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A nonlinear optimal control problem minimizing the touchdown speed of a. helicopter in the a.utorota.tive 
flight following power failure is studied. The motion of the helicopter is expressed by the longitudinal three 
degree-of~freedom equations) a.nd the rotor a.erodyna.m.ic peiforma.nce is ca.lcula.ted by using bla.de element theory 
combined with empirically modified momentum theory. This modified model has the ability of estimating the 
rotor thrust, H-force &nd torque properly even in vortex-ring sta.te, including the effects of bla.de stall. This 
optimal control problem is, then, solved by using a. numerical solution technique called SCGRA{1l. Results 
indicate that pilots should postpone the collective pitch flare. The effects of the time· delay in the collective pitch 
reduction and/or of the climbing rate at the moment of power failure on the minimum touchdown speed are also 
presented. In a.ddition, height-velocity dia.gra.ms for various gross weights and density altitudes are calculated 
by using the other numerical solution technique, dynamic programming. Results show good agreement with 
flight test data.. 

Notation 
C>R "" angle of attack of rotor disk, 

lift-curve--slope of blade element 
defined by Eq. ( 3) 

a "" "• "" a.ngle of a.tta.ck of blade element a.t 0.75R, 
B "" tip loss factor defined by Eq.(l7.4) 
c,, "" profile drag coefficient of blade element "s "" stalling angle of blade element 
c,, "" dra.g coefficient of bla.de element {3, "" longitudinal fla.pping a.ngle, 

in stall region positive nose down 
D = drAg 

'Y = flight path angle, positive climbing, or 
h = height from ground, or Lock numbeZ. 

distance above CG, see Fig.7 e "" pitch a.ttitude, positive nose up 
h, = density altitude e. = longitudinal cyclic pitch, positive nose up 
J = nondimensiona.l ground contact velocity, 8, = blade twist angle, positive twist up 

defined by Eq.(l5) e, = collective pitch a.t 0.75R 
L = lift ,\ "" inflow ratio, defined by Eq.(ll.3) 
l "" diata.nce behind CG, see Fig.7 

I' "" a.dva.nce ratio, defined by Eq.{ll.l) 
m = mass of helicopter v = rate of de5cent, defined by Eq.(11.2) 
n = load factor u = rotor solidity 
P. = a.va.ila.ble engine power 0 = rotor roh.tiona.l speed 
q = pitch ra.te, positive nose up 
R = rotor radius Subscripts s = rotor disk area., or 

reference a.r:ea. F = fuselage 

= time from power failure I = time of touchdown 

u = horizontal velocity H = horizontal stabilizer 

" = control vector R = rotor 

"s = limitation of forward speed a.t touchdown 0 = time of power fa.il ure 

v = induced flow (nondimensiona.lized by RO) 
ii = reference velocity defined by Eq.(2) 
w = weight of helicopter 
w = vertica.l velocity, positive descending Introduction 

ws = limita.tion of sinking rate at touchdown In case of power failure, a helicopter can safely land 

"' = sta.te vector using a.utorota.tion. The control sequence during this a.u~ 
•s = r:a.dius of bla.de sta.ll region, torotative flight is genera.lly composed of the following five 

defined by Eq.(S.l) or Eq.(8.2) stages as shown in Fig.l: 
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Fig. 1 Autoroto.tive la.nding 
following power failure. 

1) Red~dion of the collective pitch just after power fail
ure. 

2) Control of the forward speed to achieve the minimum 
sinking rate. 

3) Steady autorota.tive flight towlt.rds a. la.nding point. 
4) Nose up of the body to reduce the sinking ra.te and the 

forwa.rd speed. 
5) Colledive flare, tha.t is, the rlLpid increa.se of the col

lective pitch in order to convert the rota.ting energy of 
the rotor blade into the thrust. 
The delica.ie timing and the appropriate amplitude of 

the control a.re required throughout the entire flight stages. 
Especially, the stages 4) a.nd 5) are importa.nt to land in 
safety, and the miscontrol in these stages ca.uses the hard 
landing. The flight test is usually used in order to verify 
the safety of landing from the specified initial conditions. 
It, however, requires the expensive cost and risk. 

