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ABSTRACT

In this paper, the optimized predictor-based subspace identification (PBSIDopt) method is applied to identify linear mod-
els of DLR’s research helicopter ACT/FHS and to evaluate its usage to enhance existing physics based models in the
future. For this effort, dedicated identification flight test data is used. This paper first describes the well known Maximum
Likelihood frequency domain output error method and the applied physical model briefly. Then, the PBSIDopt method is
presented and parameters, which influence the identification process, are discussed. Results from both methods using
the same flight test data of the ACT/FHS are compared; model accuracy, order and missing dynamics are investigated.
Advantages and disadvantages of both methods are evaluated and the applicability of the PBSIDopt method to rotorcraft
system identification and its usage to improve the existing physical model structure is discussed.

NOMENCLATURE

A,B, C,D state space matrices
ax, ay , az translational accelerations
B, L, M , T , Z model derivatives (with subscripts)
E, U ,X , Y data matrices for system innovations,

inputs, states and outputs
ek, uk, xk, yk discrete time innovation, input, state

and output vectors at k-th time step
f , p future and past window length
JRMS root mean square error
N number of measurements
n model order
nu, ny number of inputs and outputs
p, q, r roll, pitch and yaw rates
s Laplace variable
u, v, w longitudinal, lateral and vertical air-

speed components (aircraft-fixed)
u(t), x(t), y(t) continuous time input, state and out-

put vectors
wh non-physical state for inflow dynamics
x1, x2, y1, y2 regressive lead-lag system states
ym measured output (index m)
zk merged input-output vector at k-th

time step
δx, δy longitudinal, lateral cyclic pilot controls
δp, δ0 pedal and collective pilot controls
K, Γ extended controllability, observability

matrix

ν dynamic inflow
σ2 (. . .) model variance
τ model parameters
Φ, Θ roll and pitch attitude angles
Ψ parameters of high order ARX model
ω frequency
FR (measured) frequency response
ML Maximum Likelihood (in frequency do-

main)
PB, PBSIDopt optimized predictor-based subspace

identification

1. INTRODUCTION

Most current rotorcraft system identification efforts use fre-
quency domain methods to derive linear models. Depend-
ing on the model complexity and inclusion of rotor states,
the identified models can be accurate for frequencies up to
30 rad/s [1]. As the demands on current control systems
increase, the required accuracy of the dynamic models in-
creases, too. To meet these requirements the model’s com-
plexity increases and the identification becomes a labori-
ous task. Furthermore, dedicated flight tests have to be
performed to generate a suitable data base for the identi-
fication and validation tasks, which are essential to arrive
at high fidelity models. So both the identification process
and the needed flight tests are highly depended on the ex-
perimental setup, existing previous knowledge and skilled
experimental rotorcraft pilots.



Within the DLR project ALLFlight (Assisted Low Level Flight
and Landing on Unprepared Landing Sites [2]), a model-
based control system is developed for DLR’s research heli-
copter EC135 ACT/FHS (Active Control Technology/Flying
Helicopter Simulator) depicted in figure 1. The ACT/FHS
testbed is based on an Eurocopter EC135, a light, twin-
engine helicopter with fenestron and bearingless main ro-
tor. Its mechanical controls are replaced by a full-authority
fly-by-wire/fly-by-light primary control system, which allows
changes of the control inputs applied to the helicopter by an
experimental system [3]. Because of the replaced mechan-
ical controls, the dynamic data shown in this paper are not
comparable to data from a production EC135 rotorcraft.

Figure 1: DLR’s research helicopter ACT/FHS

To design the feedforward and feedback controllers of the
model-based control system and later an in-flight simula-
tion, linear models of ACT/FHS have been identified cov-
ering the whole flight envelope. The models include rigid
body motion, longitudinal and lateral rotor flapping, inflow
and regressive lead-lag dynamics and have been identified
using the Maximum Likelihood frequency domain method
[4–6]. These models have been validated in the time do-
main, via open loop feedforward controller flight tests [7] and
inverse simulation techniques [8]. Both validation methods
have shown model deficiencies that are probably caused by
missing engine, coning and tail rotor dynamics.

Even if the missing dynamics can be related to physical ef-
fects, enhancing the model structure accordingly is not an
easy task. In general, submodels are set up based on sim-
plified physical relations to cover the missing dynamics and
the original models are enhanced and identified again. If
the existing models are complex, like the ACT/FHS models,
this task becomes more and more complicated, as connec-
tions between different submodels have to be accounted for
and their parameters have to be chosen carefully. Further-
more, the submodel structure has to cover the whole flight
envelope to simplify the parameter estimation.

Today, state of the art time domain system identification
methods like the predictor-based subspace identification
method (PBSID) offer the possibility to estimate high order
models from open and closed loop data for multiple input
and output systems [9, 10]. The PBSID method is numer-
ically stable and applicable to multiple data sets, which is

common practice in rotorcraft system identification. The op-
timized version of the PBSID method (called PBSIDopt) is
computationally advantageous and offers even lower esti-
mation errors than PBSID [11, 12]. Thus, the optimized
predictor-based subspace identification method seems to
be ideal for rotorcraft system identification, but has not yet
been tested with flight test data of a full sized manned heli-
copter [13–16], even if older subspace identification algo-
rithms have been successfully tested with rotorcraft data
before [17]. Since the PBSIDopt method automatically esti-
mates states to model the system input-output behavior, no
prior knowledge of the physical system structure is needed.
Thus, the PBSIDopt method might be used to model miss-
ing dynamics of the existing physics based models and
might be used to enhance model structure or initial param-
eter estimates.

