
(

Fast-Floquet Analysis of He~icopter Trim and StaJ;>ili~y With
Distributed and Massively Parallel Computmg

S. Venkataratnam S. Subramanian G. H. Gaonkar
Professor Research Assistant Research Associate

Department of Mechanical Engineering
Florida Atlantic University

Boca Raton, FL 33431, USA

Abstract

Prediction of helicopter stability in trimmed flight
is often based on Floquet theory. It involves a non­
linear trim analysis for the control inputs and cor­
responding periodic responses, and then a linearized
stability analysis for the Floquet transition matrix
(FTM), and eigenvalues and eigenvectors of this ma­
trix. The shooting method w1th damped Newton It­
eration is used for the trim analysis and generates the
FTM as a byproduct. The QR method is used for
the eigenana!ysis. The Floquet analysis comprises the
shooting and QR methods. A rotor with Q identical
and equally spaced blades has Q planes of symmetry.
The fast-Floquet analysis exploits this symmetry, and
thereby provides nearly a Q-fold reduction in run time
and frequency indeterminacy of the Floquet analysis.
Still, the run time for the fast-Floquet analysis on se­
rial computers becomes prohibitive for large models
(order or number of states > 100); in fact, it grows
between quadratically and cubically with the order,
and the bulk of it is for the trim analysis. Accord­
ingly, a parallel fast-Floquet analysis is developed for
both types of mainstream parallel computing hard­
ware: distributed computing systems of networked
workstations and massively parallel computers; algo­
rithmically, both types belong to the MIMD (Multiple­
Instruction, Multiple-Data) architecture. Large mod­
els with hundreds of states are treated~ and a compre­
hensive database on parallel performance and compu­
tational reliability is generated. Computational relia­
bility is quantified by parameters such as tbe eigen­
value condition number. Similarly, parallel perfor­
mance is measured by parameters such as speedup and
efficiency, which collectively provide a measure of how
fast a job can be completed with a set of processors
and how well the processors are utilized. Compared
to the serial fast- Floquet analysis, the parallel analy­
sis reduces the run time dramatically and provides a
practical means of controlling the growth of run time
with the order by a judicious combination of speedup
and efficiency.

• Paper presented at the 23rd European Ratorcraft Forum,
Dresden, Germany, September 16-18, 1997.

Nomenclature

Unless otherwise stated, the symbols below are
non dimensional:
a lift curve slope, rad- 1

cd, constant profile drag coefficient
cd resultant profile drag force in the plane of

the rotor disk opposite to the flight direction
Cr rolling moment coefficient
Cm pitching moment coefficient
CT thrust coefficient
Cw weight coefficient of the helicopter
f equivalent flat plate area of parasite drag
f serial fraction
M number of states or state variables

augmented with control inputs,
M=N+c

N number of structural and aerodynamic
states or state variables

N, number of blade states
Nw
p
Pp
Q
t
T

I
G"

G"k

iik

I'
W(
[JT
1111
(x)

number of dynamic wake states
number of processors
flap natural frequency, rotating
number of blades
time unit such that T = 2~r
period
k-th eigenvalue of the FTM; see Eq. (2)
k-th eigenvalue of EFTM; see Eq. (22)
wake states
azimuthal position
k-th mode nonunique frequency of z~;;
k-th mode nonunique frequency of Z~;;
T/Q
perturbation quantity
Lock number (blade inertia parameter)
rotor solidity
k-th mode damping of Z<
k-th mode damping of Zk
advance ratio
lag natural frequency, rotating
transpose of []
Euclidean norm of a vector or matrix
time derivative of x

92.1

Introduction

Floquet theory is the primary mathematical tool to
investigate helicopter stability in trimmed flight. The
investigation involves two parts. The first part is the
nonlinear trim analysis of computing the control in­
puts for the required flight conditions as well as the
corresponding periodic or steady-flight response. The
second part is the linearized stability analysis of gen­
erating the Floquet transition matrix (FTM) about
the periodic response (Ref. 1), and then computing
~ts eigenvalues and eigenvectors for the modal damp­
mg levels and frequencies. For the trim analysis, the
shooting method with damped Newton iteration is
~sed increasingly since it is not sensitive to the damp­
mg levels or stability margins~ and therefore is suitable
for marginally stable and unstable systems. Moreover,
the shooting method is almost globally convergent and
generates the FTM as a byproduct (Ref. 2). For the
stability analysis, the QR method is used almost ex­
clusively (Ref. 3). The trim analysis based on the
shooting method and the stability analysis based on
the QR method are collectively referred to as the Flo­
quet analysis (Ref. 1). Moreover, the Floquet analy­
sis has well-quantified computational reliability char­
acteristics (Refs. 2-4) and it is routinely applied to
small models on conventional serial computers (order
or number of states N < 100). However, the run
time for the trim analysis becomes prohibitive for large
models; indeed, it grows between quadratically and
cubically with the model order or number of states.
Such a formidable run-time growth precludes the ap­
plication of Floquet analysis to comprehensive and de­
sign analyses that require large models. Furthermore,
as we exploit major strides in structural and aerody­
namic modeling and thereby improve prediction ca­
pability, the required run time becomes prohibitive as
well. Simply stated, the practical utility of the Floquet
analysis becomes limited to relatively small models.

In the Floquet analysis, the trim analysis consumes
nearly 99% of the total run time. It involves a simul­
taneous solution of nonlinear differential equations of
motion coupled with algebraic transcendental equa­
tions of trim. Basically, the trim analysis predicts
the control inputs that satisfy the required flight con­
ditions and the corresponding initial conditions that
guarantee periodic responses. These control inputs
appear not only in the stiffness and damping matri­
ces but also in the input matrix or forcing-function
matrix. Therefore, they are specified indirectJy so as
to satisfy the prescribed flight conditions of required
thrust level and force-moment equilibrium. Thus, the
trim analysis is carried out iteratively by solving a se­
quence of linearized problems. This involves varying
or perturbing the starting or initial values of the state
variables and control inputs one at a time, integrat­
ing the equations of motion through one complete pe-