In this pa.per, the analytical method using an optimal 
control theory b.a,sed on variational method is developed 
in order to make clear the most sa.fe sequence of. control 
a.nd/ or flight pa.th during the a.utorota.tive flight following 
power failure. These optimal informations are useful to 
reduce the cost and risk of the flight test. The applica-
tion of the optimal control theory to the a.utorota.tive flight 
was first proposed by KomodaJ21, a.nd the recent numeri
cal method wa.s tried by Lee£31. These analyses assume the 
simple point-mass model of the helicopter a.s well a.s the 
simple a.erodynamic model, which reduces the accuracy of 
the solution and it's effectiveness. In this pa.per, a. more 
realistic model is used to improve the accuracy of the so~ 
lution, owing to the advancement of the computer a.nd the 
numerical solution technique. 

In addition to the study of the most safe control and 
flight path, the height-velocity diagrams (H-V diag-rams) 
a.re a.lso a.nalyzed. The single engine helicopter ha.s the 
avoidance flight region a.s schernatica.lly shown in Fig.2, 
which is usually obta.ined by the flight test. The empirical 
equa.tions concerning the sa.fety bounda.ries were proposed 
by Peg-g[8], but. it neglected the fundamenta.l parameters, 
such M, the speed limit of the la.nding gears and/or the 
own characteristics of the helicopter motion. In this study, 
dynamic programming is applied to predict the H-V dia.
grams1 because this method makes it possible to investi
gate the minimum touchdown speed for the various initial 
conditions without ca.lcula.ting ea.ch optima.! pa.th. 

HIGH HOVER POINT 
!50 

VELOCITY 

Fig. 2 Typical height-velocity dia.gra.m. 

Rotor Performance in Autorotation 

In the intermediate descending range between normal 
working state and windmill sta.te, the induced flow is di
rected a.ga.inst the uniform flow a.nd does not extend in
finitely. Therefore, momentum theory cannot be applied 
theoretically to analyze the rotor performance in the a.u
torota.tive flight following power failure. However, a.s far a.s 
the rotor angle of attack is not so large, momentum theory 
works well even in so-called vortex-ring sta.te, empirica.Uy[4l. 
In this paper, a modified model of the induced flow is de
veloped a.s follows: 

Simple momentum theory is expressed a.s 

where 

•= JcT/2 
aR=tan-1 (vfp.) 

(2) 

(3) 

The solution of Eq.(l) is indic~ted in Fig.3 by dot
ted lines. It is observed that this solution is discontinuous 
a.nd smaller tha.n the experimental results(4] in vortex-ring 
sta.te. In order to overcome these defects, Eq.(l) is modified 
introducing two coefficients 0 1,02 as follows: 

where 

(5.1) 

(5.2) 
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The solution of Eq.(4) is also indica-ted in Fig.3 by 
a solid line. It is observed that this modified model can 
give more realistic induced ftow over the entire ra.nge of the 
ilight conditions. The effect of the modific~t.tion becomes 
negligible •mall and Eq.(4) nearly equah to Eq.(1) when 
the rotor ~t.ngle of ~t.tta.ck is not so large. 

Referring to Wolkovitchl6l, the vortex-ring state occurs 
when the relative velocity o{ the vortex cores normal to the 
disk fa.lls to zero, tha.t is, 

-v+v/2=0 (6) 

Fig.4 shows the result ofEq.(6) combined with Eq.(4). 
The broken lines indicate the boundaries of the region where 
the fiuctua.tioru of the thru:!lt were observed in the experi
ments(11. It is observed tha.t Eq.(6) gives the condition for 
the most severe vortex-ring sta.te, but the ftuctua.tions of 
the thrust decrea.se a.:3 the rotor angle of a.tta.ck decrea.ses. 

'l'////, EXPERlMENTS(11 
MOMENTUM THEORY 
MODIFIED MODEl 
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Fig. 3 Induced flow in vertical flight. 
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Fig. 4 Boundary of vortex-ring state. 
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Thrust, H-force, and torque coefficients are described 
by using blade element theory as 

1 { (B3 -" 3) (B2 -" Z) 
Cx = -a.u 5 80 -

5 
.:\ 

2 3 2 
(B2 -x 

2
) } + s "8 2 ~ s (7.1) 

Gq = ~u{ (1- x))G,, + x~G,s} 
1 [ (B3 -xs3

) (B 2 -xs2
) + -au { 8o - ,\ 

2 3 2 

(B2-x,') t8 )-' {- (B<'-x,')8 + 4 Is+ 8 s 

_ (B
2 ~ x,') p.>. _ (B' ~ x:) p,)p,] (7 _3) 

where :r: s is the radius of blade stall, which is given by 

for the simple model, 

for the modified model, 

x - 1 
[ {as- (eo- :!.

