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Abstract

This paper presenis an analytical study of the acroclastic behavior of composite
rotor blades with straight and swept tips. The blade is modeled by beam type fi-
nite elements. A single finite element is used to model the swept tip. The nonlin-
car cquations of motion for the finite element madel are derived using Hamilton’s
principle and based on a moderate deflection theory and accounts for: arbitrary
cross-sectional shape, pretwist, gencraily anisotropic material behavior, transverse
shears and out-of-plane warping. Numerical results illustrating the effects of tip
swecep, anhedral and composite ply orientation on blade aeroclastic behavior arc
presented. It is shown that composite ply crientation has a substantial effect on
blade stability. At low thrust conditions, certain ply orientations can cause insta-
bility in the lag mode. The flap-torsion coupling associated with tip sweep can
also induce acroelastic instability in the blade. This instability can be removed
oy appropriate ply orientation in the composite construction. These results illus-
trate the inherent potential for aeroclastic tailoring present in composite rotor
blades with swept tips, which still remains to be exploited in the design process.

Nomenclature
a Lift curve slope
B Number of blades
C Airfoil chord
Cq, Blade profile drag coefficient
Ci(,,j=1,..,6) Material elastic moduli
Cr Thrust coefficient of rotor
Cw Weight coefficient of helicopter
[C] Damping matrix
e . Blade root offset
€ Cyr € Orthonormal triad of element
N coordinate system
€y, € € Orthonormal triad of undeformed curvilinear
NN coordinate system N
€, e,’,, ez Orthonormatl triad of deformed curvilinear
coordinate system
E,, E, E Base vectors of deformed elastic axis
E, Longitudinal Young’s modulus
Ey Transverse Young's modulus
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I‘U- Strain tensor in curvilinear coordinates

F LLoad vector in cguations of motion

Lo By Hr Basc vectors of undeformed beam

G,, (Z‘ﬂ, G, Basc vectors of deformed beam

Gy Longitudinal shecar modulus

. Offsct of beam clement in-board node from

blade root

A Ia) ')

Iy, n Ky Orthonormal triad of preconed, pitched, blade-fixed
coordipate system

A S A

Lars Jnes Ko Orthonormal triad of nonrotating, hub-fixed

, coordinate system

A " N

I I K Orthonormal triad of rotating, hub-fixed
coordinate system

(K] Stiffness matrix

Length of beam ciement

Mass matrix

Distributed force vector along elastic axis

Vector of finite element nodal degrees of freedom
Distributed moment vector along elastic axis
Position vector of undeformed beam

Rotor radius

Position vector of deformed beam

Position vector of deformed elastic axis

Kinetic energy

QEﬁW”oDmEr
| N—)

[T\ ]{Tu [T, Transformation matrices between coordinate

[Ted [Tl [Teed  systems )

u, vV, w Displacement components in (e g €] System

U Strain cnergy

\Y Velocity vector of a point on rotating blade

W, Work of nonconservative loads

X, 1, Curvilinear coordinates

Xy Xy X3 Indicial notations for x,» and {

Yis Yor Y3 Local cartesian coordinates

v Vector of generalized coordinates in modal space

Yo Nonlinear equilibrium position in hover

o Amplitude of warping

i} Pretwist angle of beam

By Blade precone angle

¥ Lock number

Yrzs Yxp0 Vs Shear strain components

Vans P Transverse shears at clastic axis

ou Virtual displacement vector of eclastic axis

0Q Virtual rotation vector of elastic axis

£ Non-dimensional parameter representing order of
magnitude of typical efastic blade slope

Exxs Ennr €7 Normal strain components

By Axial strain at clastic axis

0, Biadc pitch angle duc to control pitch setting,

= 0, for hover
0 0, 0 Epulcr angles in the transformauon between the
(e, c cg) system and the (¢,, c,,, LC) system
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0y Colicctive pitch

Koy Kq Curvatures of the deformed beam

(K] Transformation matrix between (¢y, ¢;, ¢7) and
its derivatives

[K,] Transformation matrix between (¢, ¢,, ¢,) and

its derivatives

A, Tip anhedral angle, positive upward

A Tip sweep angle, positive backward

A, Ay Ply angle in vertical walls and horizontal walls,
respectively, for composite blades

[A] Local-to-global transformation matrix for swept tip

Vi Longitudinal Poisson’s ratio

J2 Mass density of beam

o Rotor solidity

G xxr Onns Tt Normal stress components

Tprs Oyrs Oy Shear stress components .

T Twist of deformed beam

To Initial twist of the beam (= )

o Elastic twist angle of blade

o Second order term of deformed twist, £q. (23)

W Blade azimuth (= Qt)

by Out-of-plane warping function

Wry, Wgpy Wpy Fundamental rotating lag, flap and torsional
blade frequencies

Q - Angular velocity of rotor

()L 20 )y Derivatives of { ) with respect to x,n,{ , respectively

o ) Variation of { )

1. Introduction

In recent years, most helicopter rotor blades have been built of composite ma-
terials, because such blades have better fatigue life and damage tolerance than
metal blades. Furthermore, the manufacturing processes for composite blades
provide the designer with the freedom to incorporate more refined pianforms and
airfoil geometries. Composite rotor blades also offer the potential for aeroelastic
tailoring which can produce remarkable payoff in the muitidisciplinary design of
rotorcraft.

Numerous blade models developed to date have been restricted to isotropic
material properties’? . During the past few years, a substantial number of ana-
lytical studies have been aimed at the development of models which are suitable
for the structural and aeroelastic analysis of composite rotor blades. The impor-
tant attributes of such a structural model is the capability to represent transverse
shear deformation, cross-sectional warping and elastic coupling, in addition to an
adequate representation of geometric nonlinearities. A review of the existing
structural models suitable for modeling composite rotor blades were presented by
Friedmann® and Hodges®. There are two types of theories for composite rotor
blade structural modeling depending on the level of gcometric nontinecaritics being
rctained in the one-dimensional beam kinematics., The first type is based on a
modcrate deflection theory!-¥¥ while the second type is capable of modeling large
deflections'## | Modcrate defiection theories usually use an ordering scheme to
limit the magnitude of blade displacements and rotations, thus enable the strain-
displacement relations and the transformation between the deformed and
undeformed coordinates be expressed in terms of blade displacement quantities (u,
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v, w, ¢, and their derivatives with respect to the axial coordinate, x) explicitly.
While farge defiection theorics do not utilize an ordering scheme to limit the mag-
nitude of blade displacements and rotations. The only assumption uscd to neglect
higher order terms in such theorics is that the strains arc small,

For helicopter rotor blades acroclastic analysis, moderate deflection theories are
usually adequate provided that a consistent ordering scheme is used. Blade mod-
cls based on large deflection theorics are mathematically more clegant and more
consistent than those using an ordering scheme; however, the incorporation of
such models into gencral acroclastic analysis models is more complicated.  Also
such models may be computationaliy less cfficient and the results may be more
difficult to interpret.

