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Abstract 
 
A crucial step in the design of rotorcraft is the prediction of oscillatory loads produced by the periodic 
aerodynamic environment of the helicopter rotor. These oscillatory loads cause vibrations in the helicopter. 
The vibrations normally pervade both the rotor and the airframe and can seriously degrade service life as 
well as ride qualities. Accurate prediction of helicopter oscillatory / dynamic  loads and response requires the 
development of multidisciplinary comprehensive analysis program which combines structure, aerodynamic 
and inertial operators. In this study, one such comprehensive analysis model is described.The model 
includes elastic flap-lag-torsion and axial blade deformations, modified ONERA dynamic stall theory for 
airloads calculation, and Peters-He dynamic wake theory for inflow computation. In the present study the 
number of state variables representing the inflow are varied from 3 states to 45 states by increasing the 
number of harmonics and radial functions, and their effects on helicopter trim, rotor loads and control 
response are analysed. Results indicate that there is a clear redistribution of inflow with the increase in 
number of inflow states. In general there is an increase in the inflow from forward to the aft of the rotor disk 
with the increase in number of states. It is important to note that there is no significant change in the trim 
variables with the increase in number of inflow states. However with the inclusion of higher harmonic inflow 
states, the harmonic content increase in sectional loads and blade root loads. Higher inflow states are seen 
to affect helicopter control response to longitudinal input at high speeds. 

 