riod T~ generating the Jacobian and then improving
the estimates by a damped Newton iteration. The cy­
cle of perturbing, integrating and improving continues
till convergence. Thus, the trim analysis requires a
very l~ge nu~ber of operations of perturbation, in­
tegratwn and Improvement. To be precise, for an N­
order model with c number of control inputs and k
number of iteration cycles for convergence, the trim
analysis requires k(N + c + 1) operations, of which
(N + c + 1) operations in each iteration cycle are in­
dependent. It turns out that the time interval for all
of the k(N + c + 1) integration operations can be re­
duced from T to T /Q by exploiting the Q-planes of
symmetry of a Q-bladed rotor; the only condition is
that all the blades be identical and equally spaced.
The conventional Floquet analysis that exploits this
symmetry is referred to as the fast-Floquet analysis.
Since the bulk of the run time is for such a large num­
ber of repeated integrations, the fast Floquet analysis
reduces the run time of the Floquet analysis by nearly
a factor of Q. It also turns out that the fast-Floquet
analysis reduces the frequency indeterminacy of the
Floquet analysis by a factor Q as well; for details see
Refs. 5 and 6. Despite this Q-fold reduction, the run
time for the trim analysis still grows rapidly, between
quadratically and cubically with the number of states·
this precludes treatment of large models even by th~
fast-Floquet analysis. Nevertheless, the (N + c + 1)
mdependent operations in each cycle can be tailored
to parallel or concurrent computations. In principle,
parallel computing reduces the run time by a factor of
(N + c + 1). Significantly, it also provides a means of
controlling the run-time growth with the order by ju­
diciously choosing the number of processors with the
model size or number of states as a compromise be­
tween the run-time reduction and effective processor
utilization. The fast Floquet analysis based on paral­
lel computing is referred to as the parallel fast-Floquet
analysis; it reduces the run time dramatically - the­
oretically, by a factor as large as Q(N + c+ 1). To put
this work in perspective, we present the state of the
art of the conventional- and fast-Floquet analyses in
the sequel.

A few studies are available on the serial and
parallel Floquet analyses of large helicopter models
(Refs. 7 -9). For example, Ref. 7 addresses the appli­
cation of the serial fast-Floquet analysis to models of
order as high as 500. It also reviews the state of the art
through 1995, particularly the basic studies of Peters
(Ref. 5), and McVicar and Bradley (Ref. 6), and shows
that the fast-Floquet analysis indeed brings in nearly a
Q-fold saving in run time and reduces frequency inde­
terminacy by a factor of Q. However, the treatments
therein show that the barrier of run time still remains
for large models. Developments since 1995 include the
works of Subramanian et al. who demonstrate that
parallel computing is a means of removing such a

92.2

barrier (Refs. 8 and 9); in particular, Ref. 8 treats
the parallel Floquet analysis, and Ref. 9, the parallel
fast-Floquet analysis. However, these parallel analy­
ses are designed for SIMD (Single-Instruction, Mul­
tiple Data) architecture and are not suitable for the
MIMD (Multiple-Instruction, Multiple-Data) architec­
ture that algorithmically forms the basis of both types
of mainstream parallel-computing hardware - the
massively parallel MIMD computers and distributed
computing systems of networked workstations. More
significantly, the MIMD architecture has been almost
exclusively used in large-scale computing; indeed, the
expectation is that except for some specialized applica­
tions (e.g., weather prediction), the SIMD architecture
will be virtually replaced by the MIMD architecture
(details to follow).

Given this background, this paper advances the
state of the art in the following respects:
1. It presents a parallel fast-Floquet analysis de­

signed for distributed computing system of net­
worked workstations and for massively parallel
MIMD computers. The analysis exploits the fast­
Floquet theory and the MIMD computational
strategy.

2a. It treats models with hundreds of states to demon­
strate the practical utility of the parallel fast­
Floquet analysis in comprehensive- and design­
analysis applications. The gains achieved through
distributed and massively parallel computing are
quantified in terms of the following parallel perfor­
mance metrics: run-time and its growth with the
order, the dominance of the parallel portion of the
problem (serial and parallel fractions), speedup
and efficiency. Descriptively stated, the speedup
shows how the run time of a parallel algorithm
running on p processors compares to itself when
running on one processor. Similarly, efficiency
provides a measure of how effectively the proces­
sors are used. Moreover, the computational relia­
bility is quantified by the condition number of the
Jacobian matrix in Newton iteration, the condi­
tion numbers of the eigenvalues and the residual
errors of the eigenpairs.

2b. It presents a comprehensive database on paral­
lel performance metrics and computational reli­
ability. In particular, it shows how distributed
computing compares with serial computing on a
conventional main-frame computer and with mas­
sively parallel computing on a MIMD massively
parallel computer with respect to performance
and computational reliability. Since distributed
computing is often built on existing hardware
with little additional cost and with turnaround
time of a workstation, this comparison demon­
strates the practical utility of parallel computing
in large-scale Floquet analysis.

Parallel Computing Hardware

In general, sequential algorithms are interchange­
able; that is, the same algorithm can be implemented
on all types of serial computers ranging from PCs to
workstations to mainframe computers. By compari­
son, such a portability does not yet exist for parallel
algorithms, which generally belongs to either SIMD
or MIMD architecture. These two types of parallel
architecture and their impact on the development of
algorithms are extensively discussed in the literature
(e.g., Ref. 10). With respect to cost and speed, the
MIMD computers are dominating the field of parallel
computing. Basically, they utilize "off-the-shelf" pro­
cessors, the same used in low-cost workstations, and
exploit a chip technology that is making exponential
growth in processing speed. In fact, the processing
rate of an individual processor is expected to exceed
200 MFLOPS by the turn of the century (Ref. 11).
From an algorithmic perspective, the distributed com­
puting system belongs to the MIMD computing. This
means when based on a same message-passing pro­
gramming paradigm, the algorithms developed for a
distributed computing system can be implemented di­
rectly on massively parallel MIMD computers and vice
versa; this ensures portability of parallel algorithms.
The concept of distributed computing is a relatively
recent development, mostly since the early '90s. A
brief account of it is included in the sequel, primar­
ily to provide a better appreciation for the simplicity
and utility of the parallel fast-Floquet analysis based
on distributed computing. This account is intention­
ally descriptive with minimal use of parallel-computing
jargon; for a thorough account see Ref. 11.
Distributed Computing

Distributed computing or network computing in­
volves a set of networked computers ranging from
a general-purpose workstation to a high-performance
computer to even a parallel computer that works as
a unified computing resource. In practice, however, a
distributed computing system represents a cluster of
heterogeneous workstations networked together, and
its computational power can be comparable to that
of a supercomputer. This networking in no way in­
terferes with the stand-alone operation of individual
workstations; indeed, one of the drivers of distributed
computing is the feasibility of combining and realiz­
ing the unutilized computational power of these indi­
vidual workstations during off-load (e.g., after-office)
hours. This unutilized computing power merits spe­
cial consideration since a typical workstation routinely
delivers several tens of millions of floating point op­
erations per second and its computing power is ex­
pected to increase rapidly. Computing facilities from
academia to design offices provide access to a large
number of workstations through some form of inter­
connection network. The bulk of these workstations

92.3

remains idle for most of the day. Distributed com­
puting provides a means of harnessing this untapped
computing power. As far as a user's program is con­
cerned, it acts as one single virtual parallel computer,
no matter how many workstations are connected, how
different they are and where they are located.