To date, the only published body of rescarch on composite rotor blades which
actually contains acroclastic siability and response type of resulis is that published
by Chopra and his associates!®!? which is based on a moderate deflection theory.
The strain-displacement relations in this model were taken from Hodges and
Dowell’, which does not include the effect of transverse shear deformations. Also,
the model is restricied to a specific cross-sectional shape, i.e., a single-ccli, rectan-
gular box beam for a hingeless blade. Thercefore, the important requirement for
the development of a general aeroelastic analysis capability suitable for composite
rotor blades with arbitrary cross-scctional geometry, remains essentially unful-
fitled.

Rotor blades with swept tips, shown schematically in Fig. [, have also received
considerable attention in recent years. Swept tips introduce bending-torsion and
bending-axial coupling effects which have significant influence on blade dynamics
because they are located at the regions of high dynamic pressure and relatively
large displacements. Tip sweep and tip anhedral also provide another means for
the acroelastic taitoring of rotor blades. Furthermore, swept tips are also effective
for reducing aerodynamic noise and blade vibrations. Only a limited number of
analytical studies have addressed the aeroelastic modeling of rotor biades with
swept tips!®2! ; among these Reference 20 represents a rcasonably comprehensive
study. However, all these studies were restricted to isotropic blades. Despite its
comprehensive nature, the model used in Ref. 20 approximated the swept tip
portion of the blade as axially rigid and it also employed a linear transformation
in the assembly of the swept-tip element with the straight portion of the blade.
Such a transformation could be inaccurate for large sweep angies?? .

The uitirmnate goal of this study is the structural optimization and aeroelastic
tailoring of composite rotor blades with swept tips. For this ciass of studies com-
putational efficiency is a primary concern; and therefore it was necessary to de-
velop the moderate deflection composite blade model presented in this paper. The
primary objectives of this study are:

Development of a new aeroelastic model for composite rotor blades with
straight and swept tips, based on a moderate deflection theory, which is
suitable for aeroclastic tailoring and structural optimization studies due to
its computational cfficiency.

2. To study the effects of tip sweep and tip anhedral on the aeroclastic re-
sponsc and stability of an isotropic rotor biade in hover, since the relative
importance of these two effects has not been carcfully studied before.

3. To study the effects of ply orientation on the acroclastic stability of a
straight composite rotor blade in hover, for both single-cell and double-cell
blade configurations.

4. To cxamine the combined effects of tip sweep and ply orientation on the
acroclastic stability of a composite rotor blade with a swept tip in hover.
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The numerical results presented in the paper iflustrate the acroclastic behavior of
swept composite rotor blades in hover; these results, which have not been pre-
sented in the diterature before, demonstrate the inherent potential of swept-tip
composite blade configurations for acroclastic tailoring,

2. Formulation of the Blade Model

The hingeless composite rotor blade is modeled as an elastic rotating beam with
constant angular velocity £2. It consists of a straight portion and a swept tip
whose oricntation relative to the straight portion is described by a sweep angle
(A) and an anhedral angic (A,) . The cross-scction of the blade has a general
shape with distinct shear center, tension center and center of mass.  Precone,
controt pitch sctiing, pretwist and root offsct arc included in this model. The
blade 1s modeled by a series of straight beam finite elements along the elastic axis
of the blade. A single finite clement is used to model the swept tip. The nonlincar
strain-displacement relations arc derived assuming a moderate deflection theory
(small strains and finite rotations) with appropriate provision for transverse shear
dcformations and out-of-planc warping. Hamilton’s principle is used in the deri-
vation of the nonlincar equations of motion and the corresponding finite clement
matrices for cach beam clement.

2.1 Coordinate Systems

Several coordinate systems are required to fuliy describe the gcometry and de-
formation of the blade. Each coordinate system is symbolically represented by a
sct of orthonormal triad. The first three systems, namely, the nonrotating, hub-

) N

i~ AN A
fixed system (i, jn Kne) , the rotating, hub-fixed system (i, j,, k,}) , and the pre-

(a3 A S~
coned, pitched, blade-fixed system (i, j,, Ky) , respectively, are used to position and
orient the bladc rclativc to the hub through rigid-body motions, as shown in Figs.

2 and 3. Thc (IT, Jes )systcm rotates w;th a constam angular velocity ri ; while
the (i, Ju, 'b) systcm is offset from the (zr, Ies K .) System by ¢ x , and oriented by ro-
tating the (1” Jes k .) system about — )r by the precone angle §, and then about the

rotated 1 by the pitch angle 8,. In the finite clement model of the blade, the
(ips b b) system is the 0lobal coordmatc system.
The next two systems, (c ¢,) and (¢, c {) rcspcctwcl , arc used to posi-

A

tion and orient cach beam ﬁmtc clement rclauvc to the (1b. Jor Kg) SYStem in the
undeformed configuration of the blade, as shown in Figs. 4 and 5 Thc vector c
is aligned with the beam clement clastlc axis; while the vectors c and c are dc-
fmcd in the cross-section of the beam. For the strai ﬁht portzon of the bladc the

A

(c\, -z) system has thc same orieatation as the (1b, jus Ky) System. For the
A A A
swept- tlp element, the (c ¢ ¢c,) system is oriented bv rotating the (iy, jy, k) system

about — } ‘nb by the sweep anglc A, and then about — 3b by the anhedral angle A,
The (¢ .) System is also the Iocal coordinate system for the blade finite ck-
ment modyu,l Effcets of blade pretwist are properly accounted for by deriving the
beam ¢lement strain-displacement ret mom in the (L c , 0 ;) system, which rotates
with the beam pretwist. The vectors c and c,; are dcf’ncd pam]id to the modulus
weighted prmmpd} axes of the cross SCLUOI“I and the pzctwnt angle f(x) is defined
as the change in the orientation of C,I, cq with respect to c g, , respectively, at any
focation along the beam clement, as shown in Fig. 5.
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roa,

A final system, (cy, ¢, ¢7) , is used (o represent the ()ncnta[mn of the local hlade
geometry after (Lﬂnmdtmn The orientation of the (cx, Q) system is obtained
by rotating the (L Cc) system Lhmugh three Luler dngtcs in the order of 0,, 0,
and 0, about ¢ mm&cd ¢, and rotated ¢, respectively. This sequence was chosen
Lo l"oilow the wmk of prcwous authors™ | but other scquences are also possible.
The vector €, is chosen to be tangent 1o the local deformed clastic axis® . The
transformation matrices between various coordinate systems arc shown in Ap-

pendix A

2.2 Structural Modeling

In this study, the nonlincar kinematics of deformation is based on the me-
chanics of curved rods?*2% | The strain components are first derived in a
curvilinear coordinate system so that the effects of pretwist is properly accounted
for. These strain components are then transformed to a local cartesian coordinate
system. The stress-strain relations are assumed to be defined in this local cartesian
coordinate system. The kinematical assumptions used in the derivation are: (1)
the deformations of the cross section in its own plane arc neglected; {2) the strain
components are small compared to unity and no assumption is made regarding the
reiative magnitude between the axial and shear strains; and {3) higher order
warping terms are neglected.

