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ABSTRACT 

A simple method of numerical calculation to determine the critical 

torsional rigidity or the classical flutter boundary of rotary wings 

has been proposed as an extensive work of the Local Circulation Method 

(LCM). Exemplified calculations were performed for a helicopter rotor 

and a windmill rotor. Tbe result for the helicopter rotor shows 

good correlation with that of the theoretical computation based on the 

lifting surface theory and with the experimental test. Tbe result for 

the windmill rotor, which does not have any comparable subject of 

reference, shows a possibility of calculation for the windmill operating 

in yawed condition with respect to the wind direction. 

NOMENCLATURE 

a nondimensional position of elastic axis based on the half chord 
b half chord length ; c/2 
C(k) Tbeodorsen function ; F(k)+iG(k) 
CMy nondimensional bending moment ; MyfpS(Rn) 2R 
C£(a) lift coefficient 
c blade chord 
F(k) real part of the Tbeodorsen function 
G(k) Imaginary part of the Tbeodorsen function 
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normal displacement of a blade element, positive downward 
moment of inertia about feathering hinge 

inclination angle of tip-path-plane with respect to the general flow 
imaginary = /:1_ 
reduced frequency at flutter k=bw/U 
flapping stiffness about the flapping hinge 

feathering stiffness about the feathering hinge 

lift acting on a blade element=~ 1+~2 
apparent mass component of the lift ~ 

circulatory component of the lift ~ 

aerodynamic pitching moment acting on a blade 
flapwise bending moment of rotor blade 

mass of rotor blade or moment acting on a blade element=m1+m2 
apparent mass component of the moment m 
circulatory component of the moment m 
normal aerodynamic force acting on a blade 
rotor radius 
radius position of rotor blade 
radius position of flapping hinge 

rotor area=TIR2 
Sears function 
stationary inflow velocity=/~+~ 
tangential component of the inflow velocity 

stationary component of UT 

normal component of the inflow velocity 

stationary component of UP 

wind velocity 

induced velocity generated by the preceding j-th blade 
induced velocity generated by the blade under consideration 
nondimensional distance=r/R 
nondimensional radius of gyration defined in equation (A.3) 

nondimensional radiusof either actual 
or equivalent flapping hinge r

8
/R 

~, xn, nondimensional quantity defined in equation (A.3) 

nondimensional CG position based on the chord, positive 
forward from the elastic axis 
nondimensional mean CG position 

angle of attack of a blade element=6-$ . 
angle of attack caused by the induced velocity=-(IvJ+Av)/U 

j 

S flapping angle 

B0 coning angle 

8 feathering angle 
Bo initial feathering angle or pitch angle of a blade element 
~ advance ratio = Vcosi/RQ 
p air density 
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§l 

stationary inflow angle =tan.:..l ( -Up/U;_r) 
yawing angle of the rotor shaft 
azimuth angle =Rt 
.angular velocity of rotor or rotor speed 
resonant frequency or flutter frequency 
undamped naturaJ. frequency of torsion 

undamped natural frequency of the flapwise bending 

undamped natural frequency of the flapwise bending of non-rotating 
blade 
time differentiation of ( ) 

INTRODUCTION 

It has been paid attention to the classical flutter, coupled 

vibration of bending and torsionaJ. motions, of rotary wings as well 

as fixed wings in many years. Since the respective blade of rotary 

wings is operated in the field of large centrifugaJ. force and of 

strong downwash left by the preceding blades, more sophisticated 

analysis is required than that of fixed wings. 

Major differences of the dynamic characteristics of the propeller 

and windmill rotor from those of the helicopter rotor are as follows: 

(i) the inflow angle of the propeller and windmill blade is highly 

distorted along the blade span and requires to have large twist or 

washout in propeller and washin in windmill because they are principally 

operated in the axiaJ. flow, and (ii) the ratio of the aerodynamic 

force to the inertiaJ. force, typically represented by Lock number, 

is small. 

The analysis for finding the critical speed of initiation of 

the blade flutter requires to know the time- and span-wise variation 

of the induced velocity precisely and to get the instantaneous 

airloading successively. 

The LocaJ. Circulation Method (LCM)l) 

an extension of the Local Momentum Theory 

has been developed as 
2) 

(LMT) to calculate the 

dynamic airloading of the blade of rotary wings in highly distorted 

inflow angle. Since this method of calculation is based on the 

instantaneous circulation distribution of the blade the unsteady 

phenomena can be treated easily. In this paper the flutter of 

helicopter rotor and windmill rotor will be analyzed by the LCM. 
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§2 EQUATINS OF MOTION 

The rotor blade treated here is, as shown in Fig. 1, assumed to 

have both flapping and feathering hinges and to be rigid other than 

these hinges. Thus equations of motion about these hinges can be given 

by 

(2.1) 

(2.2) 

When the blade has no flapping hinge actually, an equivalent hinge must 

be introduced as stated in APPENDIX. 