In contrast, a massively parallel computer represents
an assemblage of a few hundred to a few thousand
identical or homogeneous computers or processors and
provides enormous computing power. Despite the ar­
chitectural contrast - heterogeneous versus homoge­
neous processors - both the distributed computing
systems and massively parallel computers use the same
programming paradigm for interprocessor communica­
tion, which ensures all processors understand and ex­
change data. Although several libraries for interpro­
cessor communication are developed by different ven­
dors, the MPI (Message Passing Interface) in the pub­
lic domain has evolved as a standard. The user need
not worry about the architectural differences among
the processors and related consequences such as dis­
tribution of tasks and data exchange. In other words,
the MPI library spans the collection of heterogeneous
processors in a distributed computing system as it does
in a massively parallel computer with identical proces­
sors, although in the latter case this spanning is done
much faster.

The increasing adaptation of distributed computing
systems with massively parallel computers as neces­
sary or highly desirable adjuncts is due to two fac­
tors. First, distributed computing not only requires
minimum turnaround time but also involves very lit­
tle cost since it is built on existing system hardware
as well as software. Thus, it makes parallel computing
practical, which is aptly referred to as "lowly parallel
computing" (Ref. 12). By comparison, state-of-the-art
massively parallel computers typically cost more than
$10 million, and consequently they are maintained by
only a few organizations. Since they are heavily used,
the turnaround time often runs into days for a typical
large-scale Floquet analysis (N ""400). Second, com­
mon to both types is the message passing programming
paradigm (e.g., MPI); this means the same algorithm
and in fact, the same code developed for a distributed
computing system can be run on a massively parallel
computer as well. Thus, in the development of a pre­
diction code, the bulk of the computations can be done
on a distributed computing system at very little cost
and turnaround time, and the 'final-stage' computa­
tions and other demonstration models can be run on a
massively parallel computer. Stated otherwise, a judi­
cious combination of distributed and massively parallel
computing removes the run-time constraint that now
prevents the routine application of Floquet theory to
large models.

Conventional and Fast Floquet
Analyses

For a rotor with Q identical and equally spaced
blades, there are Q planes of symmetry. Exploiting
this symmetry, the fundamental solution matrix or the
transition matrix over one period T can be constructed
from the transition matrix generated over T/Q or !:>.T.
The fast-Floquet analysis does just that. It exploits
the Q-fold symmetry in both trim and stability anal­
yses. Specifically, in the trim analysis, the equations
of motion are integrated through t:.T and the trim
equations are described in a Q-th part of a revolu­
tion, not through T or in one complete revolution as
required in the conventional Floquet analysis. As a
byproduct, the trim analysis also generates an equiv­
alent Floquet transition matrix (EFTM). The eigen­
values and eigenvectors of the EFTM not only lead
to stability results but also reduce the frequency in­
determinacy by a factor of Q. Thus, in principle, it
is possible to perform the Floquet analysis in 1/Q-th
of the run time for the conventional Floquet analysis.
However, from an algorithmic perspective, the imple­
mentation of the fast-Floquet analysis requires con­
siderable changes and these changes have significant
impact on subsequent parallelization. Therefore, it is
expedient to begin with a discussion of the stability as
well as response of linear and nonlinear systems; this is
followed by an outline of the shooting strategy based
on the conventional Floquet analysis.

Conventional Floquet Analysis

Consider a linear periodic-coefficient system with N
states, whose equations of motion are given by

x(t) = A(t) x(t) + G (t) (1)

where x(t) represents theN X 1 state vector. Similarly,
A(t) denotes the state matrix of size N x N and G~t)
denotes the forcing function or input vector of s1ze
N x 1; they are periodic with period T = 2rr. For
such a system theN x N state transition matrix ¢(t)
is the fundaU:ental solution matrix of the differential
equation

if, = A(t)¢, 0 ~ t ~ 2rr, ¢(0) =I (2)

and the FTM is defined by ¢(27r). Then the stability
of this linear system is determined by the eigenval­
ues Zk (k = 1, 2, ... N) of the FTM, from which the
modal damping levels a.nd frequencies are computed:

"• = 2..ln lz•l (3a) 2rr

Furthermore, the initial conditions that guarantee
periodic forced response for Eq. (1) are given by

[I- ~(2~)J (x(O)- XE(O)) = (xE(2o<)- XE(O)) (4)

92.4

(

where XE(2r.) is the non-periodic solution at t = 2rr
for any arbitrary initial state XE(O).

In general 1 the governing equations of motion for ro­
torcraft systems are nonlinear periodic-coefficient dif­
ferential equations and can be represented by

li: = G (x, t) (5)

For Eq. (5), the initial conditions that yield periodic
forced response can be obtained by using a damped
Newton-type iteration. In particular, for the k-th it­
eration, Eq. (4) is modified as

x(D)k+l = XE(O)k +X (I- ¢(2;r)]k"1

(XE(2rr)- XE(O)). (6)

where the matrix [I- q\(2rr)J is the Jacobian or par­
tial derivative matrix if? and X is the Newton damping
parameter. Moreover, </>(2rr) converges to the FTM.

Showing the role of unknown control-input vector c
explicitly, Eq. (5) can be recast as

li: = G(x,c, t) (7)

Then, the initial state x(O) that generates periodic
forced response and the control-input vector c that
gives the desired flight conditions are computed by sat­
isfying

x(2rr,x(D)) -x(O) = 0

f(x,c)=O

(8)

(9)

In the above equations, x(2rr,x(O)) is the state at
t = 2rr with initial condition x(O) and f(x, c) sym­
bolically represents the force-moment balance for the
required flight conditions. Therefore, Eqs. (8) and (9)
represent, respectively, periodicity and desired flight
conditions and are nonlinear algebraic-transcendental
equations. Therefore, combining Eqs. (8) and (9), we
have

f(s) = 0 (10)

where s = l x, c J T denotes the augmented vector of
state variables and control inputs.