2.2.1 Kinematics of Deformation
The position vector of a point P on the undeformed beam is written as

A ~ A A A
r(X,n,{)zelzr—%—helb—.’-xcx—f-?;'cn—i—ZeC (1)

Equation (i) can be used to represent the undeformed position vector both for a
point on the straight portion as well as a point on the swept-tip portion. For a
point on the swept-tip element, h, equals the length of the straight portion of the
blade. The corresponding undeformed base vectors at point P are defined by

g, = Ty = & — (T8, + 17l (2a)
g, =T, =72 (2b)
g =T =70 (2¢)

where the derivatives of the orthonormai triad (ex, 6,], 65) arc reiated to the initial
twist, 7 , of the undeformed beam by

¢ ¢

o 0o 0 07X

Coxp = |0 0 To |4 Sy (3)
A 0 - r() 0 1}

g x 4

and
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Ty = /fx ‘ (4)

Since the in-plane deformations of the beam cross-section are neglected, the
position vector of the point P in the deformed configuration can be written as

R(x, 7, ()= Ry(x) + nE, + (E + a«(x)¥(y, L)e; (5)

where

Ry(x) = R(x,0,0) ' (6)

is the corresponding position vector of a point on the deformed ¢lastic axis; and

E](X) == R'i(xa 0, 0)3 )= XM, { (7)

arc the base vectors of a point on the deformed clastic axis. In Eq. (5), the first
three terms represent translations and rotations of the cross-section, while the last
term is the out-of-plane warping of the cross-section. «(x} is the unknown ampli-
tude of warping; ¥(n, {) is the out-of- p anc warping function of the cross-section,
with L%’(O 0= ,(0,0)=Y (0,0)=0 . Without loss of generality, the unit
vector e is assumcd to be m the dlrectlon of E,, i.e., tangent to the deformed
clastic axas whiic the orientations of c,? and Cc arc near]y that of E, and E, but
differ on account of the strains?® . With the assumption that in- planc dcfor-
mations of the beam cross-section are neglected, the base vectors of the deformed
elastic axis are expressed by the following definition??

E, = (I 42,6, (3a)
A, A,

E, = V0 + € (8b)

Er = FyCp + O (Sc)

where Z,., ¥y, and ¥, can be shown to be the axial and the transverse shear
strains, respectively, at the elastic axis?* . The deformed base vectors at point P
are defined as

GKmR,X’ GJ.’:R»W’ GgﬁRlc (9)

where the derivatives of the orthonormal triad (3;, 3,’,, 35) arc related to the curva-
tures, k,, K¢ , and twist, 7, of the deformed beam by

>

/ AJ
X 0 K, K Cx
Al — K e ) A,
q?lx = b 0 T C*i' (10)
A, - Kq — T 0 A
7 °
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2.2.2 Strain Components

The set of coordinates (x, 7, {) are, in general, non-orthogonal curvilinear coor-
dinates since the base vector g, , cxpressed in Eq. (2a) is neither a unit vector nor
orthogonal to the base vectors g, and g, for an arbitrary point on the beam with
nonzero initial twist 7, . In the derivation that follows, the notations (x|, X5, X3)
will be used in place of (x, 5, {) whenever convenicent.

The components of the strain tensor in the curvilincar coordinates arc defined
by

| .
rij::'i‘(Gi'Gj’”gi'gj), Li=x,n,{ (11)

Define a system of local cartesian coordmatcs (y Y., ¥3) at point P with its unit
vectors parallel to the orthonormal triad (cx,c cc) of the cross scction, respee-
tively. The stress-strain relations of the beam are assumed to be given in the jocal
cartesian coordinate system. The transformation relation between the curvilinear
coordinates {X,, X,, X;) and the local cartesian coordinates (y,,y,, ¥1) 15 given® in
matrix form by

8xi 1 A ] 0 0
oo | = e gl Legl= {tg 10 (12)
7 —nTg 0 1

The strain tensor defined in the local cartesian coordinates, ¢; , is obtained from
the transformation

an Bxl
§= 0 ) Lt 13
E‘J 6yi 3yj Kl ( )

Combining Eqs. (2), (5), and (8) through (13}, the strain components in the local
cartesian coordinates become

Exx = Exx Ky, — (:KC +o Y+ a’rO(C‘P,n — 7';\IJ,C)

+ 2 + )& = 70 + 1Ty~ ToT) (14a)

+ C('}_}x{:'x + TOV}?}(}I)

Yy = Txn +‘a‘?’” — (- ) (14b)
v = Py + o +nlr = 1) (14c)
Eyy = 600 = Ty > 0 (14d — f)

where
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?x}? = 25)()] y VX{ = Qe;xc R })’.’C = 28?}{

The strain components in Egs. (14a-¢) arce valid for small strains and large de-
flections and arc cxpressed in terms of seven unknown functions of the axial co-
ordinale X: Eyy, Vg Vs Ko K0, T @nd . The first three are the axial and transverse
shear strains, rcspcctivc?y, at the clastic axis; the next three are curvatures and
twist, respectively, of the deformed beam; ¢ is the amplitude of warping.