NOMENCLATURE 

Symbols 

a   torque offset or lift curve slope 

m
a

l
a

d
a ,,   parameter used in dynamic stall model 

b   semi blade chord 
c   chord  

 C    damping matrix in modal space 

zL
C

mL
C

dL
C ,,  linear static drag co-efficient extrpolated 

to the stall region 

z
C

m
C

d
C  ,,  difference between extrpolated linear  

static coefficients and measured static    
coefficients 

D   drag on airfoil 

m
dd ,   parameters used in dynamic stall model 

2
,

1
ee   root offset 

z
e

y
e

x
e ˆ,ˆ,ˆ  unit vector along x, y, z axes 

l
E

m
E

d
E ,,  parameters used in dynamic stall model 

 F    generalised aerodynamic load vector 

m
n

H    parameter used in dynamic wake model 

 K    stiffness matrix in modal space 

m
n

K    parameter used in dynamic wake model 

L    lift on airfoil 











 sLcL

~
,

~  influence coefficients matrices 

l    length of the blade 

e
l   length of finite element 

m   mass per unit length of blade 

M   moment on airfoil, total number of  
harmonics 

 M    mass matrix in modal space 

pm,   harmonic number 

jn,   polynomial number 

N   number of finite elements 

b
N   number of blades in main rotor 

f
r

f
q

f
p ,,  angular velocity components at c.g of  

helicopter 
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)(v
p
j

P   legendre polynomial function 

)(v
p
j

P   normalised legendre polynomial function 

r   radial distance 

r   nondimensional radial coordinate, Rr /   

l
r

m
r

d
r ,,   parameters used in dynamic stall model 

R    main rotor blade radius 

m
ss,    parameters used in dynamic stall model 

S    total inflow states 

S
~

  area per unit span of airfoil 

T    kinetic energy  

f
w

f
v

f
u ,,  translational velocity components at c.g   

of helicopter 

t    time   

U    strain energy 

,
1

,
1

,
1

,
1

wvu  

,2
,

2
,

2
,

2
wvu  

,
2

,
2

,
1

,
1

wvwv   

12
,

12
u   element nodal degrees of freedom 

V   oncoming velocity 

R
V

T
V ,   velocity terms used in inflow model 

W   weight of the helicopter 

e
W    external work due to non conservative   

forces  

lX ,   parameters used in dyanmic wake model 

k
X   coordinate along k

th
 blade axis 

zyx ,,    coordinates of point in 
z

e
y

e
x

e ˆˆˆ   

p
j

p
j
 ,    induced flow coefficients 

k
~

,~    parameters used in dyanmic stall model 

d
    blade predroop angle 

p
    blade precone angle 

s
    blade presweep angle 

1
    aerodynamic state in unstalled region in         

                            lift equation 

2
     aerodynamic state in stalled region in         

                            lift equation 

2d
    aerodynamic state in stalled region in         

                            drag equation  

2m
    aerodynamic state in stalled region in         

                            moment equation  

a
    tip anhedral angle 

s
    tip sweep angle 

    total inflow ratio 

i
    induced inflow ratio 

    advance ratio 

    density of air 

p
j

    normalised factor in dynamic wake 

mmd
 ,,,  parameters used in dynamic stall model 

ms
n

mc
n

 ,  coefficients of pressure expansion 

p
j

    radial shape function 

    wake skew angle 

    azimuthal angle 

k
    azimuthal angle of k

th
 blade 

    rotational frequency of the rotor 

     vector of modal degree of freedom 

0
    collective pitch angle 

sc 1
,

1
    cyclic pitch angles 

T0
    tail rotor collective pitch angle 

    fuselage attitude in pitch 

    fuselage attitude in roll 
 
 

Subscripts 

     variation ( ) 

  k1
   quantities in rotating 1k system 

  k2
   quantities in rotating 2k system 

  k3
   quantities in rotating 3k system 

  k4
   quantities in rotating 4k system 

 e    quantities in rotating e system 

     derivative w.r.t. time 

 !!n    double factorial of n 

 
 

1. INTRODUCTION 

Helicopters operate in a very complex dynamic and 
aerodynamic environment. The unsteady 
aerodynamic environment and dynamic response of 
the flexible rotor blades produces a high oscillatory 
and vibratory blade loads. These oscillatory loads of 
the helicopter rotor are a major factor in rotor design 
as they cause vibrations in the helicopter. The 
vibrations normally pervade both the rotor and the 
airframe and can seriously degrade service life as 
well as ride qualities. Accurate prediction of 
helicopter vibratory loads is a key thrust area with in 
the field of rotor aeromechanics since it involves a 
highly nonlinear aeroelastic response problem.  

Formulation of the complete aeroelastic equations of 
motion requires interaction of structural, 
aerodynamic, and inertia terms. The structural 
dynamic modeling of the coupled bending, torsion, 
and axial deformation of helicopter rotor blades has 
already reached a high level of maturity making use 
of finite element or multibody techniques [1 - 6]. The 
aerodynamic modeling of the rotor involves the 
determination of the inflow at the rotor disk and then 
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the calculation of the airloads on the rotor blades. 
Methods for calculating the inflow range in 
complexity from the uniform inflow model to dynamic 
inflow/wake [7-12] and free-wake models. Because 
of the difficulties in predicting stall and its effect 
using the theoretical unsteady aerodynamics tools, 
researchers depend on empirical or semi empirical 
models. Several mathematical models that attempt 
to predict the effect of dynamic stall are available in 
literature. The ONERA dynamic stall model [13] is a 
relatively simple and efficient model, which can be 
easily incorporated in any aeroelastic analysis.  

In recent years, several aeroelastic studies were 
undertaken by combining different aerodynamic 
models representing the rotor wake effects and the 
unsteady aerodynamics loads on a typical section of 
a rotor blade [14-16]. The complexity of helicopter 
simulation requires the development of a 
comprehensive analysis program that integrates all 
the disciplines involved in the study. Several 
comprehensive analysis codes were developed both 
in academia and in the helicopter industry. A brief 
history of comprehensive analysis has been given in 
[17-19]. 

Laxman et al. [20] formulated a computational 
aeroelastic model by integrating the structural 
model, the dynamic wake model, and the dynamic 
stall model for the prediction of trim and response of 
a helicopter rotor system in steady, level, forward 
flight. The rotor-fuselage coupling was not taken into 
account. Rohin et al. [21] extended the study of 
Laxman to manoeuvring flight condition using 
dynamic wake and dynamic stall aerodynamic 
models and by including rotor-fuselage coupling. In 
references [20-21] the Peters-He dynamic wake 
model for inflow with three states were used for 
prediction of trim and control response analysis of 
helicopter for forward flight and steady level turns. 
The three state Peters-He model is equivalent to 
Pitt-Peters dynamic inflow model and doesn’t exploit 
its full potential. The objectives of this paper are     
(i) Present the development of a comprehensive 
analysis for helicopter with the inclusion of higher / 
multiple inflow states for Peters-He dynamic wake 
model, (ii) Study the effects of multiple inflow states 
on helicopter trim angles, blade root loads and 
control response of the vehicle in level forward flight.  

The following sections of this paper describe the 
model formulation and solution procedure. Some 
results are compared with flight test data for 
validation.  

