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Abstract 

NONLINEAR ANALYSIS FOR DYNAMIC BEHAVIOURS 

OF A COUPLED ROTATIONAL VIBRATION SYSTEM 

NEAR ITS CRITICAL SPEED 

by 

Tomoari Nagashima and Yuzuru Kato 

Department of Aeronautical Engineering, 
The National Defense Academy 

Yokosuka, Japan 239 

From a viewpoint of the nonlinear mechanics, theoretical analyses 
for dynamic behaviours of an unbalanced rotor near its critical speed are 
carried out, while placing emphasis on the variation of rotor speed. 
A numerical method to construct solutions of autonomous, nonlinear, two 
degrees of freedom differential equations as trajectories upon the reduced 
phase plane is proposed. It is understood that basic features of dynamic 
behaviours near its critical speed should be attributed to properties of 
pumping phenomena, the relaxational energy transformation between rotational 
and translational motions. Periodic solutions to be in existence in this 
nonlinear system are determined numerically by the single and the multiple 
closed trajectories which could be referred as the specified space filling 
curves in ergodic space. Analytical approaches utilizing the Fourier 
expansion method are also presented and dependencies of periodic solutions 
on their initial conditions as well as a, the nonlinearity parameter are 
clarified. The existence of another kind of periodic solutions will be 
suggested with relation to the diverged trajectories where the rotational 
motion of unbalanced rotor will be degenerated to the reciprocating one. 

1. Introduction 

It is well recognized that the rotor-fuselage coupling play an 
important role in vibration analysis of a helicopter as a whole. Typical 
example of this is the shaft critical speed of asymmetric rotor with 
elastic supports. The ground resonance for a soft-in-plane rotor helicopter 
is more popular example, though somewhat complicated due to its multi­
degrees of freedomness, which is characterized by two different kinds of the 
mechanical instability, the critical speed and the self-excited instability. 
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Until now, a number of researches for these instabilities including 
the work by Coleman and Feigold have been conducted, however, almost of 
them are the linear analyses based on the assumption of constant rotor 
speed which could not always succeeded to clear out the detailed mechanism 
generating these instabilities, that is, by what kind of energy transfer 
between degrees of freedom, these instabilities could be maintained in an 
autonomous system. 

It should be remembered that for a coupled rotational vibration 
system, the revolutional speed of rotor is no more than one of the state 
variables and the condition of constant rotor speed could not be realized 
unless the system to be concerned is under the quasi static equilibrium 
state and drived by unlimited power supply. Kononenko et al. studied the 
nonstationary vibration in passing through the critical speed of a motor 
with a limited power supply and showed the fact that the occurrences of 
jumping phenomena in their frequency responses are largely dependent on the 
interaction between a power source and a vibration system. The purpose of 
this paper is to give a clear picture for the detailed mechanism generating 
self-excited instabilities in an autonomous, coupled rotational vibration 
system from the viewpoint of nonlinear mechanics. 

As mentioned before, the ground resonance is a most suitable subject 
for this, but to reduce mathematical difficulties, a simple conservative 
coupled rotational vibration system excited by an unbalance is taken up and 
its dynamic behaviours near the critical speed are analysed while emphasis 
placing on the variation of rotor speed due to the nonlinear coupling. 
Despite simplicity of the system, it still comprise a typical nonlinear, 
multi (at least two) degrees of freedom vibration problem. Various expres­
sions for equations of motion as well as their solution methods are avail­
able, however, the phase space (plane) analysis seems to be most suitable. 

From this point of view, an attempt is made to rewrite the equations 
of motion which originally given by autonomous, two degrees of freedom, 
second order nonlinear differential equations into nonautonomous, single 
degree of freedom, second order one. Adopting this apparent nonautonomous 
differential equation as a basic equation of motion, a new numerical method 
to construct its solutions upon the reduced phase plane is developed. 
Because of conservative, autonomous nature of the system, trajectories 
constructed on the reduced phase plane could be referred as one of alterna­
tive expressions of the space filling curves in ergodic space which, in 
contrast to properties of the limit cycle, suggest equal probability of 
occurrence for every state of the system and a great variety of trajectories 
can be obtained under various combinations of the initial conditions and o, 
the parameter indicating nonlinearity of the system. 