In this paper, the classical Maximum Likelihood frequency
domain system identification method and the structure of
the identified ACT/FHS models are presented in section 2.
The PBSIDopt method is presented in section 3; important
parameters, model order selection and model reduction are
discussed. Models from both methods based on the same
identification flight test data are compared in time and fre-
quency domain in section 4. The missing dynamics of the
identified Maximum Likelihood model are discussed. Finally
this paper is summarized, the advantages and disadvan-
tages of both methods are compared and the application
of the PBSIDopt method to enhance the structure of the
ACT/FHS models is discussed.

2. ACT/FHS FREQUENCY DOMAIN IDENTIFICATION

2.1. ML Frequency Domain Output Error Method

Assuming that the response ym of a dynamic system to an
input u has been measured, the goal is to develop a math-
ematical model that describes the system behavior. For a
given linear state space model

ẋ(t) = AML(τ )x(t) +BML(τ )u(t)(1a)

y(t) = CML(τ )x(t) +DML(τ )u(t)(1b)

the model parameters τ , i.e. the elements of the system
matrices AML, BML, CML, DML, have to be adjusted so
that the simulated model output y matches the measured
output ym for the same input history u.

The discretely sampled time dependent variable

(2) xk = x(k∆t) , k = 0, . . . , N − 1

with the sampling time interval ∆t is transformed into a fre-
quency dependent variable using the Fourier transform

x(ωk) =
1

N

N−1∑
k=0

xke−jωkk∆t(3a)

ωk = k · 2π/tN with tN = (N − 1)∆t .(3b)



The variables ẋ, x, u, y of the linear model from equa-
tion (1) and the measured output ym are transformed into
the frequency domain in this way. One has to note that the
state variables do not always fulfill the condition of period-
icity. According to [18], the Fourier transform of ẋ is in this
case approximately given by

ẋ(ω) = jωx(ω)− bpū(ω)(4a)

bp =
1

2tN
[(xN−1 + xN )− (x−1 + x0)](4b)

ū(ω) = e
1
2 jω∆t(4c)

which requires two additional data points x−1 and xN not
used in equation (3). The model equations in the frequency
domain are therefore

jωx(ω) = AML(τ )x(ω) +BML(τ )u(ω) + bpū(ω)
(5a)

y(ω) = CML(τ )x(ω) +DML(τ )u(ω).(5b)

The Maximum Likelihood (ML) method in the frequency do-
main minimizes

(6) min
τ

(
ny∏
i=1

σ2 (ym,i − yi(τ ))

)
with

σ2 (ym,i − yi(τ )) =

1

N

N−1∑
k=0

(ym,i(ωk)− yi(ωk))
∗

(ym,i(ωk)− yi(ωk))
(7)

where ()∗ denotes the conjugate transpose of a complex
value, ny the number of system outputs and σ2 (. . .) the
model variance. The minimization problem from equa-
tion (6) is solved using e.g. a Gauss-Newton optimization
method.

Parameter estimation in the frequency domain has the ad-
vantage that it is possible to significantly reduce the amount
of data to be evaluated by restricting the evaluation to the
frequency range of interest. The higher frequencies can
often be omitted safely because they correspond to mea-
surement noise and negligible higher order dynamics.

When the lowest frequency (ω = 0) is omitted, the estima-
tion of bias parameters is suppressed, thus leading to much
fewer unknown parameters, especially when several time
intervals are evaluated together. One possibility to include
the estimation of bias parameters is to first identify the sys-
tem parameters using frequency domain identification and
afterwards to only identify the bias parameters using time
domain identification with the matrices AML, BML, CML,
DML fixed at the identified values. As the model equa-
tion (5) are algebraic, no integration is necessary to cal-
culate the output variables. This makes frequency domain
models very suitable for unstable systems.

2.2. Model Structure for ACT/FHS Identification

The quasi-steady formulation of the helicopter dynamics by
a classical six degree of freedom rigid body model is valid
only up to about 10 rad/s. To arrive at high fidelity models
valid up to 30 rad/s, as is required for model following con-
trol, the higher order effects of rotor flapping, dynamic inflow
and rotor-lead-lag have to be accounted for. As the identi-
fied models have to be invertible, only linear models are
used here. For the ACT/FHS identification, implicit model-
ing of flapping and inflow dynamics is used. The utilized
equations are derived briefly in the following paragraphs.
More detailed information about the effect of including the
different rotor states in the system identification model can
be found in [4–6].

2.2.1. Flapping

To account for flapping, the first order on-axis response for
the roll rate

(8) ṗ = Lpp+ Lδyδy

is replaced by

ṗ = Lbb(9)

τf ḃ = −τfp− b+Bδyδy(10)

where b is the lateral flapping angle and Lb the correspond-
ing derivative. Equation (9) makes the roll acceleration pro-
portional to the lateral flapping angle. Equation (10) is a first
order rotor equation with the lateral flapping time constant
τf and the control derivativeBδy . Similar equations hold for
the longitudinal flapping coupled to pitch rate.

The model is reformulated by differentiating equation (9)
and inserting equation (10) as well as the expression for
b from equation (9), which results in the implicit formulation
for flapping with modified derivatives

p̈ = −Lbp−
1

τf
ṗ+ Lb

Bδy
τf

δy

= L̂pp+ L̂ṗṗ+ L̂δyδy .

(11)

The corresponding equation for pitch rate is

(12) q̈ = M̂qq + M̂q̇ q̇ + M̂δxδx .

The incorporation of the flapping motion using this model
thus leads to ṗ and q̇ as two additional state variables, re-
sulting in an eight degree of freedom model with ten states.