 

2. AEROELASTIC MODEL FORMULATION 

The complete aeroelastic model requires the 

formulation equation of motion, representing the 
structural model of the rotor blade, aerodynamic 
model for the evaluation of the sectional loads on 
the blade and rotor inflow model. 

 

2.1. Elastic rotor blade model 

The structural portion of the aeroelastic model is 
based on the elastic blade equation of motion. The 
elastic rotor blades are idealized as long, slender 
beams undergoing moderate deformations in axial, 
bending and torsional modes. The coupling effects 
between axial, bending and torsional deformations 
are designated using non-linear strain displacement 
model. Transverse shear, out of plane warping 
characteristics of the blades are included in this 
formulation. The nonlinear kinematics of deformation 
is based on the mechanics of curved rods [22]. The 
blade structural formulation in this paper is identical 
to the model developed in [23]. Radial non 
uniformities of mass, stiffness, twist, etc., chordwise 
offset of mass center and shear center, blade 
sweep, precone, pretwist, root offset, and torque 
offset are included. The rotor blade with most 
general geometry is shown in Fig. 1. The coupled 
flap-lag-torsion-axial equations of motion of the 
hingeless rotor blade have been derived using 
Hamilton’s principle.  

(1)     0)(
2

1

 dtWTU e

t

t

  

WhereU ,T , eW represent the strain energy, kinetic 

energy, and virtual work of external loads, 

respectively  represents a variation. 

 

 

Figure 1: Rotor blade with a most general geometry 

The governing partial differential equations obtained 
using Hamilton’s principle is solved using finite 
element method in time and space. The blade is 
discretised into sub-regions using beam type finite 
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elements as shown in Fig. 2, and each element has 
14 degrees of freedom as shown in Fig. 3. They 
corresponding to 4 flap, 4 lag, 3 torsional and 3 axial 
degrees of freedom. A cubic Hermite polynomial 
used as an interpolation function for bending 
deflections and quadratic Lagrangian polynomial is 
used for torsional rotation and axial deflection. A 
linear structural dynamic problem is solved in finite 
element domain to obtain the rotating mode shapes 
and frequencies of the rotor blade. The blade 
response is evaluated in the modal space with four 
flap modes, two lag modes, one torsion and one 
axial mode in rotating system. 

 

Figure 2: Finite element model of a blade 

 

Figure 3: Element nodal degree of freedom 

The equation of motion in modal space can be 
written as 

(2)            FKCM     

Where  F  represents the generalized aerodynamic 

load vector. More details of the equations can be 
found in [21]. 

 

2.2.  Aerodynamic model 

Modeling of rotary-wing aerodynamics requires 
consideration of two important aspects, namely, 
estimation of sectional aerodynamic loads on the 
rotor blade and evaluation of inflow through rotor 
disk. Fig. 4 shows several models of varying 
sophistication available for both aspects of rotary-
wing aerodynamics. A systematic study was done 
[20-21] to analyse the influence of different 
aerodynamic models on helicopter trim and 
aeroelastic response of rotor blades. It was 
concluded that the combination of Peters-He 
dynamic wake model for inflow and modified 

ONERA model for sectional loads shows good 
correlation with flight tests. For the present study 
which is an extension of work in [21], shall focus 
mainly on the Peters-He dynamic wake model with 
multiple inflow states and modified ONERA dynamic 
stall model. Both these models are formulated as a 
set of differential equations and very suitable for 
aeroelastic equations.  

 

 

Figure 4: Aerodynamic models 

 

2.2.1. Sectional aerodynamic loads (modified 
ONERA model) 

The modified ONERA dynamic stall model provides 
time variation of lift, moment, and drag on an 
oscillating aerofoil. The stall model assumes that the 
lift, moment, and drag are acting at the quarter chord 
point. The unsteady lift acting normal to the resultant 
velocity is given as  

(3)  
211

~

0
~

2

1
 VVWbkWsbSL    

Where 1 , 2  are evaluated using the following 

equations.  
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1201

2021

2

3

0

2

31

2

3121

WAWzLC
A

W
b

V
AWzLC

b

V
AW

b

V
A

WzLC

b

V
A

b

V
B

b

V
B






















































































  



41
st
 European Rotorcraft Forum 2015 

(5) 

/0

2

2 2 2

2

0W V

V V
a r
l lb b

V V
r V C E Wzl lb b

     

  

   
   
   

    
    
     

 

The unsteady moment on the aerofoil is given as 
 

(6) 
 