If the rotor is operating without stall in axial flow only and 

if the induced velocity is assumed uniform, then the linear perturbation 

equations can be deduced from the above equations and thus the critical 

rotational speed of flutter can be found by solving the characteristic 

equations of the system. 3) 

If the rotor is operating in an inclined flow, then the coefficients 

of the above perturbed equation are periodic functions of 

and thus the solution can be given by using the Froquet's 

azimuth angle 

theorem. 
4-v6) 

When the effect of flow variation on the blade airloading is 

considered, the vortex theory is commonly used in order to estimate 

the chage of induced velocities generated by the blade itself and the 

preceding blades. 7~9 ) In this case, however, the timewise trace of 

the blade motion is required to find whether the amplitudes of the 
. 10~12) 

motion for any mode are diverging or converg1ng. Since this 

process of computation needs lengthy time for a great many cycles of 
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. 13 14) 
motion if the effect of shed vortices is taken 1nto account, ' the 

reduction of computation time for one· cycle of motion is desirable. 

§ 3 LCM FOR UNSTEADY FLOW 

The tangential and normal components of the inflow velocity with 

respect to a blade element are, as shown in Fig.l, given respectively 

by 

where 

UT =Rll(x+~sim/I)+(Jvj+llv)sin<j> ) 

Up=-RQ~tani+(3vj+llv)cos<j>-S(r-r8 )-RQS~cos~ 

<j>=t an -l (-Up/U;r") 

U::-= -Rll~tani p 

U;r" = RQ( x+~sin~) l 

( 3.1) 

( 3.2) 

and where + sign of the induced velocities means to take negative for 

helicopter rotor and positive for windmill rotor respectively. 

Then the lift and moment of the blade element can be given by 

~=~~+~2 l 
m=m1+m2 

( 3. 3) 

where ( )
1 

and ( )
2 

show the apparent mass components and circulatory 

components respectively, and are, hence, given by 

~~=p1Tb2 (h+U~-ab~) l 
.. l 1 .. f 

m1=p1Tb 3{ah-U(2- a)~-b(8+ a 2 )a} 

~z=pU2b~C(k)C~(a)+S(k)C~(ag)} l 
mz=b(a+2)~z, j 

and where 

u=I¥+Up2 

h={-(r-r8 )S-RQ~Scos~}cos<j> 
a=S-<j>=S-tan-1 ( -Up/U;r") 
aG=-( ~vj+llv) /U. 

J 
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The induced velocity mainly generated by the trailing vortices, Lvj +b.v ~ 
j 

has been regarded as if there is a vertical gust for the blade element. 

The effect of shed vortices on the lift and moment has been represented 

by the Theodorsen and Sears functions. Actually, since the circulatory 

component ~2 consists of many harmonics each of which has the reduced 

frequency of k, the above circulatory components can further be divided 

into low and high frequency components as stated later. 

The induced velocity generated by the preceding blades and left on 

the rotor rotational plane, Evj , can be calculated by the way proposed 
j 

in Ref.l and 2. The induced velocity generated by the blade element under 

consideration, ~v, may be calculated by the way written in Ref.l5. Here, 

however, the ~v is assumed to be calculated by the momentum balance in 

quasi-steady flow for simplification of the computation. 

§4 EXAMPLES 

An exemplified calculation by means of the LCM was performed for the 

flutter boundary of a model helicopter rotor, the dimensions and operating 

conditions of which are given in Table l. The calculation was proceeded 

as follows : (i) After attained a trimmed state of the rotor by performing 

several rotations with fixed feathering axis, a step disturbance of blade 

pitch angle was introduced and the feathering motion was released. ( ii) By 

watching the behaviour of the feathering and flapping motions in several 

rotations, the flutter boundary could be determined and the computation 

was stopped. 

The critical values in torsional rigidity versus advance ratio of the 

torsion-flapping flutter is presented as shown in Fig. 2 in comparison 

with theoretical calculation based on the vortex theory, and with 
. t l 13,14) exper1mental tests in the wind unne . 

In the calculation by the LCM, the Theodorsen and Sears functions 

are assumed to be that (i) C(k)=S(k)=l.O for low frequency less than the 

order of the rotor rotational speed n, and (ii) C(k)=S(k) for high 

frequency at critical condition of flutter W>>Q. 