2.2.2. Dynamic Inflow

The dynamic equations for the helicopter’s vertical velocity
w and inflow ν for a rigid rotor (neglecting coning) are

ẇ = Zww + Zν̇ ν̇ + Zνν(13)

ν̇ = Tww + Tνν + Tδ0δ0 .(14)



Here, the thrust equation (14) is derived from the principle of
linear momentum. Inserting equation (14) into equation (13)
eliminates ν̇ and leads to

ẇ = (Zw + Zν̇Tw)w + (Zν̇Tν + Zν)ν + Zν̇Tδ0δ0

= Z̄ww + Z̄νν + Z̄δ0δ0 .
(15)

Solving for ν yields

(16) ν =
1

Z̄ν
(ẇ − Z̄ww − Z̄δ0δ0) .

Differentiating equation (15) with respect to time and in-
serting the expressions for ν̇ and ν from equation (14) and
equation (16) gives the implicit formulation for dynamic in-
flow

ẅ = (Z̄νTw − TνZ̄w)w + (Z̄w + Tν)ẇ

+ (Z̄νTδ0 − TνZ̄δ0)δ0 + Z̄δ0 δ̇0

= Ẑww + Ẑẇẇ + Ẑδ0δ0 + Ẑδ̇0 δ̇0 .

(17)

This differential equation for ẅ has both δ0 and δ̇0 as inputs.
Alternatively, δ0 can be added to the model as a state vari-
able, which then leaves δ̇0 as the only vertical control input.
This approach is equivalent to the one suggested by [19]
where the dynamic inflow is approximated by a first-order
lead-lag filter on the collective term in the vertical axis.

2.2.3. Regressive Lead-Lag

Simple physical models for the regressive lead-lag dynam-
ics, such as those for the flapping dynamics, are not avail-
able. Therefore, a modal approach is usually taken, where
a second order transfer function is appended to the pitch
and roll rate responses without regressive lead-lag dynam-
ics due to longitudinal and lateral input respectively [1]

(18)

(
q

δx

)
(with lead-lag)

=

(
q

δx

)
(without lead-lag)

[ζxq, ωxq]

[ζll, ωll]

Here, [ζ, ω] denotes a complex root with damping ζ and nat-
ural frequency ω and the index ll stands for lead-lag mode.
Four of these second order transfer functions are necessary
to model the lead-lag effect on pitch and roll rate for cyclic
inputs (δx → q, δx → p, δy → p, δy → q). All transfer
functions have a common denominator due to same under-
lying physical phenomenon.

The transfer functions of the regressive lead-lag dynam-
ics are formulated to have a static gain of 1 such that the
low-frequency part of the transfer function (derived from the
model without lead-lag) is left unchanged when the lead-lag
is added. Regarding the pitch rate due to longitudinal cyclic
input δx → q , the transfer function thus is

δxq
δx

=
(s2 + 2ζxqωxqs+ ω2

xq)/ω
2
xq

(s2 + 2ζllωlls+ ω2
ll)/ω

2
ll

=
ω2
ll

ω2
xq

(
1 +

2(ζxqωxq − ζllωll)s+ (ω2
xq − ω2

ll)

s2 + 2ζllωlls+ ω2
ll

)
.

(19)

For use in a state space identification model, the transfer
functions have to be transformed into differential equations.
An auxiliary variable xll is introduced that is defined by

(20)
xll
δx

= s2 + 2ζllωlls+ ω2
ll

and thus has the differential equation

(21) ẍll + 2ζllωllẋll + ω2
llxll = δx .

This second order differential equation is transformed into
two first order differential equations by introducing x1 = xll
and x2 = ẋll

ẋ1 = x2(22a)

ẋ2 = −ω2
llx1 − 2ζllωllx2 + δx .(22b)

The output equation for δxq can be derived from equa-
tion (19) as

δxq =
ω2
ll

ω2
xq

(ω2
xq − ω2

ll)x1

+ 2
ω2
ll

ω2
xq

(ζxqωxq − ζllωll)x2 +
ω2
ll

ω2
xq

δx .

(23)

This last equation describes how the original control input
δx is to be replaced in the differential equation for q̇. Equa-
tion (23) contains two terms that are to become part of the
system matrixAML and one that belongs to the control ma-
trixBML.

Regarding the structure of the transfer function listed in
equation (19), it can be seen that two differential equations
of the form in equation (22) with the same denominator are
needed for each control input (δx, δy). This hybrid model
approach does not cover the physics (and thus rotor states)
of the regressive lead-lag dynamics, but represents the fre-
quency responses of ṗ, q̇ and their integrals accurately.

2.2.4. Overall ACT/FHS Model Structure

The overall ACT/FHS model used for system identification
contains 16 states, namely eight for the rigid-body motion
(u, v, w, p, q, r, Φ, Θ), two for implicit flapping (ṗ, q̇), two
for implicit dynamic inflow (ẇ, δ0) and four for lead-lag (x1,
x2, y1, y2). The system identification was performed over a
frequency range of 0.5-20 rad/s.

After the system identification process, the physical state ẇ
and the derivative of the collective control δ̇0 are replaced
by a non-physical state wh and the collective control δ0, be-
cause this formulations is advantageous for the later model
simulation, for more details see [20]. Thus, the Maximum
Likelihood model used for comparison contains 15 states
(24)
x(t) = (u v w p q r wh ṗ q̇ Φ Θ x1 x2 y1 y2)

T

and the four helicopter controls for longitudinal and lateral
cyclic δx and δy, pedal δp and collective control δ0 as inputs

(25) u(t) =
(
δx δy δp δ0

)T
.