4
e,)}

2 
+ 48,,\ s- -28, 

(8.1) 

The solutions of the present modified model t~.nd the 
simple momentum model are calcula.ted by using Eq.(l) & 
Eq.(8.1). &nd Eq.(4) & Eq.(8.2), respectively. Fig.5 &nd 
Fig.6 show the collective pitch angles and the torque coef~ 
ficients required to generde the constant thrust, Gxfu = 
0.08 calculated by using these two models, which are com
pared with experimental da.ta[s]. The re~mlt by using the 
present modified model shows the better agreement with 
the experimental da.ta. over the entire ra.nge of the flight 
condition, from hovering to windmill sta.te. 
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Fig. 5 Blade pitch a.ngles for consta.nt thrust 
in vertica.l descent. 

Dynamic Model of a Helicopter 

The motion of the helicopter is considered to be limited 
in the longitudinal pla.ne a.s shown in Fig.7. The equations 
of motion a.re described a.a follows: 

dh 
-=w 
dt 

du 1 (T . ) -d = -- sm6+H cos6 +DF cos a, 
t m 

dw 1 ( . ) -=-- Tcos6-Hsm6+Dpsino +g 
dt m ' 

dO=-~·(Q-P.) 
dt [R 0 

de 
dt=q 

where 

T=CxpSR20 2 

H=CHpSR20 2 

Q=CqpSR30 2 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(10.1) 

(10.2) 

(10.3) 

The coefficients OT 1 GH 1 a.nd Cq a.te given by Eqs.(7.1-
3). The a.dn.nce ratio p.1 the descending ra.te v, and the 
inflow ra.tio ..\ a.re given by 

/' = {cu -hR • q) cos(6- ,8,) 

- (w +lR · q)sin(6- p,) }fRO 

v= {cu-hR ·q)sin(6-p,) 

+ (w +lR · q) cos(El- p,) }fRI'l 

A= -v +v 

(11.1) 

(11.2) 

(11.3) 
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Fig. 7 Helicopter model. 

The longitudinal flapping angle {3, is given by 

The lift of the horizontal stabilizer LH is given by 

1 2 ') LH = 2p(u + w SHCLH 

C 1 . 2 
L~e = aJCo • 21nn an 

"'" = 6+tan-1 {(w +lH · q)fu} 

(13.1) 

(13.2) 

(13.3) 

where a no is the lift-curve-slope of the horizontal stabilizer 
at a" =0. 

Finally, the horizontal a.nd vertical components of the 
dra.g of the body are given by 

a, =tan- 1 (w/u) 
1 2 Dp cos a,~ 2pu SpGD, 

Dp sin a,~ 0 

(14.1) 

(14.2) 

(14.3) 

These &ta.te equations cannot be explicitly solved be
cause GT, t1 1 p., v, A, f3, are dependent each other. Therefore, 
the iterative calculations a.re required a.t ea.ch time step. 



Formulation of Optimal Landing Problem 

The prima.ty objective of the a.utor:ota.tive ilight ioliow~ 
ing power failure is to la.nd in safety with a.llowa.ble touch~ 
down speed. Therefore, the maneuver in a.utorob.tive flight 
is a.na.lyzed by using optimal control theory to solve the 
problem of minimizing the touchdown speed. The maxi~ 
mum value of the allowable touchdown speed depends on 
the landing gea.r design. In the case of wheel-type landing 
gea.x, hothon:ta.l component oi: the ground contact velocity 
is allowed to be f.a...i.cly large. 

In this 6tudy, the perforrna.nce function is defined as 

and the boundary conditions a.re given by 

h(O), u(O), w(O), fl(O), e(o), q(O) ;oiven 

h(t, ), e(t,) = o, q(t,) = 0 ; specified 

(15) 

(16.1) 

(16.2) 

The ra.nge of the collective pitch angle and the cyclic 
pitch angle ate mecha.nica.lly limited, and the range of the 
pitch attitude is limited by the handling qua.lity. In addi
tion, two more limits a.re imposed, the one is the limit on 
the &ng!e o! &tta.ck o! the bl•de element &t 0.7SR, •nd the 
other is the limit on the loa.d fn.ctor. These iive limits a.re 
for:mula.ted "a.s inequality constraints a.s follows: 

w 

8smi• :5 8s ~ 8sm.u: 

e'";" :5 e.::;; emu 
4 

a,. = 8o - 3"- 5 C1m4Z 

dw 
dt 2:9 (1-nm .. ) 

h 

HIGH HOVER POINT 

a 

(17.1) 

(17.2) 

(17.3) 

(17.4) 

(17.5) 

CRITICAL SPEED POINT 

LOW HOVER POINT 

·················~ ............. . 