By observing diversity of behaviours of trajectories, it is clearly 
understood that fundamental features of the system dynamics near the 
critical speed should be attributed to inherent properties of the pumping 
phenomena which, from the energy point of view, imply relaxational energy 
conversions between rotational and translational motions while conserving 
the total energy of the system as a constant. Among these various 
trajectories, one can identify two distinctive classes of trajectories, 
one is a class of the single and the multiple closed trajectories where 
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harmonic energy conversions between degrees of freedom could be realized, 
the other, the diverged ones where unidirectional transformations of the 
rotational energy to the translational energy would be occurred. Then along 
the later, several discontinuities of trajectories may be encountered 
repeatedly at each instant when the rotational energy will be converted 
completely to its counterpart and the rotational motion of unbalanced rotor 
will be degenerated into the reciprocating one. Periodic solutions to be 
able to exist in this nonlinear system are determined by the single and the 
multiple closed trajectories. It is shown that there are several kinds of 
closed trajectories, however, the number as well as the multipleness of 
closed trajectories are largely dependent on their initial conditions and o. 

Analytical studies for these periodic solutions are conducted by 
applying the Fourier expansion method and the effects of o as well as the 
initial conditions on their amplitude - frequency relationships are 
clarified. It is also found that predominate frequencies of the periodic 
solutions corresponding to the multiple closed trajectories are given by the 
subharmonics of the fundamental frequency for that corresponding to the 
single closed trajectories with the order of subharmonics equal to that of 
multipleness of the closed trajectories. with respect to the diverged 
trajectories for which the angular motion of an unbalance are reduced to the 
pendulum motion, the existence of another kind of periodic solutions is 
ascertained. 

2. Transformation of Equations of Motion 

A mathematical model to be used is shown in Fig. 1 where a rotor with 
an unbalance, being supported by a linear spring, rotates freely with an 
angular velocity of e. The translational motion of an unbalanced rotor 
occurs in the horizontal plane and is constrained to execute a rectilinear 
motion along the y axis. (In section 4, we will deal with the case where 
the translational motion of a rotor is constrained to a rectilinear motion 
along the x axis.) M, m, I and e in Fig. 1 are the mass of a rotor and an 
unbalance, the moment of inertia of a rotor and the offset between the 
center of gravity of M and m, respectively. For simplicity, the system is 
considered to be conservative and autonomous because there is no power 
supply. 

Taking into account of the variation of rotor speed as one of the 
state variables, the equations of motion which describe the system dynamics 
near its critical speed can be obtained as follows 

:; + y -o (sin 8) ·· (1) 

8 = -o :y cos 8 (2) 

where y is the linear displacement of an unbalanced rotor nondimensioned by 
the equivalent radius of gyration, ke and 8, the angle of rotation of an 
unbalance measured from the x axis in direction of C.C.W •. ke, o, the 
parameter indicating system nonlinearity and v, the natural frequency are 
defined respectively by 
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k _ rne2 + I 
e - M + rn 

me 
0 

= ke(M+rn) 
v 2 = 7:--K"'---­

M+rn 

and dots denote the differentiation with respect to T = vt. To cope with 
large motions of the system, the order of o, though it appears only in 
R.H.S of both equs. (1) and (2), does not always consider to be a small 
quantity compared with unity. 

Owing to nonlinear natures of the system, various expressions for 
the equations of motion other than equs. (1) and (2) are available, however, 
for numerical analysis, it is convenient to rewrite them to a single degr~e 
of freedom, second order differential equation. Now, dealing with y and 8 
in equs. (1) and (2) as the functions of e, instead of T and using the 
energy conservation theorem, we can obtain the following differential equa­
tion as an alternative expression for equs. (1) and (2) 

1 - 82 cos2 e 
" 1 + a y' cos e Y 

+ y' 2 + 2oy'cos 
A - y2 

e + 1 

where A is an invariant of the system given by 

y = 8 sin e 

which is equal to twice of the total energy to be conserved and primes 
denote the differentiation with respect to e. 