During system identification process 15 outputs y(t) in-
cluding the translational accelerations ax, ay and az are
matched
(26)
y(t) = (u v w p q r ṗ q̇ ṙ Φ Θ ax ay az ȧz)

T
.

The angular accelerations ṗ, q̇, ṙ and the derivative of the
vertical acceleration ȧz are not measured directly, but are
obtained by a suitable numerical differentiation. Adding
them as output variables, improves the identifiability of the
equivalent flapping and inflow dynamics respectively.

2.3. System Identification Database

To support the in-flight simulation efforts, models for the
EC135 ACT/FHS research helicopter that cover the whole
envelope from hover up to 120 knots forward flight had to
be identified. Dedicated flight tests for this purpose, con-
sisting of frequency sweeps and multi-step inputs in all four
controls, were performed at five reference flight conditions
(hover, 30 knots, 60 knots, 90 knots, 120 knots). During the
flight tests, the pilots were instructed to use only uncorre-
lated, pulse-type inputs on the secondary controls to avoid
cross-correlation between the control inputs. The multi-step
inputs were computer generated, which allows for relatively
sharp input signals and avoids correlation problems.

The frequency domain identification was performed using
two pilot generated frequency sweeps per control input (lon-
gitudinal and lateral cyclic, collective and pedal input). For
validation of the identified models in the time domain, the
multi-step input maneuvers were used.

3. ACT/FHS SYSTEM IDENTIFICATION USING THE

PBSIDOPT METHOD

3.1. The PBSIDopt Method

The PBSIDopt method estimates a discrete linear time in-
variant state space model in innovation form as described
in [21]

xk+1 = Axk +Buk +Kek(27a)

yk = Cxk +Duk + ek(27b)

from a finite set of data points uk and yk, k = 1, . . . N .
Here, uk ∈ Rnu

are the system inputs, xk ∈ Rn the sys-
tem states and ek, yk ∈ Rny

the system innovations and
the outputs respectively. The model order n is equal to the
number of states xk.

The system matrices from equation (27) correspond to the
system matrices of a discrete process form state space sys-
tem

x̃k+1 = Ax̃k +Buk +wk(28a)

yk = Cx̃k +Duk + vk(28b)

with process noisewk, measurement noise vk and a differ-
ent state vector x̃k compared to equation (27).

The innovation form state space system from equation (27)
is transformed into the predictor form assuming there is no
direct feedthrough, i.e. D = 0

xk+1 = AKxk +BKzk(29a)

yk = Cxk + ek(29b)

with

AK = A−KC , BK =
(
B K

)
and(30a)

zk =
(
uk yk

)T
.(30b)

From the physical point of view only forces and moments
(corresponding to translational and rotational accelerations)
can be changed instantly. Therefore, the assumption D =
0 is only valid for rotorcraft system identification using ve-
locities, rates and angles as outputs. Nevertheless, the as-
sumptionD = 0 in the following algorithm can be modified
easily to account for the direct feedthrough D [15]. Since
the system matrix AK is stable, this formulation is applica-
ble to the identification of unstable systems like rotorcraft.

In the first PBSIDopt step the states x, here called pre-
dictors due to the predictor form in equation (29), are es-
timated. The predictors xi (with i = 3, . . . N ) at the third
up to the N -th time step are defined by

x3 = AKx2 +BKz2

= A2
Kx1 +

(
AKBK BK

)(z1

z2

)
...

xN = A2
Kx1 +

(
AN−1
K BK . . . BK

) z1

...
zN−1

 .

(31)

The corresponding system outputs for the second up to the
N -th time step are given by

y2 = CA2
Kx1 +CKN


0
...
z1

z2

+ e2

...

yN = CA2
Kx1 +CKN

 z1

...
zN−1

+ eN

(32)

with the extended controllability matrix

(33) KN =
(
AN−1
K BK . . . BK

)
.



In order to describe the system outputs from the p+1-th to
the N -th time step, the following data matrices for the sys-
tem output and innovation are defined

Yp+1 =
(
yp+1 yp+2 . . . yN

)
(34a)

Ep+1 =
(
ep+1 ep+2 . . . eN

)
.(34b)

The predictor form model input vector z is collected in the
Hankel matrix

(35) Zp =


z1 z2 . . . zN−p−1

z2 z3 . . . zN−p−2

...
... . . .

...
zp zp+1 . . . zN−1

 .

The integer variable p is called past window length or past
horizon in the subspace identification. Together with the
model order n and the future window length f , which is
introduced later in equation (39), this parameter has a huge
impact on the identification results.

Assuming the past window length p is large andAK is sta-
ble, the term A2

Kx1 in equation (32) can be neglected and
the p+1-th to N -th system outputs and states are approxi-
mated using the data matrices Yp+1, Ep+1 and Zp

Yp+1 ≈ CKpZp +Ep+1(36a)

Xp+1 ≈ KpZp.(36b)

An estimate of CKp ≈ Ψ is obtained solving the least
squares problem

(37) min
Ψ
‖Yp+1 −ΨZp‖ .

Recalling equation (33), the coefficient matrix Ψ is an esti-
mate of

(38) Ψ =
(
Ψp . . .Ψ1

)
≈
(
CAp−1

K BK . . . CBK

)
and is used to set up the product of the extended observ-
ability matrix Γf and the extended controllability matrix Kp

(39) ΓfKp =


CAp−1

K BK . . . CBK

0 . . . CAKBK

...
...

...
0 . . . CAf−1

K BK


with the future window length f .