In developing an acroclastic model, it is desirable to express the strain compo-
nents in terms of the displacement components (u, v, w) of the clastic axis and the
clastic twist {¢) so that the structural model can be more conveniently combined
with the inertial and acrodynamic models. To accomplish this, we need to elimi-
nate four of the seven unknowns in Eq. (14) by rclating them to u, v, w and ¢.
An ordering scheme? was used to simplify these relations by neglecting terms of
order &2 with respect to terms of order 1. It is assumed that rotation terms such
as v,, w, and ¢ arc of order ¢, while strain terms such as u,, ¥, and ¥,, are of
order 2. The warping amplitude ¢ is assumed to have the same order of magni-
tude as ¢ ,. This scheme is consistent with a modcrate deflection theory (small
strains and moderate rotations). Writing the vector E, as

Ey=(1+u)8 +v,e

A ” A,
x TV eyt w#ezz(i + Eyy) Cy (15)

Equating the magnitude of E, in Eq. (15) and applying the ordering scheme, as
well as the small strain assumption, give

- l 2 1 2

B = Uyt E{V,x) + ~2—(w,x) (16}

The deformed curvatures and twist can be related to the Euler angles (6,,0,,6,)
by differentiating Eq. (A.5) with respect to X and combining with Eq. (3)

A, A
Sxx Cx
. A
/c\r;,x = ([Tdc],x + [Tdc][KO]) e}? (17)
A, A
X ¢
which yiclds
(K] = ([Tge] x + [Taed (K1) Tad ' (13)
by combining Eqs. (17) and (10). where
0 0 0
(Kgl=10 0 70 (19)
0 —% 0O ‘
0 e K
K]=|—"% o < (20)
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Writing the vector E, in the (2, 3,1, (A:C) system, using Eqs. (15) and (A.4)

o= (1 -+ U,K)G.\ 4 (v g cos i 4w sin [J’)G)? +A{w cos i — v sin ff) EC (20
The deformation of an clement dx on the beam eclastic axis is then described in
Fig. 6, where the cffects of the rigid-body translation are not shown. The cx-
pressions for the deformed curvatures and twist in terms of v, w and ¢ are ob-
tained by combining Eq. (}8) and the trigonometric relations derived from Fig. 6
and applying the ordering scheme

i€y = Vxx COS(B + )+ w o sin(ff + @) (22a)
g = = Vo Sin(fi + @)+ w o cos(f ) {22b)
T=Tg+ ¢+ dg (22¢)
where

o=~V sinf+w,cos f)(vy,cosff +w,,sinf) (23)

In Eqs. (22a-c), the torsional twist angle 8, is replaced by ¢, in order to be con-
sistent with the usual notation in the literature. The non-zero strain components
in Egs. (14) can now be expressed in terms of u, v, w and ¢ by substituting Egs.
{16) and (22a-¢) into Eqs. (14) and applying the ordering scheme.

Exx = Uyt -;:{v,x)z + —,i—{w’x)z — v,xx[?g cos(f + ¢)— L sin(f + )] —
Wl sin(f + @) + L cos(f + ¢)] + é—{nz + Cz)(q{)lx)z + (24a)

o Ao g(T = )b g x o ToP )+ g x T ToV)
Yy = ?x:? + a\}l‘ n C(qﬁ)x + ¢g) (24b)

}J,‘({ = 3;’((: + Oﬂq“‘c -+ Ti((,b'x -+ (;f)o) (24(3)

The seven unknown functions of the axial coordinate, x , in the strain-
displacement relations, Eqs. (24a-c), become: u, v, W, ¢, «, ¥y, and J,.

2.2.3 Constitutive Relations

The constitutive retations are defined based on the assumptions that the mate-
rial propertics are lincar clastic and gencrally orthotropic (anisotropic behavior)
and that the stress components within the cross scction are set to zero
(4 = 0 =0, = 0) . The anisotropic stress-strain relations for a lincarly elastic
body are written as
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T xx Cii Ci2 Ciy Cug Crs Crg || £xx
T Cilp € Coy Cog Cys Cog || by
P8 _ 1S Cay Gy Cag Cas Cae|| B2 (25)
Z’TC Cla Coq Cay Cuag Cys Cyg f’?C -
OXC Cis Cos Cas Cas Css Csel| 7X
| Cig Cae Cas Cag Csg Ceg || ]

Sctting the three stress components within the cross section cqual to zero and ap-
nlying back substitution, the constitutive relations are

T xx Qi Qs Qps | (€xx
% > =1 Qs Qs5 Qs | 47 (26)
1 Qs Qs Qgs | (T

whaere
[Q1 = [Cppl — [Cped(Cyl™ ' [Cp)

Cy1 Cis Cue
[(Cpul = | Cis Css Cog

[Cid = | Caz Caz Cxq

Crp Cpi3 Cuy

T
[Coel = [Cspl = | Cas Cas Cys
Crs Cas Cag

2.3 Aerodynamic Modeling

The acrodynamic loads are obtained using Greenberg's theory with a quasi-
stcady assumption. Stall and compressibility effects are neglected. The induced
inflow is assumed to be uniform and steady. The implementation of this acro-
dynamic model is based on an implicit formufation?® where the expressions used
in the derivation of the acrodynamic loads are coded in the computer program and
assecmbied numerically during the solution process. Explicit algebraic form of the
acrodynamic loads as a function of the displacement variables is not required; and
the ordering scheme is not used in this implicit formuiation. Furthermore this
formulation of the unsteady acrodynamic loads enables one to replace the simple
theory used here by more refined theories without an excessive amount of addi-
tional effort.

2.4 Hamilton’s Principle
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The nontinear equations of motion and the corresponding finite element matri-
ces are derived for cach beam clement using Hamilton’s principle

t
J 2(5LJ-# 6T — W, dt = 0 (27)
L

!

where 6U, 0T and 6W, represent the strain energy varlation, Kinctic energy vari-
ation, and virtual work of external loads, respectively.

2.4.1 Strain Energy
The variation of the strain energy for cach beam clement is

- [

e

Otyy )1 Qyp Qs Qg (Exx

Ovx o [ Qis Qss Qss |1 o dydldx (28)
Ovgn ) 1 Qie Qss Qep| U

Integrating Eq. (28) over the cross scection yields three sets of modulus weighted
section constants, which are presented in Appendix B. These section constants arc
calculated by a separate linear, two-dimensional analysis which is decoupled from
the nonlinear, onc-dimensional global analysis for the beam. In this study, a
composite ¢cross section analysis model, developed by Kosmatka?® is used to cal-
culate the shear center location and the modulus weighted section constants of an
arbitrarily shaped composite cross section. This model is bascd on the Saint
Venant solution of a tip loaded composite cantilever beam with a general
prismatic ¢ross section. it uses the principle of minimum potential energy and 2-D
finite element analysis to calculate the cross-sectional warping functions and stress
distribution. The shear center location is determined using moment equilibrium
and the shear stress distribution. Several other two-dimensional composite cross
section analysis models are also available in the literature?’¥  among which Ref-
erence 28, which is also capable of modeling cross scctions with arbitrary shape
and anisotropic and nonhomogencous materials, 15 the most generai model.

