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ABBTRACT

A simple method of numerical calculation to determine the critical
torsional rigidity or the classical flutter boundary of rotary wings
has been proposed as an extensive work of the Local Circulation Method
(LCM). Exemplified calculations were performed for a helicopter rotor
and a windmill rotor. The result for the helicopter rotor shows
gocd correlation with that of the theoretical computation based on the
1lifting surface theory and with the experimental test. The result for
the windmill rotor, which does not have any comparable subject of
reference, shows a possibility of calculation for the windmill operating

in yawed condition with respect to the wind direction.

NOMENCLATURE

a nondimensional position of elastic axis based on the half chord
b half chord length = c/2

¢(k) Theodorsen function = F(k)+iG(k)

CMy nondimensional bending moment = My/pS(Rﬂ)zR

szq) 1ift coefficient

c blade chord

F(k) real part of the Theodorsen function
G(k) Imaginary part of the Theodorsen function
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normal displacement of a blade element, positive downward
moment of inertia about feathering hinge

[as]

inclination angle of tip-path-plane with respect to the general flow
imaginary = v-1

reduced frequency at flutter k=bw/U

flapping stiffness about the flapping hinge

w

feathering stiffness about the feathering hinge

1ift acting on a blade element=2y+%s

apparent mass component of the Lift 2
circulatory component of the 1ift £
aerodynamic pitching moment acting on a blade
flepwise bending moment of rotor blade

-
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mass of rotor blade or moment acting on a blade element—m1+m2
spparent mass component of the moment m

cireulatory component of the moment m

normal aerodynamic force acting on a blade

rotor radius

radius position of rotor blade

radius posgition of flapping hinge

HoH m:ag.g =]

Ls]

rotor area=mRZ

Sears function

stationary inflow velocity=/6:21ﬁ:z
tangential component of the inflow velocity

0w
—
L
——r

stationary component of UT
normal compcnent of the Inflow velocity
stationary component of UP

wind velocity

ﬁ;'< e?lﬁ:]é?léz o

induced velocity generated by the preceding j-th bdlade
induced velocity generated by the blade under consideration
nondimensional distance=r/R

nondimensional radius of gyration defined in equation (A.3)

<

MWW
w

nondimensionel radiusof either actual

or equivalent flapping hinge rB/R

T Tn . . . . .

Fla? XB, X, nondimensional guantity defined in equation (A.3)
-5

yCG nondimensional CG position based on the chord, positive

forward from the elastic axis

yCG nondimensional mean CG position
o angle of attack of a blade element=6-¢ .
% angle of attack caused by the induced velocity=-(Ivi+Av)/U
J
3] flapping angle
BD coning angle
8 feathering angle
8o initial feathering angle or pitch angle of a Dblade element
u advance ratio = Vecosi/R%
o a2ir density
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b stationary inflow angle =tan;1(—U$¢UEﬂ
W yawing angle of the rotor shaft
] azimuth angle =Qt
Q angular wvelocity of rotor or rotor speed
w resonant frequency or flutter frequency
We undamped natural frequency of torsion
W undamped natural frequency of the flapwise bending
N
w] undamped natural frequency of the flapwise bending of non-rotating

blade
() +time differentiastion of ( )

§1 INTRODUCTION

It has been paid attention to the classical filutier, coupled
vibration of bending and torsional motions, of rotary wings as well
as fixed wings in many years. Since the respective blade of rotary
wings is operated in the field of large centrifugal force and of
strong downwash left by the preceding blades, more sophisticated
analysis is required than that of fixed wings.

Major differences of the dynamic characteristics of the propeller
and windmill rotor from those of the helicopter rotor are as follows:
(i} the inflow angle of the propeller and windmill blade is highly
distorted along the blade span and requires to have large twist or
washout in propeller and washin in windmill because they are principally
operated in the axial flow, and (ii} the ratio of the aerodynamic
force to the inertial force, typically represented by Lock number,
1s small.

The analysis for finding the critical speed of initiation of
the blade flutter requires to know the time- and span-wise variation
of the induced velocity precisely and to get the instantaneous
airlcading successively.

The Local Circulation Method (LCM)l)

has peen developed as
an extension of the Local Momentum Theory (LMT)E) to calculate the
dynamic airloading of the blade of rotary wings in highly distorted
inflow angle. Since this method of calculation is based on the
instantaneous circulation distribution of the blade the unsteady
phenomena can be treated easily. In this paper the flutter of

helicopter rotor and windmill rotor will be analyzed by the LCM.
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§2 EQUATINS OF MOTION

The rotor blade treated here is, as shown in Fig. l, assumed to
have both flapping and feathering hinges and to be rigid other than
these hinges. Thus equations of motion about these hinges can be given
by

R
{(r—rB)2g+r(r—r8)926+cyCG(r—rB)5+cyCGr926}(%%)dr

g

- (2.1}

+k6(BmBG)=f (rr ) (ar
T
R . dIe
[(8+926)(E;—)+CYCG{(r—r
R

" dm
) B)B+r928}(a;} lar
(2.2}

+x(8-89)= (%)dr.