Using the singular value decomposition
(40)

ΓfKpZp = USV T =
(
Un Ũ

)(Sn 0

0 S̃

)(
V T
n

Ṽ T

)
,

the predictor sequenceXp+1 is calculated through

(41) Xp+1 ≈ S
1
2
nV

T
n

since

(42) ΓfXp+1 ≈ ΓfKpZp.

The neglect of the smaller singular values S̃ ≈ 0 in the
predictor sequence reconstruction can be interpreted as a
model reduction step to the selected model order n. An
analysis of the singular values in S is often used to select
an appropriate model order n.

Alternatively, the estimation of a high order predictor se-
quence can be used to cover high order dynamics in the
model to be identified and the final model can be reduced
afterwards using other model reduction techniques. This
can be used for example to gain models valid in a frequency
range of interest for controller design applications only.

In the second PBSIDopt step, the system innovation ek and
the system matrices of the innovation form in equation (27)
are estimated. Since the input, output and estimated state
sequence is used in this step, it is referred to as state se-
quence approach in subspace identification.

Using equation (27) and D = 0, the output matrix C can
be estimated solving the least squares problem

(43) min
C
‖Yp+1 −CXp+1‖

and the system innovations are calculated by

(44) Ep+1 = Yp+1 −CXp+1.

Considering that the k + 1-th state is calculated from xk,
uk and ek, the data matrices Xp+1 and Ep+1 are split up
and an input data matrix is defined. MATLAB® notation is
used for simplicity here:

Xk+1 = Xp+1(:,2:N )(45a)

Xk = Xp+1(:,1:N -1)(45b)

Ek = Ep+1(:,1:N -1)(45c)

Uk =
(
up up+1 . . . uN−1

)
.(45d)

The matricesA,B andK are estimated solving

(46) min
A,B,K

‖Xk+1 −AXk −BUk −KEk‖ .

The estimated discrete linear model matrices A, B and C
are used to set up the process model in equation (28). The
inverse bilinear or any other discrete to continuous transfor-
mation can then be used to calculate the continuous time
model.



Flight tests for rotorcraft system identification, as described
in subsection 2.3, usually consist of different datasets from
a number of experiments. To handle j different datasets,
the data matrices Yp+1 and Zp defined in equation (34)
and (35) have to be augmented

Yp+1 =
(
Yp+1,1 . . . Yp+1,j

)
(47a)

Zp =
(
Zp,1 . . . Zp,j

)
.(47b)

The data matrices Xk+1, Xk and Uk in equation (45) are
extended in the same way

Xk+1 =
(
Xp+1,1(:,2:N1) . . . Xp+1,j (:,2:Nj )

)
. . .

(48)

to estimate the system matrices.

In summary, the computational steps of the PBSIDopt algo-
rithm are:

1. Set up the matrices Yp+1 and Zp from equation (47)
or equation (34) and (35) respectively,

2. Solve the least squares problem from equation (37),
3. Set up ΓfKp from equation (39),
4. Solve the SVD from equation (40),
5. Calculate an estimate ofXp+1 from equation (41),
6. Solve equation (43) and calculate the innovations from

equation (44),
7. Solve equation (46) considering the matrices from

equation (48) or (45) respectively.

Because the PBSIDopt method operates in the time do-
main, the amount of data points to be evaluated is higher
than for frequency domain methods. With today’s increased
computational power, this poses no problem anymore. Like
for all time domain methods, the frequency range of interest
cannot be specified directly. Filtering the data in a prepro-
cessing step can be used to limit the maximum frequency
content in the data. All equations used in the PBSIDopt
algorithm are based on linear algebra and no integration is
necessary, even if PBSIDopt is a time domain approach. So
the method is able to identify unstable systems and can be
implemented in a numerically stable and efficient way. Like
the ML method, PBSIDopt can handle multiple data sets
which is important for rotorcraft system identification.

In contrast to ML, no model structure and thus model states
are defined for the PBSIDopt method in advance. PBSIDopt
automatically estimates internal states, that are usually un-
physical. The system matrices A, B, and C, as appear-
ing in equation (27), are normally fully occupied. Usually,
they are not the same as those appearing in equation (1).
Rather, PBSIDopt models are comparable to state space
models that have been derived from transfer function mod-
els, since they only describe the input-output behavior of a
system.

3.2. Application to ACT/FHS Flight Data

In this subsection the optimized predictor-based subspace
identification method is applied to the identification flight
data conducted with DLR’s research helicopter ACT/FHS at
60 knots forward flight as described in subsection 2.3. The
data consists of eight different flight tests using manual fre-
quency sweeps up to 3 Hz on all control inputs for system
identification and eight different 3-2-1-1 step sequences for
model validation purposes.

A zero-phase low pass filter with a cutoff frequency of
16.6 Hz is applied to the flight test data and the sampling
time is reduced to 24 ms. In this way, high frequency vibra-
tions like the 4/rev oscillation at about 27.5 Hz, are not iden-
tified and the computational costs are reduced. The four
helicopter controls for longitudinal and lateral cyclic, pedal
and collective are used as inputs uk. The velocities u, v
and w, the angular rate p, q and r and the attitude angles
Φ and Θ are the used outputs yk to be matched

uk =
(
δx δy δp δ0

)T
(49a)

yk =
(
u v w p q r Φ Θ

)T
.(49b)

3.2.1. Influence of Model Order, Future and Past Win-
dow Length

As already mentioned in section 3.1, the choice of the fu-
ture window length f and the past window length p has sig-
nificant influence on the resulting model accuracy. Even
though guidelines for how to chose the past window length
p can be found in [11] and [12] as well as the references
therein, p has to be large to satisfy equation (36). Further-
more, p should be equal to or greater than the expected
model order n to estimate a suitable coefficient matrix Ψ in
equation (37) as the basis for the singular value decomposi-
tion. The influence of the future window length f is investi-
gated extensively in [12]. It is shown that f highly “depends
on the specific experimental conditions“ such as the used
input signals. So often p = f is fixed and p is chosen to
minimize the simulation error, for example in the investiga-
tions in [15, 16].