2.4.2 Kinetic Energy
The variation of the kinetic energy for cach beam clement is

1(3
oT = J- JJ. pY oV dnd{dx (29)
¢ A

where the velocity vector, V, is obtained by

. FaN
V = R + Qk. xR (30)
with the position vector, R, of a point P on the deformed beam written in the form

o A A A A . A
R =¢ji, + hijp + (K 4+ u)e, + ve, + we, + nE, + [E, + a'f'ey (31)

b

cwrcssions of the velocity vector, V , in Eq. (30) were trans-
¢,} system before carrying out the algebraic manipulations

All the terms 'mﬂth
formed to the (¢,

Q> G

¥
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implicd by [;cgsA (30) and (29). A transformation between the (E;, f:,;,e&) system
and the (e, ¢, ¢,) system in terms of the displacement vartables u, v, w and ¢ is
obtained by combining Egs. (A.4), (A.5) and the trigenometric relations derived
from Fig. 6, and applying the ordering scheme

N, A
Cx Cx
/\, - A
Cﬂ ::[T(M] Cy (32)
A, A
CC C?_

where the transformation matrix [ T,.] is cxpressed as

[Tﬁc] = [11k][jkc]

l Vx Wox (33)
= | VP — w,sfip i sfo
Vi SBe —w e —spé +1/ch cfd + v /s

where

!

1. = {vysinf—w,cos f)(v cosf+w, sinf)

and the notations ¢fi¢, sf¢, ¢f and sf used in Eq. 33 are defined as

cos f

cfop = cos{(f+ @), <f

sfp = sin{f+¢), sf = sinf

Integrating Eq. (29) over the cross scction vields mass weighted section constants
about the shear center, which are also presented in Appendix B.

2.4.3 External Work Confributions
The effects of the nonconservative distributed loads are included using the
principle of virtual work. The virtual work done on cach beam eclement is

o -
oW, = J (P-ou + Q-460)dx (34)
G

where P and Q are the distributed force and moment vectors, respectively, along

the clastic axis; du and 6©®@ are the virtual displacement and virtual rotation vec-
tors, respectively, of a point on the deformed elastic axis. In the aeroclastic anal-
ysis, components of P and Q arc replaced by the corresponding components of
acrodynamic forces and moments.

3. Method of Solution

3.1 Finite Element Discretization
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The bhlade is divided into a series of beam clements. For a swept-tip blade, a
single beam clement is used to model the tip. The discretized form of Hamilton’s
principle is written as

1
"NBU - ST — W) dt = 0 (35)
1 1 Cl

b=

t

where n is the total number of finite clements. Hermite interpolation polynomials
arc uscd to discretize the space dependence: cubic polynomials for v oand w;
quadratic polynomials for ¢, u, o, y,,, V- Each beam clement consists of two end
nodes and onc internal node at its mid-point, resulting in a total of 23 nodal de-
grees of freedom, as shown in Fig. 7. The quadratic polynomial has the capability
of modeling a lincar variation of strains along the element length, thus being
compatible with the cubic polynomial for transverse deflections.  These
poiynomials also satisfy all inter-element compatibility requirements associated
with the vanational principle in this formuiation. Note that when the problem is
restricted to bending and shear in the vertical plane, Egs. (24a-¢) reduce to the
strain-displacement relations of Timoshenko beam where a constraint relation,
such as

W,x = Qw -t _}FXC (36)

exists, and 8, is the rotation duc to bending. In this special case the boundary
terms for éw, and é¥,, in the 6U expression will have the same cocfficient with
opposite sign, and thus can be combined into a boundary term containing only
60,. This also agrees with Timoshenko beam theory and implies that w and §,,
are not required to have inter-clement continuity?' . For a beam with built-in
twist, undergoing moderate deflections in two mutually perpendicular planes,
combined with torsion and transverse shears, the boundary terms for éw, and
&V, have different cocfficients which contain coupling terms such as v, ¢ and §,
and Eq. (36) is no longer valid. The corresponding variational principle thus re-
quires inter-element continuity on both w, and ¥,, , and for the same reason also
on v, and ¥,. In the literature of Timoshenko beam finite elements, there is a
group of higher order elements3??3* which also enforced inter-clement continuity
on w, and ¥,, cither directly or indircctly through Eq. (36); and they produced
excellent agreement with exact solutions. For more complex structures such as
swept-tip blades, the actual behavior of ¥, and ¥, at the junction of the swept tip
and the straight portion of the blade is complicated. Therefore, the enforcement
of inter-clement continuity on ,, and ¥, at the junction node should be treated
as an assumption.

The local-to-global coordinate transformation for the swept-tip element can be
written in the form

a = [AJq? (37)

where the subscript t denotes quantities associated with the tip e¢lement; the
superseripts Loand G denote the local and global coordinate system, respectively;
q is the vector of ciement nodal degrees of freedom, defined as
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q= (0 i) e e g 1)
where {vi{w} {¢},{u},{a},{7,,} and {5} arc arrays of timc dependent nodal
values for v, w, @, u, o, %, and ¥, respectively. The transformation matrix, [A],
is derived with the constraint that the angular relationship between the swept-tip
and the straight portion of the blade at the junction is preserved after
deformation?? . As a result, the transformation corresponding to the rotationat
degrees of freedom of the junction node is nonlinear due to moderate rotation.

(38}

3.2 Solution Procedure for Hover

The first step in the solution procedurce is the calculation of the natural fre-
quencics and mode shapes of the blade; which is assumed to be represented by the
lincar, undamped cquations of motion of the blade in vacuum. A modal coordi-
nate transformation is then performed to reduce the number of degrees of {reedom
of the problem and to assemble the various clement matrices into the system mass,
damping and stiffness matrices and into the system load vector. The resuiting
equations of motion in the modal space arc a set of nonlinear, coupled, ordinary
differential equations given by

[M(¥)Jy + [C(y)ly + [K(y, 3, ¥)3y + F(y,3,5) = 0 (39)

The static equilibrium position, y,, is obtained from Egs. (39) by sectting
¥ =¥ =0 and solving the resulting nonlinear algcbraic equations. Subsequently,
Eqgs. (39) are linecarized about the nonlincar static equilibrium position, y, , and
the stability of the blade is obtained from the solution of a standard ecigenvalue
problem?%:2>

4. Results and Discussion

The resuits of this study are divided into three parts: (1) results illustrating the
influence of tip sweep and anhedral for isotropic blades; (2} results for single-cell
composite blades emphasizing the influence of ply orientation on aeroelastic sta-
bility; and (3) results for two-cell composite blades, emphasizing the influence of
ply orientation as well as the combined cffect of sweep and ply orientation on
acroclastic stability.