Shown by a dotted line is the flutter boundary obtained from the 

3.12 - 6 



quasi-steady calculation
14

) in which the Theodorsen function was assumed 

to be C(k)=l.O. If either the torsional rigidity represented by the 

undamped natural frequency of the torsion w8 is smaller or the rotational 

speed n 'is larger than that specified by this line, the system will be 

unstable. 

By considering the unsteady effect, which was obtained by multiplying 

the real part of the Theordorsen function into the quasi-steady lift and 

moment, and by introducing the blade cutoff of 3 percent radius at blade 

root and tip,13) the flutter boundary shifts downward as shown by a 

chain line and hence the system increases the stability. 
14) 

The lifting surface theory with rigid wake shown by a double 

chain line gives a closer boundary with that of the experimental test,
14

) 

which is given by a thin solid line with triangular marks, than other 

results based on the simplified vortex theory. 

The present method of calculation, the LCM, gives more conservative 

result, as shown by a thick line, than that of the lifting surface theory. 

Tilisresult well coincides with the experimental result at hovering state 

and goes away as the advance ratio increases. The difference from either 

the experimental test or the lifting surface theory is, however, within 

allowable range in the practical application. For the study of the 

sensitivity of the Theodorsen function, more simplified calculations 

were performed by assuming that the C(k) was approximated by (i) C(k)=F(k) 

and (ii) C(k)=l. The results are respectively shown by (i) a hatched 

line for various advance ratios and (ii) a circle for hovering flight. 

The difference between the results of the simplified calculation (i) 

and of the LCM for fully unsteady flow with C(k) is essentially caused 

by the effect of shed vortices, whereas the difference between the 

results of the simplified calculation (ii) and the LCM for fully unsteady 

flow with C(k) is resulted from phase difference of the Theordorsen 

function. The above tendency is almost independent to the collective 

pitch of the rotor. 

Fig.3 shows the critical torsional rigidity or flutter boundary of 

a windmill rotor (see Table 1 ) calculated by the present method , the 

LCM for fully unsteady flow with C(k),as a function of nondimensional 

center of gravity, 
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in comparison with a numerical result based on the 

combined with the uniform inflow distribution. 16 l 
blade element theory 

It can be seen 

that the latter result gives very conservative boundary. 

Shown in Fig.4 is an example of nondimensional bending moment at 

blade root of another >rindmill versus yawing angle of the rotor shaft 

with respect to the wind direction, calculated by the LCM. Since it 

was found that the bending moment was strongly affected by the yaw 

angle, the flutter analysis of the windmill was extended to the rotor 

in yawed state. 

Fig.5 shows the effect of the yaw angle on the flutter boundary 

of the windmill rotor given in Table l. As the yaw angle increases, 

the critical value of the torsional rigidity increases a little within 

the yaw angle from 0° to 30° specifically in higher wind speed. 

CONCLUSION 

A simple method of numerical calculation to determine the critical 

torsional rigidity for the initiation of classical flutter of rotary 

wings has been proposed as an extensive work of the Local Circulation 

Method, LCM. The method was initially applied to find the flutter 

boundary of a helicopter rotor for which the theoretical calculation 

based on the lifting surface theory and wind tunnel test were performed 

and approved to show good correlation with these results. Then, the 

method has been extended to analyze the flutter boundary of windmill 

rotor for which the inflow angle is highly distorted along the blade 

span. It is believed that the boundary was clearly specified more 

than that calculated by the blade element theory based on the simple 

momentum balance. 

APPENDIX 

By following Young's methodlT) the equivalent stiffness and hinge 

offset of a flexible blade, both in nondimensional form, can be given 

by 
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where 

and where w1 
nonrotating 

nn 
x =x 

B 
:for x =0 

B 

N 
llnd "'1 are rmdamped natura.ltrequencies of rotating and 

blade respectively. 
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Table 1 Rotor parameters and operating conditions 

Items Helicopter 13) rotor Windmill 16) rotor 

Rotor radius, R, m 0.907 22.9 

Blade chord at 0.75R, m 0.084 1. 31 

Blade section 0012 230XX 

Blade twist from root to 
0 -22~2(nonlinear) tip, deg. 

Collective pitch angle 
4.0 

. 

0.0 at 0.75R, deg. 

Number of balde 1 2 

Flapping hinge offset, m 0.047 -
Position of elastic axis 0.25c 0.25c 
(from leading-edge) 

Non-dimensional position 
-0.20 of e.G., YcG -

Order of reduced frequency 
0.2 0.4 at o. 75R 

I Lock number 9.4 1.4 
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Figun! 1 Blade configuration. 
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Figure 3 Flutter boundary of a wimMrlll rotor. 
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Figure 4 Variation of the bending nt:II!J!nt of a 
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