For the usa.ge of va.Iia.tiona.l method, these inequality 
constraints are transformed into equality constraints by in
troducing five additional control va.ria.bles ll.nd two addi
tional state va.ria.bles ca.lled «slack va.ria.bles"[9] a.s follows: 

dq . -
- = e,(-e~ sine,+ e, cos e,) 
dt 

(18.1) 

(18.2) 

(18.3) 

(18.4) 

(18.5) 

In all, the dimension ofthe state vector becomes- 8, a.nd 
i.he dimension of the control vector becomes 7. They ll.Ie 

given by 

:c== (h, u, w, n, e, q, eo:~:, E>d)x 

u=:: (Do, 8 Sl Bod, e Sdl ed, a,z, n,z)T 

(19.1) 

(19.2) 

a.nd, the following two diifetentid equa.tions for the new 
sta.te va.ria.bles a.re added to the state equa.tions Eqs.(9.1-
6): 

a 

w 

de, . --=e; 
dt 

ae, .. 
"dl = e, 

h 

d 

h 

w 

(20.1) 

(20.2) 

a 

b 
d 

1L 

d 
'U 

b 

a 

Fig. 8 Optim~ landing trajectories. 
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Theoretical Results 
in Comparison with Flight Test Data 

The flight paths to minimize the touchdown speed a.re 
a.nc.lyzed for a.n exemplified helicopter, the specifications of 
which a.re presented in Table 1, with the four initial condi
tions shown in Fig.8. This nonlinea.x optimal control prob
lem with equality constraints is solved by using a. numerical 
solution technique called SCGRA[11. The optimal control 
sequences for these four initial conditions are discussed a.s 
follows: 

Landing from High Hover Point 

Fig.9 shows the optimal solution and the flight test 
da.ta.[7] for landing from high hover point. Theoretical re
sult& a.re in good agreement with the :flight test data. in 
the pitching motion but not in the collective pitch input. 
Fig.lO compares the optimal path with the predicted flight 
test pa.th which is calculated by using the time history of 
the collective pitch input of the flight test da.ta.. The pre
mature collective flare results in the hard ground contact 
beca.use of the loss of the rotor rotational energy. 

Fig.ll shows the time history of the load factor ;,.nd 
the blade angle of a.tta.ck during the optimal landing ftom 
a. high hover point. It is observed that the blade pitch 
during the collective flare is limited by the loa.d factor for 
the ea.rlier period and limited by the blade a.ngle of a.ttack 
for the later period. 

Helicopters cannot avoid to encounter the vortex-ring 
sta.te if the power fails in hover. Fig.12 shows the locus 
of optimal la.nding path in a a- v/V plane. Numera.b in 
the iigure denote the time elapsed from the power fa.ilure 
in second. In this case, the helicopter is in the vortex
ring state for the first two seconds. During this period, 
the collective pitch is reduced to the minimum vll.!ue a.nd 
the cyclic pitch holds the consta.nt va.lue a.s shown in Fig.9. 
Therefore, it is a.ssumed tha.t the vortex-cing does not cause 
the loss of control. 

Table 1. Specifications of the exemplified helicopter. 

ma.ximum gross weight, w = 5900 (kg) 
rotor radius, R = 8.534 (m) 
blade chord1 c = 0.381 (m) 

number of bla.des, b = 4 
rotor rota.tiona.l speed, n = 25.03 (rad/s) 

rotor moment of inertia, h = 7107 (kgm2 ) 

location of CG, [R = 0.0254 (m) 

71-6 

"" 40 
u.i,........ ,_u 
<(~ 

0 "'-:r"' vw 
f--2 a: -40 

u.i 20 0 
:J 
;-~ 

0 -"' f--w 
f--Cl 
..:~ 

J: <D -20 
v 
!:: -40 a. 
:r" 
v 15 !:: 
a.~ 

"' 10 ww 
>Cl 
-~ 

f-- 0 

5 v., 
w 
-' 
-' 
0 0 u 

0:: 10 
:r 
u~ 

!::"' .. 
a.w 0 
!::!e., 
-' 
u 
>- -10 v 

c 30 

o"~ 
wu ww 20 Q.V1 

"'-c:o 
oc2 
f--~ 10 0 
c: 

00 

·. 