4.1 Effects of Swept Tip

The effects of tip sweep and tip anhedral are presented for a soft-in-plane
hingeless blade configuration. The blade is modeled using a total of five finite el-
ements. The swept tip, representing 10% of the blade length, is modeled with one
element, while the straight portion is modeied using four elements having equal
length. Scven coupled rotating modcs, including three flap, two lag, one torsion
and one axial mode, are used. The baseline configuration for the straight blade
is given in Table 1. The tip sweep angle, A, , is varied between 0° and 40° in in-
crement of 10° each. The tip anhedral angle, A, , is varied between -20° and 20°
in increment of 10° cach. The thrust cocfficient of the rotor, C , is maintained
at a constant value of 0.005 which is equal to the weight coefticient, Cyy , by using
a coupled trim-acroclastic response analysis.

Figures 8 and 9 illustrate the cffect of tip sweep on the acrociastic stability of
the blade. Figures 8(a) and 8(b) show the imaginary and rcal parts, respectively,
of the complex cigenvalues for hover as a function of A, , for the bascline config-
uration. The notation L, F and T is used to denote lag, flap and torsion modes,

E12-15



respectively. The imaginary part of the eigenvalue represents the frequency while
the real part of the cigenvalue represents damping of the mode. Tip sweep in-
troduces flap-torsion coupling in the blade. However, for this baseline configura-
tion, the frequencics of the flap and torsion modes arc well separated, thercfore
varying the tip sweep angle docs not have a signilicant influence on the blade
stability. Figurce 8(a) shows that the frequencies of the first five modes arce insen-
sitive to A, while the frequency of the third flap moede increascs slightly with A, .
The damping in the first flap, first lag and first torsion modes decrease slightly
with A,, but no instability is induced by {ip sweep, as shown in Fig. &{(b). Figurcs
9(a) and 9{b} show the imaginary and real parts, respectively, of the cigenvalucs
as a function of A, , for a configuration with a torsiona! frequency of
wp = 3.263/rev which is close to the sccond flap frequency of wgy = 3.4006/rev .
Figure 9(a) shows that frequency coalescence has occurred between the first
torsion and sccond {lap modes over a large portion of the tip sweep range being
investigated (approximately between 5% and 30%). The effect of this frequency
coalescence on the stability is cvident in Figure 9(b) where onc of the modes is
stabilized while the other mode is destabilized. The sccond flap mode becomes
unstable for A, between 10° and 32°. The sccond lag mode also exhibits a slight
instability. This instability is not associated with {requency coalescence and can
be removed by a small amount of structural damping.

Figures 10 and 11 illustrate the effect of tip anhedral on the acrociastic stability
of the blade. Figures 10(a) and [0(b) show the imaginary and recal parts, respec-
tively, of the eigenvaiucs for hover as a function of the anhedral angle, A, , for the
basciine configuration. Tip anhedral introduces lag-torsion coupling in the blade.
The frequencies of the first torsion and second lag modes for the bascline config-
uration are w, = 4.875/rev and w, = 4.465/rev , respectively, which are reason-
ably separated from each other. These two modes exhibit a mild frequency
coalescence near A, =0 in Fig. 10{a). This frequency coalescence has some de-
stabilizing effect on the first torsion mode when A, > 0° or A, < —10° and some
stabilizing effect on the sccond lag mode when A, > 0° |, which is ¢vident in Fig.
10(b}. Figures 11(a) and 11{b) show the imaginary and real parts, respectively,
of the cigenvalues as a function of A, , for a configuration with a torsional fre-
quency of wq, = 4.340/rev which is close to w,( = 4.465/rev) . The effect of lag-
torsion coupling duc to tip anhedral is more pronounced for this blade
configuration as Fig. 11(a) exhibits a more apparent frequency coalescence over a
wider range, while Fig. 11{b) exhibits a more significant stabilizing effect on the
sccond lag mode and destabilizing effect on the first torsion mode for A, # 0° .
The first torsion mode remains stable within the range of anhedral angles consid-
cred.

4.2 Single-cell Composite Blade

The behavior of a single-cell composite hingeless blade having a stiff-in-plane
blade configuration is considered next. The blade structure is assumed to be re-
presented by a laminated rectangular box beam with uniform spanwise properties,
as shown in Figurc 12. The cross-section of the beam has an outside dimension
of 77 width by 2 height with a uniform thickness of 0.35". The baseline config-
uration is assumed to have zero ply angles, i.¢., all laminates of the beam consists
of laminac with fibers parallel to the blade length, and its basic parameters are
given in Tabic 2. Root jocus plots are computed for two cases with symmetric
configurations where the ply lay-ups on opposite walls arc identical. In the first
case, the horizontal walls have zero ply angles. For vertical walls the laminac in
the outer half thickness have zero ply angles while the laminae in the inner half
thickness are all oricnted at the same ply angle A, . A positive A, implics that
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fibers are oriented toward the top wall of the blade. In the sccond case, the ver-
tical walls have zero ply angles. FFor horizontal walls the laminac in the outer half
thickness have zero ply angles while the laminac in the inner halfl thickness are all
oricnted at the same ply angle Ay, . A positive A, implics that fibers are oriented
toward the lcading edge of the blade.

Figures 13 through 15 show the root locus plots of the complex cigenvalues as
a function of A, for first lag, first flap and first torsion modes, respectively, at
thrust levels Cp = 0.005 (sohd lines) and C; = 0.0025 (dotted lines). The ply angle
A, , which is the paramecter given on the plots, is varied from 0° to 90° in both
positive and negative dircctions. Note that the ply angles A, for 90° and -90° have
the same configuration with fibers oriented vertically, perpendiculiar to the blade
axis, for the inner half of the vertical walls. The variation of A, influences the
dircct stiffrness terms and the coupling terms which represent the effects of lag-
tarsion, lag-warp and warp-torsion couplings. Figure 13 shows that a positive ply
angle A, destabilizes the first lag mode, white a negative A, stabilizes the first lag
mode. Since the first lag mode is not heavily damped, the destabilizing effect on
this mode due to positive A, can be significant for certain ply angles. The com-
bined effect of having a positive ply angle A, between 10° and 28° with a low
thrust level Cp = 0.0025 causes instability in the first lag mode, as illustrated in
Fig. 13. Figure 14 shows that a positive A, , up to approximately 45°, stabilizes
the first flap mode. A positive A, greater than 45° or a negative A, on the other
hand, destabilizes the first flap mode. For the first torsion mode, varying A, has
little influence on its stability, as can be secen in Figure 15, Since the flap and
torsion modes are heavily damped, the cffect of A, on the stability of these two
rnodes is less significant.

