli theorem as pj p00 = 1- </; + v2 /2 jh00 • 

(2) 

(3) 

The boundary conditions complete the differential problem. These are the impermeability of 
the body surface SB, or 8</;j8n = VB· n for x on SB, and</;= 0 at infinity. In addition, we have 
the conditions on the wake surface Sw, i.e., continuity of pressure, b.p = 0, and no penetration, 
( v- vw) · n, where vw is the velocity of a point of the wake. These yield (i) b. ( 8</;j8n) = 0, and (ii) 
Dw(b.</;)jDt = 0 for x on Sw (where Dw/Dt = 8j8t+vw ·\7, with vw = (v1 +v2)/2, where v 1 

and v2 denote the velocity on the two sides of the wake); condition (ii) implies that b.</; is constant 
following a wake point xw, mantaining the same value it had when xw was leaving the trailing edge 
(see Morino [12] for details). 

Next, for the sake of clarity, we limit our presentation to the steady-state case (although in 
the actual computation the steady solution is obtaibed through a time marching technique, described 
in [8] and [13]). Then, applying the classical Prandtl-Glauert transformation of coordinates 

xo = x / (3; Yo = y; zo = z (4) 
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where (3 = (1- M!)112 , with Moo= U00 ja00 , Eq. 1 reduces to the Poisson equation 

'V5</> = ao 

where \76 is the Laplacian operator in the Prandtl-Glauert space, and 

1 8bx 8by 8bz 
ao=--+-+-

(3 8xo 8yo 8zo 

is the resulting expression for the non linear terms. 

(5) 

(6) 

Next, using the second Green formula applied to a volume outside a surface which surrounds 
body and wake and recalling that 6.(8</>j8n) = 0, one obtains in the limit the following integral 
representation for the velocity potential in the Prandtl-Glauert space 

</>(xo.) = fia ( G :~ -1> :~) dS- Jfsw 6.</> :~ dS + JJfv ao G dV (7) 

where the unit source G = -1/47rllxo- xo.ll satisfies the equation \76G = 6(xo- xo.), whereas SB is 
the body surface, Sw is the wake surface, and V denotes the fluid region outside the body. 

If a0 = 0 (linear case) and x 0• E V, Eq. 7 is an integral representation of </>(xo.), as a function 
of</> and 8</>j8n0 on SB and of 6.</> on Sw. On the other hand, if xo. is on SB, Eq. 7 represents a 
compatibility condition between </>and 8<f>f8no on SB and 6.</> on Sw for any function </>satisfying 
Eq. 7. Since 8</>j 8n is known from the boundary conditions, and 6.</> is constant along a wake 
streamline and equal to the value at the trailing edge, then Eq. 7 corresponds to a boundary integral 
equation for </>. In the nonlinear case ( a0 fc 0) the integral equation is solved by iterations. Two 
different approaches are introduced for the numerical evaluation of the volume integral of Eq. 7. In 
the first one, an integration by parts of the non-linear integral term is introduced in order to avoid 
the evaluation of the divergence operator, whereas in the second approach the volume integral is 
discretized in its original form (see [8] and [13] for further details). 

3. VORTICITY INFLUENCE ON POTENTIAL FLOW 

Next, in order to take into account the effects of vorticity on the potential flow, we discuss some 
results obtained from a potential-vorticity decomposition introduced by Morino [3]. These results 
concern some theoretical developments which provide an integral representation for the potential 
in the exterior region (that outside the vortical region), based on the knowledge of the vorticity 
distribution. Therefore, it may be applied also for viscous transonic flows, where vorticity is generated 
both on the body wall and on the shock surface. For high-Reynolds-number flows in presence of weak 
shocks the resulting interaction formula reduces to the well-known Lighthill transpiration velocity 
method (see [4] and [5] for details). Here, for the sake of clarity, only the incompressible 2-D flow 
case will be presented. 

Consider the following decomposition for the velocity field, as seen in a frame of reference fixed 
with the body 

v=\l<p+w+voo (8) 

with \7 x w = w k, i.e., 

8wy 8wx -----=w 
8x 8y 

(9) 
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A particular solution of Eq. 9 is given by 

Wx(x, y) = 0 

Wy(x, y) = fox w dx' (10) 

where Wx = 0 is an arbitrary, but legitimate assumption. 
Next, applying the divergence operator on Eq. 8 one obtains the Poisson equation for the 

potential 

(11) 

which, following the same procedure used to obtain Eq. 7, yields the following integral representation 

cp(x.) = ( (xa- cp ~~) dx + JiF w · \IG dA (12) 

where AF denotes the fluid field outside the body, whereas x = -v00 • n, with n denoting the unit 
vector normal to the body wall. To complete the method, the transport vorticity equation is needed 
in order to determine w, and hence the field term in the integral representation Eq. 12. 