(3) 

(4) 

Introducing a new variable Y = dy/d8, equ. (3) can be rewritten as 

dY 
f 1 (Y,e) - f 2 (Y,e) dy = F(A,y) (5) 

where fJ(Y,e), f 2 (Y,e) and F(A,y) are defined respectively by 

8 sin e 
fJ(Y,S) = y2+ 2oY cos e+l 

Y(l-o 2cos2e) 
• f 2 (Y • 8) = -=("'Y"'2+.,.,2"'o"'Y=-'cc:o_s7e+--'lo:;)'-'('"=l..::+""oY=c-o-s--:e'"') 

F(A. y) = 2 , A. - y 
(6) 

Although equ. (5) are rearranged as a nonautonornous, nonlinear differential 
equation, it still provides useful bases for the phase plane analysis 
because of its periodicity with respect to e. Let dY/dy = k and replacing 
the L,H.S of equ. (5) by G(Y,e,k), this periodicity properties can be 
expressed as follows 

G(Y,e,k) = F(A,y) o < e < n/2 

G(Y,n-e,k) G(-Y,S,-k) 
(7) 

G(Y,n+e,k) -G(-Y,e,-k) 

G(Y,-e,k) = -G(Y,e,-k) 
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3. Determination of Periodic Solutions by Phase Plane Analysis 

To clear out diversities of solution due to nonlinearity of the 
system and establish the conditions for the existence of periodic solutions, 
a numerical solution method for equ. (5) is developed. This is an extension 
of the j_socline method, a typical graphical solution method for an autonomous 
nonlinear system, to a nonautonomous one. 

From equ. (5), the slope of trajectory at an arbitrary point on the 
reduced phase plane (y,Y = y/e) are determined by 

dY 
dy 

= 
1 o2 cos 2e 
1 + oY cos 0 

6 sin e (ic-y2 ) -(1+2ocos8+Y2 ) ._1_ 
y lc-y2 

(8) 

for each e. After defining the slope of trajectory, dY/dy ate = e 0 , a new 
position of trajectory which \vill be occupied with increased e by small 
increment of ~8 can be determined by the following computational scheme 

y Yo + ~Y Yo +YoM + · · · 

Y = Yo + ~Y Yo+ (dY/dy) 0 Y0 ~e + ••. (9) 

e = e0 + M 

where (yo, Yo) is the predetermined position on the phase plane at 8 = Go 
for connecting them successively. As for as the accuracy of this procedure, 
it is ascertained that adequate accuracy can be assured using a linear 
approximation of equ. (9) with ~8 = 0.1°, by comparing the trajectories 
obtained by this method with those determined by Runge-Kutta-Gill method. 

Several numerical results for the case of ic = 1.0 and o = 0.2 are 
shown in Fig. 2, each of which is the trajectory started from the neighbour­
hood of Yff = 0.9149, the initial amplitude of y at which the double closed 
trajectory will be anticipated. For these trajectories, the initial 
conditions other than y0 which are indicated in each figure are given as 
Yo = 0, eo = rr/2. So must be determined by equ. (4) which can be reduced 
in this case as 8& = 1 - YE· Indeed, a great variety of trajectories can 
be obtained by incorporating other combinations for initial conditions,.but 
for simplicity, the initial conditions of the system other than Yo and eo 
are restricted to the case of Yo = 0 and eo = rr/2 in this paper. 