Figures 16 through 18 show the root locus plots of the eigenvalues as a function
of Ay, for the first lag, first flap and first torsion modes, respectively, at a constant
thrust coefficient Cy = 0.005 . Figure 16 shows that a negative A,, up to approx-
imately -60°, destabilizes the first lag mode, while a negative A, beyond -60° or a
positive A, stabilizes the first lag mode. For the first flap and first torsion modes,
the variation of ply angle A, has a more significant influence on the frequency
than on the stability, as illustrated in Figs. 17 and 18.

4.3 Two-cell Composite Blade

Results illustrating the aeroeclastic behavior of a compaesite soft-in-planc blade
having a two-cell type cross section arc presented next. The two-cell cross-section
was sclected such that its fundamental natural frequencies for the baseline con-
figuration are similar to those associated with a typical helicopter blade. Figure
19 shows the two-dimensional finite element model employed for the composite
cross-section analysis from which the cross-sectional propertics of the two-cell type
of cross-section were obtained. The leading edge has a semi-circular shape with
a radius of 1.2"; and the straight portion has a total length of 6”. The middle wall
is 2.8” behind the leading edge semi-circle. All of the walls have a thickness of
0.1”. The bascline configuration of this blade is shown in Table 3 where the ma-
terial constants correspond to glass/epoxy type composite material. For conven-
ience, it is assumed that the blade has uniform spanwise properties, however, the
analysis developed can represent blades with arbitrary mass and stiffness vari-
ation. Stability results arc first calculated for a swept-tip blade with zero ply an-
gles and for a straight blade with ply angle variation in cither the vertical walls
or the horizontal walls. The combined effects of tip sweep and ply orientation on
blade stability arc then caleulated. The thrust coefficient Cp is maintained at a
constant value of 0.005 for all cases.
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Figures 20(a) and 20(b) illustrate the behavior of the imaginary and real parts,
respectively, of the cigenvalues associated with the various modes used in the
analysis as a Tunction of the tip sweep angle A, , for the bascline configuration
which has zero ply angles. For this case, the biade exhibits a frequency
coalescence induced by sweep between the sccond flap and first tersion modes
which is cvident in Figure 20(a). This produces a stabilizing cffect on the second
flap mode while destabilizing the first torsion mode, as cvident from Figure 20(b).
Figure 20(b) shows that the frequency coalescence for this two-cell case induces a
mild instability in the first torsion mode for sweep angles between 15° and 20°.

For the straight blade with ply angic variations, two cascs are analyzed. In the
first case, the laminac in the middle vertical wall and the inner half of the rear
vertical wall are oriented at ply angle A, while the remaining walis have zero ply
angies. In the second case, the laminae in the inner half of the horizontal walls
arc oriented at ply angle A, while the remaining walls have zero ply angles. Fig-
urcs 21 through 23 show the root-locus plots of the cigenvalues as a function of
the ply angle A, for first tag, first flap and first torsion modes, respectively. Figure
21 shows that a positive A, , or a negative A, beyond -40°, destabilizes the first lag
mode, while a negative A, up to -40° stabilizes the mode. The effects of the ply
angle A, variation on the first flap and first torsion modes are less significant, as
illustrated in Figs. 22 and 23.

Figures 24 through 27 show the root locus plots of the eigenvalues as a function
of the ply angle Ay, for the first lag, first flap, first torsion and second flap modes,
respectively, for the straight blade case (solid lines) and for the swept tip case with
A, = 20° {dotted lines). Figure 24 shows that a positive A, or a negative A, be-
yond -40° destabilizes the first lag mode, while a negative A, up to -40° stabilizes
the mode. The first flap mode stability is only slightiy influenced by the variation
of Ay, as illustrated in Fig. 25. The 20° tip sweep has a destabilizing effect on both
the first lag and first flap modes, but no instability is induced in these modes, as
shown in Figs. 24 and 25. Figure 26 shows that for the straight biade casec, the
damping in the first torsion mode decreases for positive A, , however, the mode
remains stable. For the case of 20° sweep, the blade has a mild instability in the
first torsion mode at zero ply angle, which has been shown in Fig. 20(b). The first
torsion mode is further destabitized for ply angle A, between 0° and 12°, however,
it becomes stable for A, greater than 12° or for a negative ply angle Ay, as illus-
trated in Fig. 26. Therefore, it is possible to remove the instability due to tip
sweep by choosing the appropriate ply orientation in the composite blades. The
effect of the 20° sweep, compared to the straight blade case, is to destabilize the
first torsion mode and stabilize the second flap mode for all ply angles, as shown
in Figs. 26 and 27, respectively.

5. Concluding Remarks

An analvtical study of the acroelastic behavior of composite rotor blades with
straight and swept tips, based on a new aeroelastic model, has been presented.
The new acroclastic modet is based upon Hamilton’s principle and employs a fi-
nite clement formulation. Numerical results showing the effects of tip sweep and
anhedral, and composite ply orientation on the acroelastic stability of the blade in
hover are presented so as to illustrate the potential of the model for aeroclastic
taitoring and structural optimization studies, The main conclusions obtained are
summarized below:

(1) It is essential to use a coupled trim-acroclastic response analysis for swept-
tip blades so that a constant thrust cocfficicnt can be appropriately maintained
throughout the range of tip sweep and tip anhedral variation.
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{2y Tip sweep can cause acrociastic instability duc to frequency coalescence
between the first torsion and sccond flap modes.,

(3) When frequency coalescence oceurs between the first torsion and second lag
maodes, both tip anhedral and dihedral have a stabilizing cffect on the sccond lag
mode.

(4) Ply angle variation in composite blades has a significant influcnce on the
stability of the first lag mode. The combined effect of low thrust condition and
ceriain ply oricntations can causc blade instability in the first lag mode.

{5) The acroclastic instability induced by tip sweep can be removed by appro-
priate modification of the torsional stiffness of the blade. For composite blades,
proper choice of ply orientation can be used as an additional design variable which
will remove this instability.