However, as shown in (4] and [5], Eq. 12 may be recast into a novel format in order to obtain 
a convenient expression for the external potential ¢>. To this aim, we introduce the integral quantities 

wo(x,y) = 100 

w dy'; w1(x,y) = 100 

wo dy' (13) 

Assuming the following expression for the vorticity (valid for thin attached boundary layer flows) 

for v = u i + v j, Eqs. 13 become 

&u 
w(x, y) = - &y 

w0(x,y)=u-u,; w!(x,y)= 18
(u-u,)dy' 

(14) 

(15) 

where 6 is the boundary-layer thickness, whereas u, is the flow velocity at the outer edge of the 
boundary layer. Combining Eq. 12 with Eqs. 10 and 15, after lenghty manipulations, one obtains [4, 
5] 

cp,(x.) = ( [(x + Vtr) G- 'Pe ~~] dx + lsw ( Vtr G- b.cp, ~~) dx 

+ JiF [(:xl(x)(u,-u)dy') +v] ~~ dA (16) 

where cp, = ¢> outside the vortical region, whereas Vtr is the transpiration velocity introduced by 
Lighthill [6], given by Vtr = &( u, 6*)/ &x. Therefore, the resulting expression for the external potential 
contains the desired vorticity-influence terms: (i) a source-sink distribution over the body and wake as 
already indicated by Lighthill [6], and (ii) a doublet distribution in the rotational field which allows Eq. 
16 to be applied also for some of those cases where the Lighthill correction is no more satisfactory 
(e.g., flows with massive separation and/or wide shock induced rotational regions). Here, for the 
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computed numerical results, Eq. 16 has been used neglecting the field term. This has been shown to 
be legitimate for attached high Reynolds number flows (see [4]), and is also presumably legitimate in 
the presence of weak shocks (all the cases here analyzed are within this category). However, this work 
has to be considered the first step toward the analysis of flows with wide rotational regions, where all 
terms in Eq. 16 are important. 

The above formulation may be extended to compressible flows [3,12]. Hence, for viscous 
transonic flow analysis, once the full-potential distribution has been determined, it can be used 
both to determine the vorticity beyond the shock and as an input for the boundary layer equations 
examined in the next Section. Next, the corrective terms in the potential integral representation can 
be evaluated (Eq. 16), and an iterative procedure can be applied until convergence, in order to obtain 
the flow fteld solution. 

4. INTEGRAL BOUNDARY LAYER FORMULATION 

In this Section we present a brief outline of the methodology we have used in order to solve 
the rotational flow in the boundary layer. As mentioned above, the rotational region is divided into 
three regions: the laminar boundary layer, the turbulent boundary layer, and the wake. The laminar 
boundary layer region has been studied by a modification of the Thwaites method [9], consisting of 
a compressibility correction to the well-known Thwaites integral, based on the Stewartson transfor­
mation (see [14] for details). Next, once detected the transition zone by Michel's method [15], the 
lag-entrainment method [10] has been applied both in the turbulent region and in the wake. It con­
sists of three differential equations: the first is the classical von Karman equation, the second is the 
equation taking into account the flow entering the boundary-layer, whereas the third is derived from 
the turbulent kinetic energy equation. Furthermore, semi-empirical algebraic closure relationships 
complete the method. For steady-state flows, the lag-entrainment method is based on the following 
set of ordinary differential equations 

d1? = C1 -(H+ 2 -M2)!.._du, 
dx 2 u, dx 

df:r = ~ df:r [cE- HI (CJ- (H + 1)!.._ du,)] 
dx {) dH 1 2 u, dx 

df:r 1 
- = -(h +h) dx {) 

(17) 

(18) 

(19) 

where M is the flow Mach number at the outer edge of the boundary layer. The other terms used to 
describe the boundary-layer evolution are the displacement thickness 8*, the momentum thickness{), 
the entrainment coefficient CE, the friction coefficient Cj, shape factors H, if, HI> whereas h, h are 
functions of u, and of some of the integral quantities introduced (for the closure relationships to be 
used and for detailed information on the method, see [10]). 

For attached flows, given u, and the closure relationships, Eqs. (17)-(19) can be integrated 
to obtain the turbulent boundary layer solution (direct method). On the other hand, for separated 
flows the set of differential equations (17)-(19) turns out to be singular (see [4] and [16]) and then the 
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inverse solution method is nedeed. It consist of (i) adding a fourth differential equation to the set of 
Eqs. (17)-(19), e.g., that from the definition of the shape factor H, i.e., 

do* = {) dH + H d{) 
dx dx dx 

(20) 

(ii) assuming known an integral variable (e.g., 8*), and (iii) computing the resulting boundary-layer 
edge velocity. Using an iterative technique, the solution is obtained when the velocity from the 
boundary layer solution is equal to that given by the external solution. 