·. 

--THEORY 
··········· FLIGHT TEST DATA 

(FAA-ADS-84, FLT. No. 46 
W= 4120 kg, hd= 1950 m 
ho= 102m, Yo= 0 m/s) 

• ....... 

.......... ·······•·· 
··•··· ..... 

···. ··: 

4 8 12 

TIME, t (SEC) 

Fig. 9 Comparison of optimal solution with flight 
test la.nding from high hover point. 



0 
;3 Ws 

>-" 
t: 
u 
3 10 
UJ 
> 
--' ..: 
u 
i= 
a:: 20 
UJ 
> 

HORIZONTAL VELOCITY, u (mfs) 

0 10 20 30 

.. ····--
]"'; -·\NON-OPTIMAL 

/ ··(" n ~·~-~ l 
OPTIMAL \ ~---:::::::.---- 7 

~'C,..--· 0 :;::: Oo 

.,~ 

~-·.'/-'" . STEADY 
AUTOROTATION 

Fig. 10 Comparison between optimal a.nd non-optima.l 
la.nding trajectories !rom a. high hover point. 

" ri: 
0 
f
u 
:.:: 
0 
< 
0 
-' 

lOAD FACTOR 
BLADE ANGLE OF ATTACK 

2 

--t··· 
I 10 

I 
I 

--....._I / ____ ..... J 
1 

5 
_// 

00 L _L__L_L___L___j_...J 0 
4 8 12 

TIME, t (SEC) 

Fig. 11 Time history of optimal landing 
from high hover point. 

0 
11 

10 

~ 
30 

;: I 
7 ,.., 

' I 
.. .....--\ I 

,J 1/ I I 
I I I I I 60 

I 1 I 
2 I I I 

1 1 I I 
I I 0 
I 

90 
2 1 0 

RATE OF DESCENT, vfv 

u..~ 

o:B 
UJO 
--' ~ 

"' z 
< 
UJ 

"' < 
--' co 

G' 
w 
0 

• 0 

,c 
u 

~ 
< 
u.. 
0 
w 
-' 

"' z 
< 
0:: 
0 
f-
0 
0:: 

Fig. 12 Locus of optimal landing tra.jedory 
from high hover point. 

71-7 

.,. 
w·u 
f-w 

"""' "'----'-' 
~w 
uo 
f-~ a: 

:i 
u 
f-
a:~ 

'-' ww 
>Cl 
-~ 

f- 0 u., 
w 
-' 
-' 
0 
u 

.; 
:i 
u~ 
t:<.:J 
a.w 
~e 
-' 
u 
>-
u 

c 
a"~ wu 
ww 
a_Vl 

"'---o:Cl 
oc:'i 
f-~ 

0 

"' 

40 

0 

-40 

15 

10 

5 

0 

10 

0 

-10 

30 

20 

10 

0 
0 

THEORY 
FLIGHT TEST DATA 
(FAA-ADS-84, FLT. No. 43 

4 

W= 4130 kg, h•= 2070 m 
ho= 34 rn, V0 = 13.7 m/s) 

8 12 
TIME, t (SEC) 

Fig. 13 Compa.ri:son of optimlL! :solution with flight 
test landing from critical speed point. 



5 10 

FLIGHT VELOCITY, V (m/s) 

Fig. 14 Minimum la.nding velocity from aitica.l height 
veraua flight speed a.t time of power fa.i.lure. 

Landing from Critical Speed Point 

Fig.l3 show~J the result for critical speed point. In this 
ca.se the flight time from the power failure to the touch
down is much shorter tha.n that of the landing from the 
high hover point. Therefore, the influence of neglecting the 
time dela.y in the control inputs a.re not small especially in 
the pitching motion. It follows tha.t the theoretical results 
estimate lower critical speed than the flight test da.ta.. 

Estimation of critical speed point is important for de
cision of the takeoff tra.jectory. However, the flight tests for 
H-V diagrams a.re conducted generally with the level flights 
a.t the time of power fa.ilure. Fig.l4 shows the effects of the 
fl.ight pa.th a.ngle a.nd the time dela.y in initia.l collective pitch 
reduction on the minimum touch down speed. The ground 
conta.cl velocity increases with the climbing ra.te at the time 
of power failure a.nd also the influence of one second dela.y 
in the collective pitch reduction is more rema.rkable as the 
climbing ra.te increases. 