By observing various behaviours of trajectories on the reduced phase 
plane, it is clearly understood that fundamental features of dynamic 
behaviours of an unbalanced rotor near its critical speed which, in the 
linear analysis, have been interpreted as an apparent resonance due to a 
perfunctional linearization, should be attributed to peculiarities of so 
called the pumping phenomena which imply a relaxational energy conversions 
between a rotational and a translational motions. Under these conditions, 
trajectories· constructed on the reduced phase plane could be referred as a 
concrete expression of the space filling curves in ergodic. space whose 
behaviours can be generally expressed by a generalized Fourier series as 

y(t) = a 1 cos pt + b 1 sin qt + 

66-6 



where p and q are the incommeasurable numbers. However, among these 
trajectories, one can identify two distinctive classes of trajectories, one 
is a class of the single and the multiple closed trajectories which indicate 
the possible existence of periodic solutions and the other, the diverged 
ones along which the rotational motion of an unbalanced rotor will be 
degenerated to reciprocating one. 

From the energy point of view, a harmonic energy conversion between 
degrees of freedom can be established for the closed trajectories, while 
for the later, in contrast with the former, an unidirectional transformation 
of a rotational energy to a translational one will be occurred. Then along 
the later, trajectories will become discontinuous at each 8 corresponding to 
the time instant when a rotational energy will be converted completely into 
its counterpart. To investigate behaviours of the diverged trajectories 
near their discontinuities, it is convenient to rearrange equ. (8) as 

y 1 - o2 cos 2 8 
A- y2 + (1/Y +a cos 8)(1 + 28 cos 

d 1 
8/Y) dy (-y) = O (10) 

by dividing both sides of equ. (8) by Y2 and neglecting l/Y2 as a small 
quantity compared with unity. It is deduced that for the specified 
divergent trajectories, there may also exist another kind of periodic 
solutions for which the rotational motions of an unbalance will be 
degenerated into the reciprocating motions, but in the following, we shall 
be concerned with the periodic solutions defined by the closed trajectories 
on the reduced phase plane. It should be noted that the dependencies of 
trajectories on a and their initial conditions are so severe that the number 
of the closed trajectories to be able to exist in equ. (5) are quite 
limited. 

From the geometrical properties of closed trajectories, we can define 
the necessary and sufficient conditions for the existence of closed 
trajectories-on the reduced phase plane as follows 

(a) B(8) > 0 
(11) 

(b) y(8o+2TI) = y(8o) Y(8 0+2TI) = Y(8o) 

that is, the periodic solutions of equ. (5) could be established if and only 
when the trajectory started from arbitrary state on the reduced phase plane 
could return to and pass through the same state as initial one after an 
unbalance have been completed its one revolutional motion without reversing 
its direction of motion to the backward. The condition e(e) > 0 in equ. 
(11) may be omitted if the scope of periodic solutions to be involved is 
extended to cope with these corresponding to the diverged trajectories. 

According to the proposed numerical procedure (9), state variables 
of y as well as Y after e have been elapsed by 2TI are computed for the case 
of A = 1.0 and a = 0.2 and plotted them as functions of y(8 0), the initial 
amplitude of y, in Fig. 3 for y(8 0) > 0 and in Fig. 4 for y(8 0) < 0, 
respectively. Dotted lines in these figures show the additional relation 
y(e 0) = y(8o+2TI). From the conditions given in equ. (11), it is easily 
understood that the closed trajectories could be obtained discretely at 
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each y(e 0) marked as A, B, C, D in Fig. 3 and E, F, G, H in Fig. 4. To 
indicate the effect of o on the existence of closed trajectories, similar 
diagrams for the case of A ~ 1.0 and o ~ 0.5 are also presented in Fig. 5 
for y(8o) > 0 and Fig. 6 for y(8o) < 0, respectively. 

It is surprised that the number of closed trajectories to be able to 
exist in equ. (5) are remarkably decreased with increasing o and even for 
o ~ 0.5, as. shown in Fig. 5 and Fig. 6, there may be only two different 
kinds of closed trajectories corresponding to each initial amplitude 
designated as I and J. Typical closed trajectories obtained by this 
numerical method for two different values of o are shown in Fig. 7 and Fig. 
9, respectively. Time histories of 8 corresponding these closed 
trajectories are also plotted in Fig. 8 and Fig. 10. 

The following properties with respect to the closed trajectories are 
revealed. 