(6) Blade sweep, anhedral and coupling introduced by the composite con-
struction of the blade arc important design parameters which can be exploited in
the acroclastic tailoring and structural optimization studies of advanced rotor
blades.
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Appendix A

Transformation Matrices Between Coordinate Systems

A A
i .
A A
o r=0Tm 19 (A.1a)
A A
kf knf
where
cosy siny g
[Tml =1 —sing cosy O (A.1b)
0 o |
A A
i 1
A A
b = 0Toed g (A.2a)
A A
Ky, k.
where
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0 0 cos f} sin

[Ty = ([} cos 0., sin () Po P

brd = J Ik 0 [0 (A2h)
0 —sinfl, cosO, || —sinfi, 0 cosf,

A "
Cx b
A I
c, po== [ T ] iy (A3a)
AN A
c, Ky
For the straight portion of the blade:
1 0 0
[Tewl=]010 (A.3b)
00 1
For the swept-tip:
cos Ag —sin Ay cos A, o sin Ay
[Tep] = | sin A, cosAg O 0 1 0 (A.3¢)
0 o || —sinAy 0 cosA,
FAS A
CX cx
FAS
Cn = [Tee ] ey (A.da)
A AN
CC CZ
where
1 0 _0
[Te1=10 cos § sinf (A.4D)
G —sinf cosf
A A
ey ey
A, A
¢ p=1Tac 1y & (A.52)
A, A
¢ CC
where
[Ted =
| 0 0 COS 8,? 0 sin 6?; cos GC sin GC 0
0 cos 0y sin 0 01 0 —sin 0 cos @ 0O (A.5b)
O —sinf, cosO, (i sind, 0 cos0, 0 o |
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Appendix B
Modulus Weighted and Mass Weighfed Section Constants

(1) Modutus weighted area, first and second moments of incrtia, and torsional in-
tegrals:

2

~o

Blg = || Qun”dnd
Y UA

Ely = ”AQ“??C dnd{

EAC) = H\ Qy; (n° + %) dndl
EAC, = ”AQ“??(??zwLCz)dndC
FAC, = M\Q;IC(nvaCZ)dndC

EAC; = ”\Q“ (% + {27 dndl
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o = [[ Qe
6o = [ o
GWA = JJ‘A Qg dndl
GpA = ”A Qg5 dndl
GHCA = JJ:\ Qg dndl
G,An, = ”A Qg1 dnpdl
G, AL = H\Qléc’dndc
GrAn, = ”AQM dnd{

GCACC = JJ‘\leCd!yclé

Gyl = || Quetr+ thnat
YA

Gy = || Qus?+ Hana
A

Gy = [ (@ssn*+ Que >~ 20560 ana
YUA

(2) Modulus weighted area, first and sccond moment warping integrals:
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EADy = ‘:, QW dndg
A
m\/Ob = q“ry%, O:J}T QGQN
A
m>DM = %r,% O: NL\ QJQN
A
EAD; = : QW2 ande
A
EAD, = : Q%+ 1) W dndl
' A
EADg = %% QWY , —n¥ ()dndl
A

EADg = ‘_> Qs ¥ dndd
A

EAD, = % Qe ¥ dndl
A

“~

EADy = :\,o:i?g:%,@%%

EADY = || Quonier,,—n¥ panct
EADy = .“,‘ﬁ/O:acmﬁmﬂf.xlzé.mvasam
EADy = %b Qi ,:Nvﬁf_s - :{.ﬁuw dnd{
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EADY = H Oy 190 + QY ' ) dndd
YA

li

EAD J[ Qs gy~ () dndd
A

EAD, = ” Q670 , — 7¥ () dndl
A

(3) Anisotropic material stiffness coupling integrals:

EABy = (Qisn — Qe C)dndd

~
SO A

EAB = JJA(leﬂ — Qg {)n dnd{

EAB, HA (Qusn — Quet) dndt

EABy = || (Qisn = Qi) dnat
YA

P

EaBy = || @51 -~ Q0P+ 1ana
A

EABS = J.£\(Q15\‘V,C+Q16qj’n)d?’]d£

EABy = J‘L(QISW,HQMW,,?M dndl

EAB; = ” (QisW ¢+ Qe ) {dndl
YYA

l

EABS {J‘ (leqj,c‘}*Qlé\P’n)\{j dnd{
YYA
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EABg = ” (QysW ¢+ Qup W ) 01 4 L) dndl
A

EAByy = JJ (Qssn — Qsp L) dndd
A

EAB“ = A(stqj'g+Q56q",n)d?’fdz:

EAB|, = I (Qsen — Qg ¢) dndl

EAB|y = ) (Qse ¥ ¢ + Qes ¥, ) dnd?

ror

EAB)y= [(Qss — Qsel M ¢ + (Qsgn — Qgl )Yy Jdndd
Jia

-
EABs= | | [Qsf¥ ()°+ Q¥ ) +2Qse¥ ¥ (Jdndl
by vA

EAB:’;’ = J‘[ﬁ\ (Q;s?’,’ " Q15 C)(C‘{J’n - TT\P,(:)TO d?’;‘d(:

EABg = Jj}\ Qs \5",5 + Qg ‘}’,n) (C‘i’_n - ?7\1'1,{)?0 drnd{

(4) Mass weighted section constants:

m = J‘J-Ap dndl

mn., = JJ on dnd{
A

m{, = ”A p¢ dndd
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TABLE i
Buseline configuration for isotropic rotor blade

Fundamental, coupled rotating natwral frequencies
for a straight blade:

ey = 0.731

wep= 1125

iy == 4.875

y=1575 a=2n

a = .07 Gy = G010
¢/R = 0.053 Cy = 0.005
Bo=100 =4

Offsets of center of mass, acrodynarnic center and
tepsion center from cliastic axis are zero.

Tip length = 10% of the blade length.

TABLE 2

Bascline configuration for single-cell composite rotor

biade

Fundamcental, coupled rotating natural frequencies
for a straight blade with zero ply angles:

le = 1533

Wy == 1,187

W = 5.186

Y= 5.0 a= 57

o =0.1 Cgo= .01
/R = 0.08 Cy = 0.005
B,=0.0 B=4

Offsets of center of mass, acrodynamic center and
wension center from elastic axis are zero.

Material constants:
(= 30, x 10¢ psi
lp = 3. x 1 ps:
Grp= 12x WP psi
vy =103

TABLE 3

Waseline configuration for twa-cell composite rotor
e

Vundwnental, coupled rotaling natural frequencics
for a straight blade with zero ply angles:

s = 0.765
(J)f:| = 1096

= 3.356

y = 5.0 a=357

o= 0.1 Cp= 0.0
ofR = 0.06 Cy = 0.005
By= 0.0 =4

Tip length = [0% of the blade lengh.

AMatenal constants:
Ly=62x 10F psi
Lp=1.6x 10f ps
Gir=08x 0¥ psi
vip=0.25

IBOARD SEGMENT
PITCH CHANGE BEARING

ROTOR HUSB

QUTEOARD SEGMENT

SWEPT TiP

\Prrcu LINK

SWASH PLATE

Figure 1: Rotor blade with tip sweep and anhedral
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