/0

2
1 0

2
2

1 1 2

W V

V C d bWm mmL
M S b

VW s bW Vm m m
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
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 

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 
 
 

 

 Where 2m  is evaluated using the following 

equation 

(7)  




















































0/
0

2

2

2

22

W
b

V
mE

VWmCV
b

V
mr

m
b

V
mrm

b

V
mam





 

The unsteady drag acting along the resultant 
velocity is given as 

(8) 











 20/
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Where 2d is evaluated using the following 

equation. 
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Where 
VWzC

/0

 , 
VWmC

/0

 , 
VWdC

/0

  are the difference 

between the linear static aerodynamic coefficients 
extrapolated to the stalled region to the actual static 
aerodynamic coefficient of lift, moment and drag 
respectively, measured at an effective angle of 

attack, VW /0
. The quantities

VWmLC
/0

 , 
VWdLC

/0

  are 

the static moment and drag coefficients in linear 
regime measured at an effective angle of attack, 

VW /0
. The various constants defined in              

Eqs. (3)– (9) are given in [11]. 

2.2.2. Inflow model (Peters-He dynamics wake) 

Although the Pitt-Peters dynamic inflow model [11, 
24] has significantly improved the inflow modeling, it 
still has some limitations because the dynamic inflow 
model is developed only upto two harmonics and for 
each harmonic, only one radial shape function is 

used for induced inflow. Therefore its application is 
limited to a means of accounting for rotor wake 
dynamics of low frequency. Furthermore it is only a 
low order approximation. For investigation of 
rotorcraft vibration, higher harmonic control, 
aeroelasticity dynamic response and aeroelastic 
tailoring, there is a need for a more sophisticated 
and efficient inflow model that can deal with higher 
harmonic, and higher radial modes of induced flow 
distribution. This limitation is overcome in 
generalised dynamic wake theory developed by 
Peters and He [8-9]. 

The generalised dynamic wake theory developed by 
Peters and He is based on acceleration potential 
method for an actuator disc. This model allows for 
arbitrary number of inflow states. The inflow 
expression includes variation in both azimuthal and 
radial directions. The induced flow distribution can 
be represented as an infinite series in terms of a 
harmonic variation in azimuth and arbitrary radial 
distribution functions which is expressed as 

(10)        
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The term vvP p

j /)(  represents Legendre polynomials 

with the nondimensional radial parameter is given by 
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  

In Eq.10, the parameters  tp
j , and  tp

j  

associated with harmonics represent the inflow 
states. 

The inflow states are evaluated by solving governing 
equations which are a set of first order differential 
equations 
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In the above Eqs.13 and 14, the subscripts j, n 
corresponds to radial functions, superscripts p, m 
represent the harmonics and superscripts c, s 
represent cosine and sine components. The linear 
operator  M  associated with acceleration part of the 

induced flow, hence it is called as the apparent 

mass matrix, and it is a diagonal matrix. 




 cL

~
, and 





 sL

~ denote the cosine and sine influence coefficient 

matrices respectively.  
c

V ,  
s

V  represent velocity 

matrices. mc
n

 ,
ms
n

 represents the cosine and sine 

components of the aerodynamic loads acting on the 
rotor system. Closed form expressions for various 
quantities are given below. The apparent mass 
matrix is given as 
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The influence co-efficient matrices are given by 
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Velocity matrix is given as follows 
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The cosine and sine components of the 
aerodynamic loads acting on the rotor system are 
defined in terms of blade lift weighted with radial 

polynomial function )(rm
n . The expressions for the 

rotor loads are defined as 
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The equations in Eq.10 are written for an infinite 
number of azimuthal harmonics and radial shape 
functions. For practical purpose, the number of 
harmonics and shape functions used in the 
modeling of the pressure distribution and induced 
velocity field must be finite. The induced velocity 
field may be assumed as 
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Where N is the highest harmonic in the azimuthal 

direction and Sp  is the number of radial shape 

functions for the 
thP  harmonic. The choice of inflow 

states is based on the relationships in Table 1.  