5. NUMERICAL RESULTS 

Some results obtained from the formulation described above will be presented in this Section. 
First, results concerning 2-D and 3-D transonic configurations (both a fixed wing and a hovering 
rotor) will be shown in order to demonstrate the capability of the full-potential formulation to predict 
irrotational flow solutions. Then, the accuracy of the interactive boundary-layer technique will be 
tested by considering a 2-D subsonic viscous flow configuration results. Finally, results concerning 
2-D transonic viscous flow configurations will be presented, in order to validate the full-potential­
boundary-layer matching technique. For the numerical results, a zero-th order boundary element 
discretization has been used, with the addition of field volume elements to take the non-linear terms 
into account. 

Full-potential results 
First, we consider a cylinder section with Moo = 0.5. In Fig. 1 two different mesh size results 

are compared with a finite volume full-potential solution [17]. The discontinuity predicted by our 
method appears as an actual jump (confined within one single element); the agreement with the finite 
volume solution is very good in terms of both shock position and intensity. Nate that the convergence 
of the solution to the steday state is extremely fast and monotone (see Fig. 2). 

Results for a rectangular biconvex-section wing with aspect ratio 4, tickness 6%, and angle of 
attack a= 1.5° are considered in Fig.3: in particular, the comparison with a finite difference solution 
[18] at the root section reveals a very good agreement. Next, we consider a non-lifting UH-1H hovering 
rotor, with MriP = 0.88. Figure 4 depicts the pressure coefficient distribution at the radial section 
r / R = 0.95: our preliminary results are compared with both full-potential and Euler results obtained 
by Prieur, Castes and Baeder [19]. In this case, the agreement between the two full-potential results 
is not so good, and this ma.ight be due to the coarse grid we have used for the calculations (the shock 
position reveals a lack of conservativity in our results). However, our solution behaviour is comparable 
with that obtained in [19]. 

Viscous subsonic flow results 
Then, for the sake of the validation of the internal-external flow interaction technique, we 

present some results concerning a RAE 2822 airfoil with Moo = 0.6 and Re = 3.5 X 106. Observe that, 
in this case, the flow remains subsonic all over the airfoil, but the non-linear terms have been included 
in the computation in order to capture the compressibility effects accurately. In Figs. 5, 6, and 7, 
computed values of momentum thickness, friction coefficient, and pressure coefficient are compared 
with experimental data given in [20]. In particular, measured values of boundary layer quantities 
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obtained at different wake sections, available in [20], are shown ('Experimental 1' and 'Experimental 
2', in both Figs. 5 and 6). It is apparent that the agreement is quite good, demonstrating the 
capability of the interactive boundary-layer technique to capture the viscous effects. 

Viscous transonic flow results 
Here, we present some preliminary results concerning viscous transonic flow configuration. 

First, we consider a non-lifting biconvex airfoil with thickness 6%, Moo = 0.858, and Re = 2 x 106 . 

Figure 8 depicts the comparison of the experimental data [21] with both our full-potential results 
and our interactive boundary-layer results. Starting from the full-potential solution, our viscous 
solution gets closer to the experimental data, although the agreement is not yet satisfactory. Similar 
considerations may be made for Fig. 9, where our results are compared with measured data and full 
Navier-Stokes solution from [22], for a non-lifting NACA 64A010 airfoil, with M 00 = 0.8, and Re = 
2xl06 . Finally, we consider a lifting NACA0012airfoil, with Moo= 0.775,Re = 3.5x106,anda = 1°. 
Figure 10 shows the measured pressure coefficient distribution [23), the pressure coefficient computed 
by the full-potential solution, and that computed by the interactive boundary-layer technique. In this 
case, our viscous results show a bad agreement with the experimental ones in terms of the sharpness 
of the shock, but this may be due to the poor accuracy of the starting full-potential solution. In 
fact, it must be pointed out that we have used a nearly converged full-potential solution, since some 
difficulties in the iterative procedure have been encountered. 

6. CONCLUDING REMARKS 

A boundary integral equations methodology for the analysis of irrotational and rotational 
transonic flows has been discussed. Numerical results concerning two- and three-dimensional config­
urations have also been presented, and compared with experimental data and existing CFD results. 

Full-potential results have shown a good level of accuracy when compared with assessed CFD 
results, even though some lack of conservativity has been observed in the hovering rotor case, where 
a finer grid analysis is nedeed. 

Subsonic viscous flow results have demonstrated the capability of the used interactive technique 
to capture viscous effects. 

For the transonic viscous flow cases encouraging preliminary numerical results have been ob­
tained, even if a better analysis in the shock region (where flow separation may occur) has to be 
performed. 

The extension of the methodology to strong shock and separated flow cases is the next goal of 
our activity in this field. 
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