Following Ref. (2), Eq. (6) is rewritten to include
the computation of the control-input vector c as

{ x(O) L, = { XE;0) } k
c

X [<I>n - I q,"]-'
<P21 cf-22

{ XE(2rr); XE(O) } (11)

where li represents the error in satisfying Eq. (9); that
is, f(x, c)= C. Moreover, the matrix~ is the Jacobian
and the submatrix <I> 11 converges to the FTM.

Fast Floquet Analysis

In trimmed flight, variations in the blade sectional
angle of attack and therefore, the air velocity compo­
nents, rotor forces and moments are periodic. This

means that the contribution of each identical blade
to the rotor forces and moments will be the same at
a given azimuthal position since each azimuthal po­
sition has its own blade pitch and corresponding air
velocity. Therefore, the period of oscillations of rotor
forces and moments is determined by the number of
blades. Thus, it is sufficient to rotate through AT so
that a Q-bladed rotor has a blade in all azimuthal posi­
tions instantaneously, and the variation of trim forces
and moments in one period (T) can be described com­
pletely in AT. Thus,

(12)

Since the blade sectional circulatory lift that influ­
ences the inflow forcing functions can also be described
completely over the period AT, the periodicity for in­
flow or wake states can be established from

{ ~f L~a ={ ~f L~aT (13)

However, for the blade states, it is required to ro­
tate the rotor through a complete period T so that
each blade passes through all azimuthal positions.
(The blade states can include structural states such
as displacements and velocities, and blade-fixed aero­
dynamic states such as stall states.) This means solu­
tions over one complete period are required to establish
the periodicity of the blade states in trim. Neverthe­
less, the interval for periodicity can be reduced to AT
since all the blades follow the same trajectory as they
go through a complete rotation but with a phase shift
of AT between the paths of each blade. Hence, the
states of an arbitrary q-th blade at an azimuthal posi­
tion 1{; = AT can be mapped onto the initial states of
an identical (q + 1)-th blade at 1{; = 0. Therefore, the
periodicity condition for the blade states becomes

(14)

where P b represents the Q N, x Q N, permutation ma­
trix and Xb is the QN, x l vector of blade states, which
is defined as

Xb= LXb!ado:l 1 Xbia.de2, ···,Xbia.deQjT

For an isolated rotor, Pb is given by

r, 0
0 r,

0 0
0 0

0
0

0
0

(15)

(16)

where I, is theN, x N, unit matrix. However, Eq. (16)
requires minor changes when body states are included;
for details, see Ref. (5).

Now," combining the blade states and the inflow
states, we write

(17)

92.5

In the above equation, the N x N permutation matrix
P is given by

0 I, 0 0 0 0
0 0 I, 0 0 0

P= {18)
0 0 0 0 I, 0
I, 0 0 0 0 0
0 0 0 0 0 Iw

where Iw represents the unit matrix of size Nw x Nw.
From Eqs. (12-17), it is seen that the rotor trim forces,
moments and periodic responses can be described in
the interval !:,.1'. Accordingly, Eq. (11), which im­
proves the initial conditions and the unknown control
inputs is modified as (Ref. 6)

{ x{O) L, = { XE?) } k c

r ['Pn - p ;p,,
X .cp21 ;p,,

{ XE(D.T) ~ Pxg(O) } {19)

Furthermore, in Eq. (19), the matrix pT '!; 11 converges
to [P <f>(!:,.T)] where <f>(!:,.T) is the transition matrix
at the end of /:,.T. The matrix [P <f>(!:,.T)] plays a
major role in determining the stability, which is further
elaborated in the sequel.

According to the fast- Floquet theory, the state tran­
sition matrix generated over the interval from ¢ = .6.T
to 1/J = 2/:,.T is identical to the one computed over the
interval from 1/J = 0 to 1/J = /:,.T; the only requirement
is that the blade indices be permuted. This is because
at 1/J = /:,.T the first blade is in the same position as the
second blade at 1/J = 0. Therefore, the transition ma­
trix between any two instants that differ by /:,.T can
be found from the transition matrix computed from
1/J = 0 to 1/J = !:,.T and the permutation matrix P. The
general relation between any two instants ¢ = n!:l.T
to 1/J = (n + 1)/:,.T is given by (Ref. 5):

P"x[(n + 1)D.Tj = ¢(D.T)P"x[nD.Tj

n = 0, 1, ... , Q- 1 {20)

From Eq.(20), we obtain

Px(D.T) = P¢(D.T)x(O) {21a)

P 2 x{2D.T) = [Pq\{D.T)]2 x{O) {21b)

PQx(QD.T) = x(2or) = [Pq\(D.T)]Q x{O) {21c)

which leads to

{22)

Thus, Eq. (22) relates the FTM ¢(2rr) and the ma­
trix [P<f>(!:,.T)]; see also Eq. (19). In other words, the
FTM can be obtained by simply raising the power
of [P<,f>(!:,.T)] to Q. Similarly, the eigenvalues Zk of
the FTM can be found from the eigenvalues Zk of

[P¢(/:,.T)] using the relation Zk = :!;. Since we are
interested in the modal damping levels and frequen­
cies, which are computed by taking the logarithm of
zk (see Eq. (3)), it is just sufficient to take the loga­
rithm of Zk and multiply it by Q:

{23a)

c Q (-) Q _, (Im(z•))
'>k = - arg Zk = -tan ----

2r. 2r. Re(z•)
{23b)

As seen from Eqs. (23b) and (3b), the frequencies are
computed from an inverse arctangent function, which
results in multiple values and merits additional com­
ments. In the conventional Floquet analysis, the fre­
quencies are unique up to the addition of ±jr2, where
j = 0, 1, 2, etc. By comparison, in the fast-Floquet
analysis, the frequencies are unique up to the addition
of ±j11Q; also see Eqs. (23b) and (3b). Thus, the fast­
Floquet analysis reduces the frequency indeterminacy
by a factor of Q. This is further corroborated by the
numerical results generated from these two analyses
in which the mode-identification method of Ref. 13 is
used. Moreover, since the matrix [P<f>(/:,.T)] has one­
to-one equivalence to the FTM, it is also referred to as
the equivalent FTM (EFTM).