Table 1 shows the number of radial shape functions 

for each harmonic )( p   in order to have radial terms 

up to a given power of  r  . For example, for terms 

up to r 4 , the p = 0 harmonic would have three radial 

terms; the 1p  and 2p  sine and cosine 

harmonics would have 2 terms each; and the 3p  

and 4p  sine and cosine harmonics would have 

one term each. Thus, a total of 15 terms (or state 
variables) would be used. If more number of 
polynomials are desired without increasing the total 
number of harmonics, a row corresponding to a 

larger power of r  has to be chosen. For example, 

for 4p  and r8 , this would be 5 + 2 (4 + 4 + 3 + 3) 

= 33 total states, denoted as S=33 states. Whereas, 
if the total number of inflow states is calculated using 

all harmonic values for r8 , the value would be 45, 

which is given in the last column of the Table 1. 

 

Table 1: Number of shape functions per harmonic 

 

 

3. NUMERICAL SOLUTION 

Rotary-wing aeroelasticity brings together the 
structural and aerodynamic models described in the 
previous section. In addition to these models, the 
helicopter flight dynamic equations have to be added 
to perform the trim analysis and rotor aeroelastic 
response. Hence comprehensive analysis of 
helicopter is a coupled rotor-fuselage analysis. An 
analytical model representing the coupled 
rotor/fuselage aeroelastic trim and control response 

analysis for a conventional helicopter with hingeless 
rotor blades has been formulated. The solution 
technique aims to obtain the helicopter trim and 
blade response simultaneously by solving in time 
domain the three sets of equations namely, (i) 
equations representing elastic deformation of the 
rotor blade (Eq. (2)), (ii) equations representing 
inflow through the rotor disc (Eq. (10)), and (iii) 
sectional aerodynamic loads representing lift, drag 
and moment acting on the rotor blade (Eqs. (3) - 
(8)). 

A description of the number of variables for the 
dynamic stall model and dynamic wake model with 
varied inflow states from 3 to 45 is given in the 
following: The aerodynamic loads on the rotor blade 
were calculated at 15 equidistant radial stations.  It 
may be noted that there are four state variables for 
lift, two state variables each for drag and pitching 
moment. Therefore, the total number of state 
variables representing the sectional aerodynamics 
for one blade is 120 (15 radial stations x 8 state 
variables per station). The rotor blade structural 
model is represented by eight modes consisting of 
four flap modes, two lag modes, one torsion mode 
and one axial mode. Hence, the total number of 
state variables representing the structural modes 
per blade is 16. Depending on the number of inflow 
states and the number of blades, the total numbers 
of state variables of the problem vary. For three 
inflow states, and for a four bladed rotor system, the 
total number of state variables is 547. They are 480 
(=4*120) aerodynamic state variables, + 64 (=4*16) 
structural state variables + 3 inflow state variables. 
On the other hand, for forty-five inflow states, the 
total number of state variables becomes 589 
(=4*120+4*16+45).  

In the present study, a four bladed system with 
proper spacing in the azimuthal angle is considered 
for the analysis. And also the number of state 
variables representing the inflow is varied from 3 
states to 45 states depending on the number of 
harmonics and radial functions considered for the 
dynamic wake model. By solving the response of all 
the blades simultaneously, one can identify the 
difference in the response of the blades as they go 
around the azimuth. Since, the response and loads 
of all the blades are solved at every instant of time, 
the time varying hub loads and the time varying 
inflow can be captured. Aerodynamics loads acting 
on fuselage, horizontal tail, vertical tail and tail rotor 
are included along with the main rotor loads for the 
estimation of helicopter trim and response 
characteristics.  
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3.1. Trim procedure 

The flow chart of the procedure used for the coupled 
rotor/fuselage trim analysis of a helicopter for level 
forward flight is shown in Fig. 5. A propulsive trim 
procedure was adopted to obtain the main rotor 
control angles, tail rotor collective angle and 
fuselage attitudes.  

The algorithm has two iterative loops; the inner loop 
comprises three sets of differential equations 
representing the blade sectional loads, rotor inflow 
and blade response. The differential equations are 
solved using Runge-Kutta integration scheme. The 
outer loop solves the trim problem which is a set of 
nonlinear algebraic equations [21]. These nonlinear 
algebraic trim equations are solved using      
Newton-Raphson method. Thus the inner loop deals 
with the rotor blade aeroelastic response while the 
outer loop handles the vehicle as a whole. The 
program outputs the inflow over the rotor, hub loads, 
blade response, blade sectional loads, blade shear 
and bending moments, rotor pilot inputs and vehicle 
attitudes. 

 

 

Figure 5: Helicopter trim and rotor response 
algorithm 

 

3.2. Control Response procedure 

Figure 6 shows the flow chart of the procedure used 
for determining the response of the helicopter to pilot 
control inputs. The control response procedure 
starts with a perturbation in any one or combination 
of pilot controls when the vehicle is in trim condition. 