For this paper, a parameter study was conducted to ade-
quately choose the past window length pi1 and the future
window length fi2 for the data under investigation. Since
the model order is not fixed due to a predefined model struc-
ture, for every parameter set pi1 and fi2 75 models are es-
timated with the corresponding model order ni3 from 6 to
80.

pi1 =
(
1 2 5 10 20 . . . 250

)
(50a)

fi2 =
(
1 . . . 5 10 15 . . . 40 50 . . . 100

)
(50b)

ni3 =
(
6 7 . . . 80

)
.(50c)

Since the maximum value of fi2 and ni3 is restricted by the
choice of pi1 and fi2 respectively, this parameter study re-
sults in 22,942 different models. Using a standard desktop



computer without parallel computing capabilities, this pa-
rameter study takes around seven hours including model
validation.

The root mean square (RMS) error JRMS is used to quantify
model accuracy in the following section. The RMS error
between the measurements ym and the simulated model
outputs y is defined as

(51) JRMS =

√√√√ 1

nyN

N∑
k=1

(ym,k − yk)
T

(ym,k − yk)

with the number of data samples N and the number of out-
puts ny. According to [1] a root mean square error of

(52) JRMS ≤ 1.0 to 2.0

indicates a good overall model accuracy for coupled heli-
copter models using typical time domain validation maneu-
vers like 3-2-1-1 sequences, if ft/s, deg/s and deg are used
as output units.

In figure 2, the smallest RMS errors of the identified
ACT/FHS models are shown as a function of the param-
eters p and f . Low RMS errors are drawn in light yellow,
larger ones in red to black. For very small f ≤ 5, the mod-
els suffer from large RMS errors, because the model order
is limited to nunyf and thus is small. Suitable identification
parameter sets can be found for f ≈ 20 and f ≥ 45 if
p > 150. For the flight test data under consideration, large
values for f and p seems to be a good choice for accurate
results, but increase the necessary computational time sig-
nificantly. Setting p = f does not result in the lowest RMS
errors possible for this experimental setup.
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Figure 2: Minimal RMS errors of identified ACT/FHS models
as a function of past and future window length

Even if figure 2 can be used to chose the identified model
with the smallest RMS error, it does not give information

about the other models identified in the parameter study.
To analyze the RMS error distribution as a function of the
model order, the box-plots in figure 3 (on the next page) are
used. In figure 3, the whiskers mark the maximum and min-
imum RMS values of the identified models with a defined
order, if there are no RMS values larger or smaller than four
times the interquartile range. Otherwise the whiskers mark
the largest and smallest existent RMS error up to four times
the interquartile range and outliers are depicted as addi-
tional circles. It can be seen, that the RMS error distribution
converges to small error values with higher model order n.
Nevertheless the identified model with the lowest RMS er-
ror has n = 34 which can be seen at the lowest whisker
in figure 3. As expected, low order models do not cover
the highly coupled helicopter dynamics sufficiently. Since
the majority of the identified models with n > 20 have small
RMS errors and a narrow error distribution, a huge set of ap-
propriate models is identified using the PBSIDopt method.
(The RMS errors for n = 51 to n = 80 are not shown in the
figure.)

3.2.2. Model Order Selection

As mentioned in section 3.1, the neglect of smaller singu-
lar values in the predictor sequence reconstruction in equa-
tion (41) can be interpreted as a model reduction step. Of-
ten the singular values are investigated in this step to se-
lect an appropriate model order [14]. In figure 4, the sin-
gular values are shown for the parameter set f = 100 and
p = 220 (as this set results in the lowest RMS error model
with model order n = 34).

0 10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

number of singular value i (-)

s
in

g
u
la

r 
v
a
lu

e
 S

i 
(-

)

Figure 4: Singular value plot for model order estimation

A clear gap between the 8th and 9th singular value can be
observed, but a model order of n = 8 is not sufficient to
achieve a good model accuracy (see figure 3). After i = 16
the singular values decrease slower than before. This cor-
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Figure 3: RMS error distribution of identified ACT/FHS models as a function of model order n (f ≥ 10)

respond to figure 3, in which the minimal RMS error reaches
a value of 2.25 for n = 16. Also note that the singular val-
ues do not converge to zero, since there is measurement
noise.

Thus, the investigation of the singular values in figure 4
can be helpful to select a minimal model order to start the
system identification process, but a clear decision on what
model order is sufficient or even best for the predictor se-
quence estimation cannot be arrived at. So the model order
selection should be based on the validation results and not
on the singular values, even if the chosen model order might
be high.

For further investigation, two different models are selected:
A 15th order model (f = 15, p = 30, JRMS = 2.06) is
investigated without any further processing steps, as this
corresponds to the ML model with 15 states. In addition,
the 34th order model with the lowest RMS value is chosen
(f = 100, p = 220, JRMS = 1.61). This model is reduced
to an appropriate order in the following subsection.