Parallel Fast-Floquet Analysis

An algorithm to trim an isolated rotor is presented;
it is designed for MIMD computing systems, including
distributed computing systems, and is based on the
fast-Floquet theory and parallel shooting with damped
Newton iteration. We consider a single-rotor model
with N structural.and aerodynamic states, and c num­
ber of control inputs. The bulk of the run time is for
generating the (N +c) x (N +c) Jacobian in each it­
eration cycle. This involves repeated integrations of
the equations of motion and estimation of trim forces,
which are performed sequentially by the sequential
shooting algorithm. In other words, the (N + c)2 ele­
ments of the Jacobian are generated sequentially one
element at a time. By comparison, the parallel al­
gorithm generates these elements in parallel by suit­
ably dividing the computations among the available
processors. Specifically, it generates each column of
the Jacobian by one processor. To help explain these
significant fea.tures, we begin with a discussion of the
sequential shooting algorithm.

Sequential Fast Shooting

The sequential shooting algorithm has the following
seven instructions:

1. Assume M (= N +c) arbitrary starting or initial
values for the state variables of the augmented

92.6

state vector s; that is, N values for x(O) and c
values for the control-input vector c.

2. Form the permutation matrix P of size N x N
according to Eq. (18).

3. Perturb the M initial values one value at a time
by a small amount Ci, i = 1, 2, ... , M and form
M + 1 vectors of starting values:

) , s(24)

4. Integrate Eq. (7) for M + 1 times using the M + 1
vectors of starting values through a time interval
t;.T = 21rjQ and generate the solution vectors:

y' = { x(~T) } where i= 1,2, ... ,M
5+f;

andy = { x(~T) } • (25)

where the vector 8 represents the trim error in
satisfying Eq. (9). Moreover, the subscripts sand
s+ £i, respectively, indicate the differences in the
starting values; that is, one solution vector, y,
with starting-value vector s and M solution vec­
tors, y' (i = 1, 2, · · · M) with M vectors of per­
turbed starting values.

5. Form the M columns of the Jacobian matrix <!>
using

v,~Y}. i = 1, 2, ... , M or equivalently

(26)

where pT;pll converges to P¢(C;.T).

6. Generate the error vector Ek. Specifically, at the
k-th iteration counter

E' = { x(LI.T)-; Px(D) } ' (27)

where x(C;.T) represents the solution vector at the
end of D..T and 8 is the trim-error vector corre­
sponding to the initial-condition vector s.

7. Improve the solution with Newton damping pa­
rameter x:

(28)

The instructions 3-7 are repeated till the convergence
of control inputs and periodic responses.

92.7

Parallel Fast Shooting

The parallel fast-shooting algorithm is a self­
scheduling MIMD algorithm and utilizes the widely
used master-slave processor approach (e.g., Ref. 10).
A processor, designated as the master, partitions a
task and/or data domain, distributes the various sub­
tasks together with data to be operated upon to other
active processors (designated as the slaves), and col­
lects and assembles the results from the slaves. The
slave processors receive and execute the assigned sub­
tasks and return the results to the master. Moreover,
the inherently sequential parts of the algorithm are
performed by the master. Specifically, in the trim anal­
ysis, the master processor sets up the initial conditions
for integration and distributes them among the slave
processors, forms the Jacobian matrix using the solu­
tions received from the slaves, and upgrades the trim
values of control inputs and initial conditions for peri­
odic responses at the end of each iteration. Similarly,
each slave processor receives a set of initial conditions
from the master processor, integrates the equations of
motion, estimates the forces and moments, and sends
these solutions to the master processor. Thus, in each
iteration cycle, each column of the Jacobian is gen­
erated by one slave processor, and this process is re­
peated (if necessary) until all the columns of the J aco­
bian are generated. Figure 1 schematically represents
these operations, which shows that the algorithm is
composed of two parts. While the first part corre­
sponds to the master processor, the second part to the
slave processors; they are referred to as the master and
slave part, respectively. As seen from Fig. 1, the mas­
ter part contains the entire shooting algorithm, which
is executed sequentially on the master processor until
a parallelized step is reached. At that step, the exe­
cution control switches to the slave processors, which
perform the computations and return the control to
the master. Then, the master processor proceeds to
the next step. For simplicity and generality, the calls
for interprocessor communication are not shown ex­
plicitly in Fig. 1. In the present study, the algorithm is
implemented using the MPI routines for interprocessor
communication. Given this background, we present
the instructions of the algorithm in the respective parts
in a format that is implemented.
Master Part:

1. Assumes a vector s of size N + c = M, which
represents a set of arbitrary initial conditions for
structural and aerodynamic states as well as for
control inputs.

2. Forms the permutation matrix P.

3. Forms (M + 1) sets of initial-condition vectors by
perturbing only one element of s for each set of
initial conditions. The (M + 1)-th set is a vector
of unperturbed states; see Eq. (24).

Slave Part

I
'

I l ______ _

!mprove ~. Eq.\2S)

.No

Figure 1: Schematic of Parallel Fast Shooting for
MIMD Architecture

4. Sends as many sets of initial conditions as the
available number of slave processors. For exam­
ple, if (M +1) > p, (p, =number of available slave
processors), it sends the first p, sets of initial­
condition vectors.

5. Receives the solution vectors y' (i = 1, 2, . .. M)
or y (see Eq. (25)) at the end of the period 6.T
from the slave processors and stores them.

6. Checks whether all sets of initial-condition vec­
tors are processed. If not, identifies the slave pro­
cessors that have completed their tasks and dis­
tributes the remaining sets of initial conditions
till all the columns of the Jacobian are generated.
Otherwise, sends an end signal to the slave pro­
cessors.

7. Forms the Jacobian matrix il! using Eq. (26).

8. Generates the error vector Ek from Eq. (27).

9. Improves the solution according to the Newton
iteration (Eq. (28)).

Repeats steps 3-9 till convergence.

Slave Part:

1. Receives one set of initial conditions for the struc­
tural and aerodynamic states and control inputs
from the master processor.

2. Integrates Eq. (7) through the time interval 6.T
and computes response x(6.T) as well as trim­
error b. In other words, generates the solution
vectors y' (i = 1, · .. , M) or y (see Eq. (25)).
Thus, each column of the Jacobian is generated
by one processor.