(1) The single closed trajectories can be realized only for the case of 
y(8 0) > 0, that is, when an unbalance is initially arranged at the 
outerside of the center of rotation of a rotor. 

(2) The larger o, the lesser initial amplitudes of y for the single and 
the multiple closed trajectories are obtained. 

(3) The possible appearances of the multiple closed trajectories more than 
triple are remarkably decreased with increasing o. 

(4) For a given o, each closed trajectory is arranged regularly in the 
order of its multipleness. 

(5) The predominate frequencies of periodic solutions corresponding to the 
multiple closed trajectories are given by the subharmonics of the 
fundamental frequency for periodic solutions corresponding to the 
single closed trajectories. 

4. Determination of Periodic Solutions by Fourier Expansion Method 

To supplement numerical results obtained in previous section, an 
analytical approach using the Fourier expansion method for determination 
of the periodic solutions which could be existed in this nonlinear system 
is described. In the remainder of this paper, we shall be concerned with 
the following equations of motion. 

x + x ~ -o(cos 8)" (12) 

~ a x sin e (13) 

It is understood that equs. (12) and (13) constitute the conjugate pair of 
equ. (1) and (2) and describe the motions of the system depicted in Fig. 1 
where the translational motion of an unbalanced rotor is restricted to a 
rectilinear motion along the x axis. 
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Assume there may be certain kinds of periodic solutions in equs. (12) 
and (13) and expand them as follows 

E i 
X = i=l Xi COS ; WT (14) 

e = !:£. T + ep sin _mp wT + E 8
1
· sin .!. wT 

m i=l,~p m (15) 

where w is the fundamental frequency to be determined as a function of ep, 
the amplitude of pth component of 8 with predominate frequency pw/m. As 
8~ is considered not so small quantity compared with 6i(i=l,2, ..• ,~p), the 
h1.gher order terms of Sp cannot ignore in approximation process. Using 
equs. (14) and (15), together with a proper assignment of m and p, we can 
obtain the analytical expressions for each periodic solution being able to 
exist in equs. (12) and (13) within the accuracies of approximations. 
Hereafter, as a typical example, let us consider the periodic solutions 
corresponding to the triple closed trajectories on the reduced phase plane 
as depicted in Fig. 7 (c) and (f). 

Allotting as m = 3 and p = 2 and using the symmetrical property of 
motion, let the periodic solutions to be determined be expressed in the form 

X = E 
i=l x2i-l cos (2i-l) UlT (16) 

3 

Ul 2 E 2 (17) e = 3 T + Sz sin 3 UlT + i=2 e2i sin 3 iwT 

With assistance of the basic formula of the Bessel function and equ. (17), 
cos 6 and sin 6 can be expanded as 

e E C2n-1, 2i (Sz,82i) (2n-l) Ul cos = cos 3' n=l 
i=2 

sin e E 82n-1,2i (Sz,e2i) sin (2n-l) Ul = -T 
n=l 3 
i=2 

where C2n-1,2i(6z,62i) and s2n-1, 2i(e 2,e 2i) are given by respectively 

n 
C2n-1,2 (6z,6zi) = (-1) Jn(6z) + Jn-1 (6z) (n = 1,2, ••• ) 

1 n-i 
C2n-1,2i(6z,62i) = 2 [-(-1) Gn-i + Gn-i-1 - Gn+i-1 - Gi-n 

n+i i-n+l 
+ (-1) Gn+i + (-1) Gi-n+ll e2i 

(n = 1, 2, ... , i 
n+l 

Jn-1(6z) + (-1) Jn(6z) (n = 1,2, .•• ) 

1 n-i n+i 
= 2 [Gn-i-1 + (-1) Gn-i - (-1) Gn+i 

i-n+l 
+ (-1) Gi-n+l - Gn+i-1 + Gi-nl e2i 

(18) 

(19) 

2,3, •.• ) 

(20) 

(n'=l,2, ••• , i=2,3, ••• ) 
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In equ. (20), JnC82) is the Bessel function of order n with e2 as the 
argument and Gj indicate that Gj = Jj(e 2) for j ~ 0 and Gj = 0 for j < 0. 