3.2.3. Model Reduction

Depending on the intended usage of a low order model, only
a certain frequency range has to be matched appropriately.
For ACT/FHS control applications a frequency range from
0.5 rad/s to 20 rad/s is used. Most of the relevant flight dy-
namics are covered in this frequency range and higher dy-
namics cannot not be compensated through classical feed-
back controllers. Slower dynamics can be compensated
easily, so their representation can be simplified for control
issues, but they need to be correct for simulation usage.
During the Maximum Likelihood frequency domain system
identification presented in section 2, these frequency limits
can be considered directly, but this is not possible in a time
domain approach like the PBSIDopt algorithm.

Model reduction techniques provide the possibility to reduce
model complexity and to account for the frequency range of

interest. In this paper, the identified 34th order modelG(s)
is decomposed into its slow and high frequency parts using
a method based on [22]

(53) G(s) = Gslow(s) +Gfast(s).

The fast dynamics Gfast(s) are neglected afterwards,
whereas the remaining slow frequency dynamicsGslow are
used as a reduced model.

The identified 34th order model is reduced by removing
the dynamics faster than 20 rad/s (to match the frequency
range of interest used in section 2). In this way the 34th
order model is scaled down to a 18th order model. Fig-
ure 5 compares the original and reduced model using the
example of collective input δ0 to heave motion w. The first
low-damped oscillation at about 34 rad/s that is omitted in
the model reduction step can be attributed to the tail boom
structural mode and coning. Further high order effects of
the 34th order model are related to physical effect, used
digital filters or numerical effects in the system identification
process. These undesirable numerical effects increase with
higher system order and should always be removed from
the model.
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Figure 5: Original and reduced order ACT/FHS models

The identified 15th order model described in section 3.2.2
and the 18th order model are compared to the measured



frequency response in figure 6 for lateral inputs δy to the roll
rate p and pitch rate q. Both models are matching the roll
rate p accurately for frequencies ω > 0.4 rad/s. The pitch
rate dynamics show larger variations of both models to each
other. The 18th order model is much more accurate over the
whole frequency range of interest. The regressive lead-lag
dynamics at about 12 rad/s are only identified in the 18th
order model, but not in the 15th order PBSIDopt model (in
contrast to the 15th order ML model). Thus, the reduction
of a high order model results in smaller errors compared
to estimating a low order model directly (model reduction
vs. under modeling [23]). Due to the deficiencies of the
15th order model, only the 18th order model is investigated
further in the following section.
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Figure 6: Comparison of measured frequency response
(FR) with 15th and 18th order PBSIDopt model

4. COMPARISON OF FREQUENCY DOMAIN AND PBSID-
OPT IDENTIFIED ACT/FHS MODELS

Rotorcraft model validation in time domain is usually per-
formed using doublet or multi-step inputs. As mentioned in
section 3.2, the (overall) RMS error is used to quantify the
models’ accuracy and chose the best PBSIDopt model for
further investigation. The RMS errors from the eight differ-
ent validation maneuvers are listed in table 1. The first row
marks the validation maneuver, where +δx is a 3-2-1-1 step
sequence on the δx control in positive direction. The sec-
ond and third row contain the corresponding RMS errors
from the ML model and the PBSIDopt model respectively.
The overall RMS errors of both models are shown in the
last column.

Regarding the results in table 1, the longitudinal maneuvers
of the ML model are rated poorly. The large RMS errors are
mainly caused by low frequency deviations in the forward
velocity u, the roll rate p and the pitch rate q. In the left part

+δx −δx +δy −δy +δp −δp +δ0 −δ0 JRMS

ML 4.4 2.4 1.2 1.6 1.8 1.9 2.3 3.4 2.6
PB 2.1 1.5 1.3 1.2 1.8 1.9 1.1 1.9 1.6

Table 1: RMS errors of Maximum Likelihood (ML) and
PBSIDopt (PB) models for different validation maneuvers

of figure 7, this effect is clearly visible in the time domain
comparison of the −δx maneuver. These deviations are
not weighted in the ML optimization step, since frequencies
below 0.5 rad/s are not considered. The yaw rate r shows
nonlinear effects due to the fenestron tail rotor, which can-
not be matched by both methods, since they provide linear
models only.

In the frequency domain comparison in figure 8, both mod-
els match the measured amplitude responses very well for
mid and high frequencies from δx to heave motion w, roll
rate p and pitch rate q. The frequency sweep maneuvers
that are used to calculate the frequency responses in blue
(“FR”) are the same that are used for both identification
methods in section 2 and 3. Some variations are observed
for the forward and lateral velocities u and v and the yaw
rate r, nevertheless both methods provide good results in
the frequency range of interest.

Both methods accurately model the responses to lateral
cyclic inputs δy regarding the corresponding RMS values
in table 1. The PBSIDopt model does not show much bet-
ter results, even if the amplitude responses are captured
more precisely from lateral cyclic to the velocities u and w
shown in figure 9. A time domain comparison of the posi-
tive lateral cyclic maneuver +δy is shown in the right part of
figure 7. Here, the ML model can be considered as being
more accurate for the velocity u, nevertheless these are low
frequency deviations. The identified roll rate p shows better
results for the PBSIDopt model, but the ML model is also
very accurate. The regressive lead-lag resonance can be
clearly seen at about 12 rad/s in the roll and pitch rates in
figure 9. While these dynamics are covered by one complex
pole in the PBSIDopt model only, the ML frequency domain
model needs two complex poles with the same dynamics
to cover these effects due to the predefined model struc-
ture, see subsection 2.2.3. Since the regressive lead-lag
resonance is clearly visible in the input-output relations of
the helicopter, the associated dynamics of PBSIDopt model
can be attributed to a physical phenomenon in this case.
Nevertheless, internal physical relations are usually difficult
to be interpreted in the PBSIDopt model. The overall per-
formance from lateral cyclic inputs of both models is very
good.