Like in the trim procedure, even here there are two 
loops. However, unlike in the trim procedure, there 
is no iteration involved in both the loops. After the 
perturbation in the pilot controls, the rotor equations 
are solved for loads, inflow and response per time 
step increment. The rotor hub loads along with the 
fuselage and empennage are transformed to the 
center of gravity to satisfy the vehicle equation of 
motion. The control response is determined by 
integrating the full set of nonlinear equations of 
motion of the vehicle with respect to time. More 
details of these equations can be found in [21]. The 
resulting solution is the set of vehicle states 
(translational velocities, angular velocities and 
attitudes) at the end of that time step. The whole 
process is repeated for each subsequent time step 
to evaluate the time evolution of the rotor blade and 
vehicle response. The algorithms shown in Fig. 5 
and 6 were implemented as c

++
 program using the 

open source GSL [25] as the math library. 

 

Figure 6: Helicopter control response algorithm 

 

4. RESULTS AND DISCUSSION 

Using the solution technique described in the 
previous section, results pertaining to trim angles, 
blade sectional loads, root loads, inflow and 
helicopter control response characteristics in level 
forward flight with respect to the total inflow states, S 
are obtained and plotted. For the sake of 
conciseness, only the results pertaining to inflow 
states of S = 3, 10, 15, 21 and 45 are discussed. 
The vehicle and blade data used in the present 
study are given in Table 2. The helicopter modeled 
is a conventional type single main and tail rotor. 
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Main rotor blade is modeled as a hingeless rotor 
blade, and rotor system consists of four blades. 

Table 2: Vehicle and blade properties 

Parameter Symbol Value Units

Air density ρ 0.954 kg/m3

Number of blades 4

Non-dimensional blade chord c/R 0.0757

Solidity ratio  𝜎 0.09646

Weight coefficient  CW 0.00734

Pre-Twist  -12 degrees

Lift curve slope  cl𝛼 5.73

Profile drag coefficient cd0 0.01

Lock number  γ 6.4

Torque offset 0.0015

Predroop 2.5 degree

Modal frequencies of rotor

blade

Lag 0.71, 5.30

Flap 1.09, 2.88,

5.01, 7.57

Torsion 4.37

Axial 33.36

Equivalent flat plate area 0.0131

Parasite drag coefficient 1

Main Rotor

Vehicle

 

 

The variation of control angles and fuselage 
attitudes in pitch and roll with the forward speeds for 
the inflow states of S = 3, 10, 15, 21 and 45 are 
shown in Fig. 7. The analytical results have been 
correlated with the flight data [26]. It can be 
observed that the estimated trim values match 
reasonably well with the flight data. It is also noted 
that there are no significant changes in trim 
variables with the variation of inflow states. 

Figure 8 shows azimuthal variation of the sectional 
aerodynamic lift (8a), drag (8b) and moment (8c) at 
0.95R with forward speeds for various inflow states. 
It is seen that the harmonic content increase with the 
inclusion of higher harmonic inflow states. There is a 
marked dip in the minimum pitching moment (8c) in 
the second quadrant at higher inflow states. It is also 
observed that the sectional loads converge beyond 
10 inflow states. 

The integration of the sectional forces or moments 
outboard of any section provides the shear force 
and bending moment at that section. The variation of 
the blade root shear forces and bending moments 
with azimuth for various inflow states with the 
advance ratio of 0.3 are shown in Fig. 9. Just as for 
the sectional loads, the root shear and bending 
moments show increase in harmonic content with 

increase in number of inflow states. The loads are 
observed to converge for states higher than 10. 

Figure 10 shows the contour plots of the inflow 
variation on the rotor disc for higher harmonics 
inflow states at an advance ratio of 0.3. The inflow 
distribution significantly changes over the rotor disc 
for higher inflow states. It is seen that there is an 
increase in the inflow from forward to the aft of the 
rotor disc. 

Figures 11-14 show the control response plots for  
step input of 1 deg., in lateral and longitudinal cyclic 
for hover and µ = 0.25 for various inflow states. For 
analysis, the response during the initial couple of 
seconds is more important. From Figs. 11 and 12, it 
is seen that there is not much influence of the 
number of inflow states on the roll control response 
in hover. But the pitch response shows a deviation 
for higher inflow states. From Fig 13, it is seen that 
at high speeds (µ = 0.25), there is not much effect of 
the number of inflow states on the pitch and roll 
rates for lateral cyclic step input. It is only for the 
longitudinal cyclic step input at high speed (Fig 14), 
the pitch and roll rates are seen to vary drastically 
with change in inflow states. This aspect needs to 
be analysed further. 