8

When the blade has no flapping hinge actually, an equivalent hinge must
be ilntroduced as stated in APPERDIX.

If the rotor is operating without stall in axial flow only and
if the induced velocity 1s assumed uniform, then the linear perturbation
equations can be deduced from the above equations and thus the eriticsl
rotational speed of flutter can be found by solving the characteristic
equations of the system.B)

If the rotor is operating in an inclined flow, then the coefficients
of the above perturbed equation are periodic functions of azimuth angle
end thus the solution can be given by using the Froguet's theorem.hmG)

When the effect of flow variation on the blade airloading is
considered, the vortex theory is commonly used in order to estimate
the chage of induced)velocities generated by the blade itself and the
9

preceding blades. In this case, however, the timewise trace of

the blade motion is required to find whether the amplitudes of the
. . 10n . .
motion for any mcde are diverging or converging. on12) Since this

process of computation needs lengthy time for a great many cycles of
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motion if the effect of shed vortices is taken into account, he

reduction of computation time for one cycle of motion is desirable.

§3 LCM FOR UNSTEADY FLOW

The tangential and normal components of the inflow velocity with
respect to a blade element are, as shown in Fig.l, given respectively
by

UT 239(x+usin¢)¢{EvJ+Av)sin¢
J

(3.1)
UP=—RQutani$($VJ+Av)cos¢—é(r—rB}qRQBucosw
d
where
- -1 -
$p=tan=*( U§/U§)
Up = —RAutent (3.2)
Ug = R(x+using)

and where ¥ sign of the induced velocities means to take negative for
helicopter rotor and positive for windmill rotor respectively.

Then the lift and moment of the blade element can be given by

L=+ (3.3)

m=ny Hmy

where ( )1 and { )_ show the apparent mass components and circulatory

2
components respectively, and are, hence, given by

%3=p b2 h+Ug-abe )

(3.4)
m1=pwb3{ah—U(%u-a)&-b(%-raz)a}
- 172 1
2p=pU b{C(k)Cl(a)+S(k)CR(ag)}
N {3.5)
m2=b(a+'2- )9-2 »
and where
ﬁ={»(r—rB)é—RQuBcosw}cos¢
{3.6)

a=8-¢=6-tan™ ! (-U5/Uz)
aG=—($vj+Av)/U.
J
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The induced veloecity mainly generated by the trailing vortices, Iv© +Av,

has been regarded as if there is a vertical gust for the blade element.
The effect of shed vortices on the 1lift and moment has been represented
by the Theodorsen and Sears functions. Actually, since the circulatory
component %, consists of many harmonics each of which has the reduced
frequency of k, the above circulatory components can further be divided
into low and high frequency components as stated later.

The induced velocity gene?ated by the preceding blades and left on

J

the rotor rotational plane, EvY , can be calculated by the way proposed

in Ref.l and 2. The induced velocity generated by the blade element under
consideration, Av, may be calculated by the way written in Ref.15. Here,
however, the Av is assumed to be calculated by the momentum balance in

guasi-steady flow for simplification of the computation.

§L  EXAMPLES

An exemplified calculation by mesns of the LCM was performed for the
flutter boundary of a model helicopier rotor, the dimensions and operating
conditions of which are given in Table 1. The calculation was proceeded
as follows : (i) After attained a trimmed state of the rotor by performing
several rotations with fixed feathering axis, a step disturbance of blade
pitch angle was introduced and the feathering motion was reieased.(ii) By
watching the behaviour of the feathering and flapping motions in several
rotations, the flutter boundary could be determined and the computation
was stopped.

The critical values in torsiocnal rigidity versus advance ratio of the
torsion-fiapping flutter is presented as shown in Fig.?2 in comparison
with theoretical calculation based on the vortex theory, and with
experimental tests in the wind tunnel.lB’lh)

In the calculation by the LCM, the Theodorsen and Sears functions
are assumed to be that {i) C{k)=8S(k)=1.0 for low frequency less than the
order of the rotor rotational speed @, and (ii) C(k)=S(k) for high
frequency at critical condition of flutter w>>R.

Shown by a dotted line is the flutter boundary obtsined from the
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to be C(k)=1.0. If either the torsional rigidity represented by the

gquasi-steady calculation in which the Theodorsen function was assumed

undamped natural freguency of the torsion Wy is smaller or the rotational
speed & is larger than that specified by this line, the system will be
unstable.