Using equs. (12), (14) and (18), x can be expressed as 

X 0 E (2n-1) 2w2 

i=n=1 9-(2n-1)2wi c2n-1,2i(Sz,S2i) cos 
(2n-l) 

3 OJ'[ ( 21) 

Rearranging equ. (13) with using equs. (17), (19) and (21) and equating the 
coefficient of both sides of equ. (13), we finally can obtain the 
simultaneous equations with respect to 82j (j = 1,2, ••• ), which are 
expressed in a matrix form as follows 

2 P2 4 p2 6 
22e2 62 - ---"-'--'- --=-= = p2 2 42 62 , 

c2- P4,4) P4 6 
42e4 p2 4 0 - ____:_z_;: 

02 42 62 , 
(22) 

0 P6 4 -4-T c-fr - p~16 ) 6286 p4 6 , 

where P2i,2j (i,j = 1,2, ••. ) and P2i 2 (i = 1,2, .•. ) are function of 8z, 
being defined respectively as ' 

P l(ifj) (
2
n-l)

4 
{c2n-l 2 (Azi-2n+l,2J' 2i,2j = 2 n=l 9-(2n-1)2w2 , 

- A2n-l-2i,2j + A2n-1+2i,2j) + B2n-1,2j (S2i-2n+l,2- 82n-l-2i,2 

+ S 2n-1+2i 2) } , (i = 1,2, ••. , j = 2,3, ... ) 

1 i 
p2i 2 = 2 E 

' n=l 

(2n-1) 4 C 
9-(2n-1)2w2 2n-2,2 

- S2n-l-2i 2 + s2n-1+2i 2) , , 

(S2i-2n+l 2 , 

(23) 

(24) 

The notation (i,j) in equ. (23) means to take either integer larger than 
the other and Aq,2j, sq,2 = 0 for q < 0. 

By eliminating higher order terms from equ. (22), we can obtain the 
transcendal equation of e2 which define the fundamental frequency w as a 
function of 82. At the same time, in addition to these, the constraint 
given by equ. (4) which is rewritten for this case as 

A = ~2 + 2oex + 82 + x2 = const (25) 

must be consulted. With using equs. (21), (22) and (25), the analytical 
expressions of periodic solutions corresponding to the triple closed 
trajectories on the reduced phase plane can be obtained in a form of equs. 
(16) and (17). It should be noted that there is no restriction for 
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applying this analytical determination method to other periodic solutions, 
though only the case of m = 3, p = 2 is treated in this paper and no 
limitation concerning the order of o. Comparison studies with numerical 
results show that adequate accuracies can be assured with the second order 
approximation for o up to 0.5, that is, for periodic solutions correspond­
ing to the triple closed trajectories, they could be approximated by 

w 
X = Xl COS J T + X3 COS WT 

8 = ~ T + 82 sin i WT + 84 sin t WT 

within the accuracy of 1.0% and usefulness and reasonability of this 
analytical method is ascertained. 

5. Conclusions 

(26) 

Basic researches to clarify the dynamic behaviours of an unbalanced 
rotor near its critical speed are conducted from a viewpoint of the nonlinear 
mechanics. A new method to construct the solutions of an autonomous, non­
linear, two degrees of freedom differential equation upon the reduced phase 
plane is developed and the existence of periodic solutions is established 
in relation to the single and the multiple closed trajectories. The periodic 
solutions to be able to exist in the nonlinear system.are also determined 
analytically by applying the Fourier expansion method. It is shown that 
the inclusion of a variation of rotor speed due to the nonlinear coupling is 
essential for dynamic analysis of a coupled rotational vibration system in 
the instability ranges because the origin of instability can be attributed 
to the relaxational energy conversion from a rotational to a translational 
degrees of freedom. Further researches along this direction are necessary 
for dynamic analyses of a helicopter after a power failure, survivability 
analyses for a damaged rotor and vibration analyses for a showed and a 
stopped rotor. 
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