3. Sends the solution vectors yi or y.

4. Repeats steps 1-3 till an end signal is received
from the master processor and then exits to the
master part.

Stability

Since the EFTM comes out as a byproduct of the
trim analysis, the stability analysis involves determina­
tion of the modal damping levels and frequencies from
the eigenvalues of the EFTM and involves hardly 1%
of the total run time; see Eqs. (23a) and (23b). An LA­
PACK subroutine DGEEV for real unsymmetric ma­
trices is used to compute the eigenvalues and eigenvec­
tors of the EFTM (Ref. 14); in the master-slave pro­
cessor approach, this routine is executed by the master
processor; that is serially. As seen from Eq. (23b), the
inverse arctangent function results in multiple values
or nonunique frequencies. Therefore, to compute the
frequencies and thereby identify the correct modes, the
mode-identification method of Ref. 13 is used with the
modification of replacing the eigenvalues and eigenvec­
tors of the FTM with those of the EFTM. Specifically,
for each eigenvector, say Xi, the complex ratio of the
derivative Xi and the state Xi corresponding to the
most dominant component is computed. The imagi­
nary part of this complex ratio} with a suitable cor­
rection, which is an integer multiple of Q (not an inte­
ger as in the conventional Floquet analysis; see also
Ref. 13), closely approximates the frequency of the
mode. Thus 1 the frequency indeterminacy is reduced
by a factor of Q using the fast-Floquet analysis.

Computational Reliability

The trim and stability analyses require solutions for
nonlinear differential equations of motion coupled with
algebraic transcendental equations of trim. Solving
such a complex system is computationally demand­
ing and involves a very large number of numerical op­
erations such as integrations of equations, lineariza­
tions for Newton improvement and repeated iterations
with improved starting values. These computations
are prone to numerical corruptions or small deviations

92.8

(

(

from the exact values due to round-off or discretiza­
tion errors, which can get magnified and finally affect
the trim and stability predictions: Therefore, it be­
comes necessary to quantify the computational relia­
bility of the fast-Floquet analysis. Specifically, in the
trim analysis, the Jacobian influences the convergence
of trim results of control inputs and periodic responses;
see Eqs. (26) and (28). Furthermore, as seen from
Eq. (26), the EFTM is extracted from the Jacobian,
and the stability results are generated from the eigen­
values and eigenvectors of the EFTM, which are also
susceptible to numerical corruptions. Therefore, the
computational reliability concerns both trim and sta­
bility analyses. Following earlier studies (e.g., Ref. 8),
we use three computational reliability parameters.

First, the condition number of the Jacobian matrix
!I;, which is defined as

l.
[max. eigenvalue of.PT ~) 2

Cond.(<P) = J. (29)
[min. eigenvalue of~T<p]2

Second, the condition number, Cond.(-'), for the
eigenvalue of the mode of interest. Let x and y, re­
spectively, be the right and left eigenvectors of the
EFTM corresponding to an eigenvalue .A; that is,
(EFTM]x =Ax and (EFTMjTy = .>,y. Then, Cond.(.\)
is computed from the expression

(30)

Third, the residual error c of the eigenpair (-', x) is
given by

II[EFTM]x- .l.xll
e = ll>.xjj (31)

For additional details, see Ref. 4.

Performance Metrics

Measuring the performance of parallel algorithms is
an important aspect of parallel computing. In general,
the performance metrics provide a means of estimating
the overall effectiveness of parallel algorithms on dif­
ferent computing systems, and for problems of varying
size. Under ideal conditions, irrespective of the prob­
lem size, a perfect parallel algorithm implemented on a
computing system with p processors is expected to re­
duce the run time by a factor of p. However, there are
several limiting factors such as communication over­
head and memory size, because of which the perfor­
mance of a parallel algorithm deviates from the ideal.
Following the literature (e.g., Refs. 15 and 16), we use
five performance metrics to measure the effectiveness
of the parallel fast-Floquet analysis: run-time saving
and its growth with the order 1 speedup, efficiency, se­
rial and parallel fractions, and portability.

The run time and its variation with the order are
of particular importance. They are directly measured
quantities and the easiest to interpret. The parallel

run time is defined as the total elapsed time from the
beginning to the end of the execution of the parallel
program. It includes computation time, communica­
tion time and processor idle time. The computation
time depends mainly on the problem size and the num­
ber of processors and to a lesser extent, on the memory
size and speed of the processors. The communication
time is the time spent for message startup and transfer.
It depends not only on the type, bandwidth and la­
tency (time to initiate and complete a communication
process) of the communication network, but also on
the size and number of messages being communicated
(Ref. 16). The processor idle time basically occurs due
to the lack of computation, or data contention dur­
ing execution. To achieve a better performance, the
processor idle time needs to be minimized; this can
be done by properly balancing the workload among
the processors and, wherever possible, by overlapping
computation and communication. In this study, we use
the MPI timer routine MPLWTlME for measuring the
parallel run time (Ref. 11). The other three metrics­
speedup, efficiency, and serial and parallel fractions­
are derived from the measured parallel run time and
the predicted uniprocessor run time. The uniproces­
sor run time often is not a measured quantity owing to
constraints in the architecture, algorithm or excessive
run time. For example, the master-slave processor ap­
proach requires at least two processors and precludes
a direct measurement of the uniprocessor run time.
Under such circumstances, it has to be predicted.

Speedup Sp provides a measure of how a parallel
algorithm executing on p processors reduces the run
time of the same algorithm executing on one proces­
sor. Ifti and t1 represent the run time on j processors
and one processor, respectively, speedup is defined as

t,
Sp = t :<:; p (32)

p

Similarly, efficiency Ep provides a measure of how
well the processors are kept busy. In other words, it is
a measure of effective utilization of the processors and
is given by

Ep = s, :<:; 1 (33)
p

Under ideal conditions, Sp = p and Ep = 1. This
means the algorithm is perfectly parallel and the 'best'
the processors can do has been achieved. However, as
seen from Eqs. (32) and (33), speedup and efficiency
both depend upon the number of processors, and on
the run time constraint with increasing model order.
In practice, for a given model order, the saving in run
time decreases with increasing number of processors.
Therefore, while the speedup increases with increasing
number of processors, efficiency drops progressively.
Therefore, it is necessary to interpret the speedup and
efficiency in a relative sense as a compromise between
how fast a job needs to be completed (speedup) and
how well the processors are utilized (efficiency).