5. CONCLUDING REMARKS 

In this paper, a systematic study was undertaken to 
analyse the effects of multiple inflow states of 
dynamic wake model on trim, rotor loads and control 
response of helicopter in forward flight. The 
important observations of this study can be 
summarized as follows. 

(i) The results of the present study shows that there 
is a clear redistribution of inflow pattern with the 
increase in number of inflow states. In general there 
is an increase in the inflow from forward to the aft of 
the rotor disk.   

(ii) The trim variables for the forward flight are 
observed to be in good agreement with the flight test 
data. It is important to note that there is no 
significant change in the trim variables with the 
increase in number of inflow states.  

(iii) Blade loads are seen to have higher harmonic 
content with increase in the number of inflow states. 

(iv) The tip sectional loads and blade root loads 
curves are seen to converge beyond 10 inflow 
states. For the 4 bladed rotor considered in this 
study, 15 inflow states (4 harmonics) seems to be 
sufficient to capture the inflow effects. 

(v) Higher inflow states are seen to affect response 
to longitudinal input at high speeds. 
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Figure 7a: Vehicle pitch attitude with forward speed. 

 

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16

 Flight test

 3 states

 10 states

 15 states

 21 states

 45 states



 (

d
e

g
)

  

Figure 7c: Main rotor collective variation with forward 
speed. 
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Figure 7b: Vehicle roll attitude with forward speed. 
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Figure 7d: Lateral cyclic variation with forward speed. 
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Figure 7e: Longitudinal cyclic variation with forward speed. 
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Figure 8a: Sectional aerodynamic lift variation at 0.95R for 
different inflow states at µ=0.3. 
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Figure 8c: Sectional aerodynamic pitching moment 
variation at 0.95R for different inflow states at µ=0.3. 
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Figure 7f: Tail rotor collective variation with forward speed. 
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Figure 8b: Sectional aerodynamic drag variation at 0.95R 
for different inflow states at µ=0.3. 
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Figure 9a: Blade root axial force for different inflow states 
at µ=0.3. 
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Figure 9c: Blade root vertical shear force for different 
inflow states at µ=0.3. 
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Figure 9e: Blade root flap bending moment for different 
inflow states at µ=0.3. 
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Figure 9b: Blade root lag shear force for different inflow 
states at µ=0.3. 
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Figure 9d: Blade root pitching moment for different inflow 
states at µ=0.3. 
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Figure 9f: Blade root lag bending moment for different 
inflow states at µ=0.3. 
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Figure 10a: Rotor induced flow distribution for 3 inflow 
states at µ=0.3. 

 

 

Figure 10c: Rotor induced flow distribution for 15 inflow 
states at µ=0.3. 

 

 

 

Figure 10e: Rotor induced flow distribution for 36 inflow 
states at µ=0.3. 

 

Figure 10b: Rotor induced flow distribution for 10 inflow 
states at µ=0.3. 

 

 

Figure 10d: Rotor induced flow distribution for 21 inflow 
states at µ=0.3. 

 

 

 

Figure 10f: Rotor induced flow distribution for 45 inflow 
states at µ=0.3. 
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Figure 11(a): Helicopter roll rate responae for 1deg. lateral 
cyclic step input in hover. 
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Figure 12(a): Helicopter roll rate reponse for 1deg. 
longitudinal cyclic step input in hover. 
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Figure 13(a): Helicopter roll rate response for 1deg. lateral 
cyclic step input at µ=0.25. 
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Figure 11(b): Helicopter pitch rate response for 1deg. 
lateral cyclic step input in hover. 
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Figure 12(b): Helicopter pitch rate reponse for                  
1deg. longitudinal cyclic step input in hover. 
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Figure 13(b): Helicopter pitch rate response for 1deg. 
lateral cyclic step input at µ=0.25. 
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Figure 14(a): Helicopter roll rate response for                   
1deg. longitudinal cyclic step input at µ=0.25. 
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Figure 14(b): Helicopter pitch rate response for                
1deg. longitudinal cyclic step input at µ=0.25. 