By considering the unsteady effect, which was obtained by muitiplying
the real part of the Theordorsen function into the quasi-steady 1ift and
moment, and by introducing the blade cutoff of 3 percent radius at blade
root and tip,l3) the flutter boundary shifts downward as shown by a
chain line and hence the system increases the stability.

1ir)

The lifting surface theory with rigid wake shown by a double

chain line gives a closer boundary with that of the experimental test,lh)
which is given by a thin solid line with triangular marks, than other
resulis based on the simpiified vortex theory.

The present method of calculation, the LCM, gives more conservative
result, as shown by a thick line, than that of the 1ifting surface theory.
This result well coincides with the experimental result at hovering state
and goes away as the advance ratio increases. The difference from either
the experimental test or the lifting surface theory is, however, within

allowable range in the practical application. For the study of the

sengitivity of the Theodorsen function, more simplified calculations
were performed by assuming thet the C(k) was approximated by (i) C(k)=F(k)
and (ii) C{k)=l. The results are respectively shown by (i) a hatched
line for various advance retios and (ii) a circle for hovering flight.
The difference between the results of the simplified calculation (i)
and of the LCM for fully unsteady flow with C(k) is essentially caused
by the effect of shed vortices; whereas the difference between the
results of the simplified calculation (ii) and the LCM for fully unsteady
flow with C{k) is resulted from phase difference of the Theordorsen
function. The above tendency is almost independent to the collective
pitch of the rotor.

Fig.3 shows the critical torsional rigidity or flutter boundary of
a windmill rotor (see Table 1 } calculated by the present method , the
LCM for fully unsteady flow with C(k), as a function of nondimensional

center of gravity,
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R R
?CCFJI. cyCG(r-rB)(dm/dr)dX/ . (r-r;)?(dm/dr)dr,

in compariscn with e numerical result based on the blade element theory

16}

combined with the wniform inflow distribution. It can be seen
that the latter resuit gives very conservative boundary.

Shown in Fig.h is an example of nondimensional bending moment at
blade root of another windmill wversus yawing angle of the rotor shaft
with respect to the wind direction, calculated by the LCM. Since it
was found that the bending moment was strongly affected by the yaw
angle, the fiutter analysis of the windmill was extended to the rotor
in yawed state. ’

Fig.5 shows the effect of the yaw angle on the flutter boundary
of the windmill rotor given in Table 1. As the yaw angle increases,
the critical wvalue of the torsional rigidity inecreases a little within

the yaw angle from 0° to 30° specifically in higher wind speed.

CONCLUSION

A simple method of numerical calculation to determine the critical
torsional rigidity for the initistion of classical flutter of rotory
wings has been proposed as an extensive work of the Local Circulation
Method, LCM. The method was initially applied to find the fluiter
boundary of a helicopter rotor for which the theoretical calculation
based on the lifting surface theory and wind tunnel test were performed
and approved to show good correlation with these results. Then, the
method has been extended to analyze the flutter boundary of windmill
rotor for which the inflow angle is highly distorted along the blade
span. It is believed that the boundary was clearly specified more
than that calculated by the blade element theory based on the simple

momentum balance.

APPENDIX

By following Young's methole) the equivalent stiffhess and hinge

offset of a flexible blade, both in nondimensional form, can be given

by
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i a(R)2x =] /)220, 0)2-(x, /)2 (5.1)

{A.2)
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1
xfzmﬁ (g’;{% m}{x~x6)2dx [K (%/m)&x
4 B
_ b
=x§~2x§§é+x§ (2.3)
1, 1
—
x8: (igf/m}xndrj/{ (—%2“ midx ; n=l.2
*3 ‘ g
;gazg for xﬁﬂO ' J

N .
and where ; and @] are undamped naturalfrequencies of rotating and

noarotating blade respectively.
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Table 1 Rotor parameters and operating conditions

Items Helicopter roto%B) Windmill roto%6)
Rotor radius, R, m 0.907 22.9
Blade chord at 0.T5R, m 0.084 1.31
Blade section 0012 230X
i}ade twist from root to 0 ~2202(nonlinear)
ip, deg.
Collective pitch angle
at 0.75R, deg. k.0 0.0
Number of balde 1 2
Flapping hinge offset, m 0.0L7 L
Position of elestic axis 0.25¢ 0.25c
{from leading-edge)
Non~dimensional position
of C.G., ¥ ~0.20 —_

> YCG

Order of reduced frequency
at 0.TSR 0.2 0.L
Lock number 9.4 1.4
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FEATHERING AXIS

Figure | Blade configuration,
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rotor versus yawing angle.
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