92.9

In this study, we follow Ref. (17) to predict the
uniprocessor run time. Basically, it is taken to be a
sum of serial portion It, and parallel portion It,. The
assumption is that the problem can be divided into
a completely serial portion and a completely parallel
portion, which can be divided equally among the pro­
cessors. Thus, we have

(34)

Since only the parallel portion can be speeded up, the
expression for run time with p processors is

(35)

We measure a set of values for the parallel run time
tp by executing the same job on a different number
of processors p. Then using Eq. (35), It, and It,
are determined by following a least-square approach.
Thus, the uniprocessor run time It(= It,+ It,) and
thereby speedup and efficiency are calculated; see also
Eqs. (32) and (33).

Now, it is expedient to express t1. and t1P in terms
of dimensionless serial fraction f. This is done in
Eq. (36):

t 1, = jt, and t 1, = (l - f)t 1 (36)

Using Eq. (36) in Eq. (35), the parallel run time can
be expressed as

tp = jt, + (l - f)t,
p

(37)

Therefore, the expression for speedup can be rewritten
as

(38)

which is the well known Amdahl's law (Ref. 10). Ba­
sically, it demonstrates the significance of the serial
fraction on the overall effectiveness of a parallel algo­
rithm and shows that the speedup is limited by the
reciprocal of f.

From Eq. (38), the serial fraction is expressed in
terms of speedup and number of processors as

f=l-l-l/Sp
l-l/p

(39)

which shows f is strictly not independent of p.
Although p takes only integer values, substituting
Eq. (38) in Eq. (33) and differentiating l/ Ep with re­
spect to p, we get

:p UJ =! (40)

which shows that the serial fraction can be an indirect
measure of efficiency.

Portability is a performance measure that cannot be
quantified; nevertheless, it is very important in prac­
tical parallel computing. Portability is the ease with
which the same parallel algorithm can be implemented

on different machines/architectures. The parallel fast­
Floquet algorithm developed in this study employs the
MPI (Ref. ll). It is a standard message passing library
for interprocessor communication, which facilitates de­
velopment of portable algorithms as demonstrated by
the implementation of the same parallel fast-Floquet
analysis on both the massively parallel computer and
distributed computing system of networked worksta­
tions.

Results

The results refer to the parallel performance met­
rics as well as computational reliability. Specifically,
the performance metrics data include run time and
its variation with the order and number of proces­
sors p, speedup, efficiency, rate of change of recip­
rocal of efficiency with respect to p, and serial and
parallel fractions; see also Eqs. (32), (33), (36) and
(40). The run time refers to the total elapsed time
for generating both trim and stability results. Besides
these. metrics, we also address the portability of the
parallel fast-Fioquet algorithm on different comput­
ing systems. The computational reliability parameters
comprise the condition number of the Jacobian in the
converged cycle, condition number of the eigenvalue
of the lag regressive-mode damping level and residual
error of the corresponding eigenpair; they are com­
puted according to Eqs. (29)-(31). The serial com­
putations are performed on a mainframe VAX 4320
computer. The parallel computations are done on two
types of hardware: a distributed computing system of
13 SUN SPARC networked workstations and a mas­
sively parallel IBM SP-2 computer. We reiterate that
these systems follow MIMD architecture and, there­
fore, the same algorithm is implemented on both the
systems using FORTRAN 77 and the MPI library for
interprocessor communication (Ref. 11).

The results are generated for isolated-rotor models
of hingeless helicopters in trimmed flight. The rotors
have three and more blades undergoing rigid flap and
lag motions and are isolated in that their support sys­
tems are rigid or stationary. The airfoil aerodynam­
ics is based on the ONERA dynamic stall models of
lift and drag, and the rotor downwash dynamics is
represented by a finite-state three-dimensional wake
model. Moreover, the trim conditions include the mo­
ment equilibrium (zero rolling and pitching moments)
and the equilibrium of the longitudinal forces in the
longitudinal-vertical plane of the rotor. For additional
details on the equations of motion for structural and
aerodynamic representations as well as for trim for­
mulation, see Refs. 8 and 9. The blade is discretized
with 10 aerodynamic elements with four dynamic stall
states per element, and then the model order or num­
ber of states is controlled by varying the number of
wake harmonics or wake states in modeling the wake.

92.10

Unless otherwise stated, the following baseline param­
eters are used: I" = 0.3, -y = 5, Pfi = 1.15, w(=
1.14, <T = 0.05, a = 6.28, Ca, = 0.0079, Cw =
0.00375, and 7 = 0.01. The results are generated for
three models with M = 227, 329 and 395 and they are
presented in two phases according to the type of hard­
ware used. Specifically, Figs. 2-5 refer to a massively
parallel IBM SP-2 computer, and Figs. 6-9 to a dis­
tributed computing system of networked workstations;
this is followed by Fig. 10, which shows a summary of
the run-time growth with the order on the serial and
two types of parallel hardware.

To help appreciate the results, we recall that the
standardization of the parallel perfor!Ilance metrics is
still evolving, and distributed computing in particular
is an emerging area of the past few years. Furthermore,
the evaluation and interpretation of these metrics de­
pend upon several factors such as the type of the prob­
lem and the parallel-computing hardware, and merit
additional comments. According to Eqs. (32) and (33),
the speedup Sp and efficiency Ep are derived metrics,
and they depend on the measured parallel run time tp

as well as on the predicted uniprocessor run time t1
for the parallel algorithm. The uniprocessor run time
t 1 is predicted by following the assumption of Eq. (34)
and using a series of measured values for tp; this re­
quires executing the same job with a fixed model order
for a varying number of processors and then predict­
ing t 1 by a least-square approach. This means t1, Sp
and E are strongly dependent on the problem and
hardw~re; in particular, Sp and Ep are sensitive to the
accuracy of predicting t 1 . Therefore, it becomes nec­
essary to exercise considerable care when comparing
these performance metrics from the SP2 computer and
the distributed computing system although the same
algorithm is used on these two systems. Nevertheless,
these metrics along with the measured values of run
time and its variation with the order and number of
processors collectively provide a means of assessing the
overall effectiveness of the parallel fast- Floquet analy­
sis on a specific hardware.

Figure 2 shows the variation of the run time with the
number of processors for 2 ~ p ~ 64. Overall, as ex­
pected, the run time decreases with increasing number
of processors for a fixed model order and increases with
increasing model order for a fixed number of proces­
sors. In particular, for the model with M = 227, the
run time remains nearly constant for p > 10; that is, a
further increase in the number of processors yields no
appreciable saving in run time. For the larger mod­
els with M = 329 and 395, the rate of reduction in
run time with p is significant only for p::; 16, and the
run time virtually flattens out for p > 32 or so. This
lack of reduction in run time with increasing p is as­
sociated with delays in interprocessor communication.
In IBM SP-2 communication takes place through a
switch, which is much slower when compared to the

4000

u;-
-g 3000
0
(J .,
!!!.-
~ 2000
j::
c
:I
a:

1000

0

II ..