The responses to pedal inputs (figure 10) are captured very
well by both models for frequencies around 1 rad/s. Large
differences between the models can be found in the rep-
resentation of the forward velocity u for low and high fre-



quencies, but the RMS errors of both models are rated as
good. The PBSIDopt model includes additional regressive
lead-lag dynamics also for pedal inputs, as can be seen in
the transfer functions for roll rate p and pitch rate q. Due
to the model structure of the ML model, where the lead-lag
motion is only excited by cyclic control inputs, these cou-
plings are not included in the ML model. Furthermore, the
model identified by the ML method in frequency domain,
seems to suffer from an underestimated yaw rate amplitude
for ω > 3 rad/s, but there is no need for the extension of
the ML model with further dynamics.

The largest differences between the models can be found
for collective inputs δ0 shown in figure 11. The deficien-
cies of the ML frequency domain model for collective in-
puts are caused by the missing engine dynamics and can
also clearly be seen in the high RMS errors for the valida-
tion maneuvers in table 1. The ML model has also some
deficiencies describing couplings from collective to lateral
velocity v, roll rate p and yaw rate r. These deficiencies
have already been investigated in [7] and [8]. The signifi-
cant dynamics of the PBSIDopt model for collective inputs
can provide useful information to enhance the ML model
structure for an iterative model enhancement, since the PB-
SIDopt model covers three more states (or five concerning
the four regressive lead-lag states as two states only). The
regressive lead-lag dynamics at 12 rad/s are highly excited
by collective inputs, which is not included in the ML model.
The modeling approach described in subsection 2.2.3 might
be improved using these PBSIDopt model results. The on-
axis response from δ0 to heave motion w is covered more
accurately in the ML model for higher frequencies. High fre-
quency dynamics for ω ≈ 34 rad/s are not covered by both
models due to the applied frequency limits.

The overall RMS error of the PBSIDopt model can be con-
sidered as good: JRMS < 2. Missing cross-couplings and
engine dynamics result in JRMS > 2 for the ML model.
Nevertheless, this model shows very good results for lat-
eral cyclic and pedal inputs and has a model order of 15
only (compared to 18th order PBSIDopt model). Since the
ML model structure is motivated physically, it only contains
effects, which are accounted for in the defined model struc-
ture. Including additional states describing the engine dy-
namics in the ML model, might cover some of the missing
effects and reduce the RMS error to the PBSIDopt model
level. For further investigation, the PBSIDopt model will be
used to enhance the ML model with the missing dynamics
for collective inputs mainly.

5. CONCLUSIONS AND OUTLOOK

The PBSIDopt method has successfully been applied to
flight test data of the ACT/FHS research helicopter and
models that are accurate over a broad frequency range
have been identified. The results have been compared to

a model identified by the classical ML frequency domain
output error method.

The ML method needs a predefined model structure, which
leads to physically interpretable models, but all important
dynamic effects have to be accounted for in the model struc-
ture. The presented ACT/FHS model identified with the ML
method does not yet contain engine dynamics. Therefore,
this model still has deficiencies for collective inputs. Fur-
thermore, the regressive lead-lag dynamics are only excited
by cyclic inputs. As the ML method works in frequency do-
main, the computational costs are low and models of un-
stable systems can be estimated. Nevertheless, good initial
values for the optimization problem are needed, especially
for rotorcraft applications.

The PBSIDopt method estimates an input-output state
space model with fully occupied system matrices A, B
and C. The physical interpretation of the models is hard,
since the model states cannot be defined beforehand. Com-
pared to the ML model, the fidelity of the PBSIDopt model
is higher, because single dynamic effects do not have to
be modeled explicitly, the model contains three more states
and is fully coupled. Just like the ML method, the PBSIDopt
method is able to estimate models from unstable processes
and is numerical stable. Nevertheless, the computational
costs and the resulting model order can be high. A model
reduction step is necessary to gain models which cover the
frequency range of interest only.

For further evaluation, the PBSIDopt method can be consid-
ered as a useful addition to the Maximum Likelihood method
in frequency domain. The PBSIDopt model can give use-
ful information about missing dynamical effects which can
modeled linearly and the needed model order to cover
them. The missing engine dynamics of the ACT/FHS ML
model will be analyzed in a future work, the couplings of the
regressive lead-lag dynamics might be improved using the
PBSIDopt model as reference.

The application of the identified PBSIDopt models to the
ACT/FHS model-based control system, i.e. for feedforward
controller design, will be investigated, but further require-
ments like invertibility of the model have to be ensured.
Since experiment design for rotorcraft system identification
still is very complicated, the dedicated flight test design
should be analyzed and optimized with respect to the ML
and PBSIDopt method in the future.
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Figure 7: Time domain responses of ACT/FHS models from −δx (left) and δy (right) inputs at 60 knots forward flight
(blue - measured response, green - ML model, red - PBSIDopt model)
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Figure 8: Amplitude responses of ACT/FHS models from longitudinal cyclic inputs at 60 knots forward flight
(FR/blue - measured frequency response, ML/green - Maximum Likelihood model, PB/red - PBSIDopt model)
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Figure 9: Amplitude responses of ACT/FHS models from lateral cyclic inputs at 60 knots forward flight
(FR/blue - measured frequency response, ML/green - Maximum Likelihood model, PB/red - PBSIDopt model)
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Figure 10: Amplitude responses of ACT/FHS models from pedal inputs at 60 knots forward flight
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Figure 11: Amplitude responses of ACT/FHS models from collective inputs at 60 knots forward flight
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