Landing from Low Hover Point 

Fig.15 shows the results for low hover point. The test 
pilot didn't reduce the collective pitch following power fa.il
ure in- contra.st to the optimal solution. This difference is 
ca. used by neglecting the time delay in the collective pitch 
opera.tion in the present a.na.lysis. 

Landing from High Speed Region 

Fig.l6 shows only theoretical result for high speed re
gion. Experimental data are not ava.ila.ble for this region. In 
this case, the cyclic pitch is controlled to nose-up through
out the time from the power loss to the touchdown because 
not only the sinking rate but a.lso the forward speed is crit
ical for the sa.fe landing. 

In high speed region, the initia.l kinetic energy of heli
copter is enough for the sa.£e la.nding, therefore estimation of 
the longitudinal ma.neuvera.bility including pilot's reaction 
time is significa.nt for estima.tion of the a.voida.nce region. 
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Fig. 15 Compt~.rison of optimal solution with flight 
test landing from low hover point. 
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Fig. 16 Time history of opti.ma.lla.nding 
irom high speed region. 

Analytical Prediction of H-V Diagram 
Using Dynamic Programming 

Height-velocity diagram ca.n be obtained as a. contour 
line in H-V pla.ne on which the minimum ground conta.ct 
velocity J equals 1. The optimal control theory based on 
va..ria.tiona.l method gives the good results a.s mentioned in 
the previous section when calculating a pa.rticula.r optimal 
pa.th. However, this method requires many ca.ses of cd
cula.tion with the various initial heights and velocities to 
obtain the entire H-V diagrams. Here, the other optimal 
conttol theory called dyn.a.mic programming is lUed to esti
mate the H-V dia.gra.ms. Although this method costs more 
computa.tion time (several times in this siudy) thut vaci~ 
a:tional method when calculating pa.rticula.r optimal paths, 
dyna.mic programming makes it possible to ca.lcuh.te the 
minimum touchdown speed for the various entry conditions 
without clt.lculating eZJ.ch optimal pa.th. Therefore, dynamic 
programming is selected in order to estimate the H~ V dia
grams in this study. 

Although recent development in the super computers 
e~tends the applicability of dynamic programrning1 it is still 
required in this study to simplify the equa.tions of motion 
o! the helicopter. The inertia. of the pitching motion is ne
glected and the helicopter is a..ssumed to be a. point-ma.ss. 
Dyna.mic progra.mming ha.s the merit to formulate inequa.l
ity constra.ints on the control variables e.nd/or on the state 
v~ria.bles without transformation into equality constraints . 
This makes it possible to a. void the increase of t.he dimen
sion of the control vector. Aa a.. Iesult1 the sta.te va.t:ia.bles 
a.nd the control variables are 

x= (u,w,O)T 

u= (&o,e)T 

(21.1) 

(21.2) 

Height h ia selected to the independent varia.ble be
ca.uae it is necessary for dyna.mic programming that the 
teuninal time is £.xed a.nd the sta.te va.ria.bles a.re not spec
ified a.t the terminal time. 

Fig.l7 shows the H-V diagrams of the exemplified he~ 
licopter with three combina.tions of gross weights a.ud den
sity altitudes. The solid lines indica.te the results with the 
present modified model and the broken lines indicate the re~ 
sults with simple momentum model. It is observed that the 
present modified model shows the better agreement with 
the flight te!St data.. Theoretical results estimate the avoid
ance region smaller tha.n the flight test data because the 
time dela.y in the pitching motion is neglected in this study. 
In a.ddition1 the possibility of the non-optimal control is 
included in the ilight test. 
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Conclusion 

Nonlinea.t optim~Ll control theory based on variational 
method is well applied to a.na.lyze the minimum touchdown 
speed in autoroh.tive flight of a. helicopter following power 
fa.ilure. In a.ddition, dynamic progra.mm.ing is applied to 
predict height-velocity dia.gra.ms. It is indicated tha.t these 
a.pplica.tion:s of the optimal control theory ha.ve the pos
sibility to improve the maneuver procedure shown by the 
flight tests a.nd to extend the safety bounda.ry empirically 
determined. 

The following results a.re a.lso dra.wn: 
1) Pilots tend to conduct collective fia.re earlier tha.n the 

theoretical optimal timing. 
2) Critical speed increases with climbing ra.te a.t the mo· 

ment of power failure. 
3) The modified model of the rotor performance can give 

the more rea.listic prediction of the height-velocity di
a.gra.ms. 
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