_..,.__ M =395

--1>- M=329

-<>-- M=227

-...... .. _, - - - - - ill- - - - - - - - - - - - -II

,.. •••• 0 ---o- -- -- -

0 10 20 30 40 50 60 70
Number of Processors, p

Figure 2: Run-Time Variations with the Order
and Number of Processors on a MIMD Computer
(IBM SP-2)

speed of individual processors. Thus, as the number
of processors increases, the communication delays in­
crease accordingly. This negates any computational
gains achieved through parallelism. The impact of this
communication overhead on speedup and efficiency is
studied in Fig. 3, where the results are presented for
2 ::; p::; 32.

In Fig. 3, while part 'a' shows the variation of
speedup with the number of processors and model or­
der, part 'b' shows the corresponding variation of ef­
ficiency. As expected, for a fixed order with increas­
ing number of processors, the speedup increases and
efficiency decreases. However, for a fixed number of
processors, both speedup and efficiency increase with
increasing order M. This means if the job needs to be
completed faster, it is necessary to increase the num­
ber of processors; see also Fig. 2. But this increase
in speedup is accompanied by reduced efficiency. Fig­
ure 3 also shows that the speedup and efficiency figures
are close to the ideal for p ::; 6 for M = 329 and 395.
For example, the speedup and efficiency are, respec­
tively, equal to 1.8 and 95% for M = 395 with p = 2,
and with p = 10, a five-fold increase, the speedup in­
creases to 7.5 and the efficiency comes down to 75%.
However, in general, Fig. 3 shows that Sp and Ep de­
viate considerably from the ideal values with increas­
ing number of processors (p > 10). This is related to
idling of the processors and interprocessor commum­
cation. In the master-slave algorithm, the slave pro-

92.11

10

B
c. en

0.:
.g 6 ., .,
ll.
en

2

0
100

90

so

-70
'#.
~

c.60 w
,;; 50
" c: .,

40 ;g -w 30

20

10

0
0

I
I

I

I
I

I
I
I

I •-"
I
I -"

(a)

--- - -- -...
)I ~ • -

I ____ __.

I .._....--

/!" --- Ideal Speedup

_,.,__ M =395

\
\ ·­\ ..

\ lo.

\
..........

·-It- M=329

-+ · M=227

(b)

.. _

-----:
10 20 30

Number of Processors, p

Figure 3: Speedup and Efficiency Variations with the
Order and Number of Processors on a MIMD Com­
puter (IBM SP-2)

cessors, which are larger in number, remain idle when
the master executes the serial portion. Similarly, the
master remains idle when the slaves are performing
the parallel portion of the problem. Consequently, the
estimated uniprocessor run time is dominated by the
serial portion of the problem, which limits speedup;
see Eqs. (36) and (38). Moreover, the computations
involved in the simple rigid blade model is not large
enough to fully exploit the enormous computing power
of the SP-2 computer with p > 10.

The next two figures address the overall effectiveness
of the parallel fast-Floquet analysis based on the serial
and parallel fractions (Fig. 4) and on the rate of change
of reciprocal of efficiency with respect to the number
of processors (Fig. 5); see also Eqs. (36), (38) and (40).

0.20
I I I I I I I I

•
0.16 - -

-0.12 r- -
-·-0.08 r- -. -

0.04 1-, I I I I I
" ·- - - -. ,-I I -1

0.96 - I I I I I ~---~·-·1 ·-

0.92 - .. -
•• -' ,.- 0.88 - -

0.84 - -
•

0.80
I I I I I I I I

200 225 250 275 300 325 350 375 400 425
Model Order, M

Figure 4: Variations of Serial and Parallel Fractions
with the Order on a MIMD Computer (IBM SP-2)

Recall that the serial fraction limits the upper bound
of speedup and can be an indirect measure of efficiency .
As seen from Fig. 4, with increasing model order the
serial fraction decreases or equivalently the parallel
fraction increases. For example, the serial fraction,
which is about 0.18 for M = 227 decreases to 0.045
for M = 395. Therefore, the upper bound of speedup
increases from 5.5 to 20. This means the degree of par­
allelism increases with increasing M. This is expected
as well; in the parallel fast-Floquet analysis, the bulk
of the saving in run time is achieved by performing
the repeated integrations in parallel, and the number
of these integrations increases with increasing order.
Similarly, Fig. 5 shows that the 1/ Ep-versus-p curve
is approximately linear for all three models and that
the slope of the curve decreases with increasing order.
In other words, the serial fraction decreases and con­
sequently efficiency increases with increasing lvf; see
also Fig. 3.

In Figs. 6-9, we present the results from a dis­
tributed computing system. The computations are
carried out on a network of 13 low-end SUN SPARC
stations (IPC and LX). These workstations are het­
erogeneous in that the individual processors differ in
memory and clock speed. Such architectural differ­
ences are dealt with efficiently by dynamically balanc­
ing the load among the processors through the master­
slave processor algorithm. The workstations are acces­
sible through a department-wide network; it is a local
area network (LAN), which uses ethernet communica-

92.12

0.08 ,_....,...,....,....,....,.,....,....,...,....,....,...,....,....,....,.,

0.07

0.06

0.05

Q.

!:!! ,_ 0.04

0.03

0.02

-*- M =395

• _,.- M=329

-· M=227

/
/

/
/

./

/
/

/

10 20 30
Number of Processors, p

..

"

Figure 5: Variations of 1/ Ep with the Order and Num­
ber of Processors on a MIMD Computer (IBM SP-2)

tion channel.
Figure 6 shows how the run time varies as we in­

crease the number of processors and model order. For
illustration, we consider the same three models treated
earlier with M = 227, 329 and 395. As expected, the
run time for a given model decreases with increasing
number of processors and increases with increasing or­
der. These features are similar to those observed on
IBM SP-2 in Fig. 2, except that the run times are much
longer. Moreover, the reduction lD. run time is appre­
ciable, say for p < 7, for the model with M = 395
and to a lesser extent for the other two models. For
p > 7, the run time for all three models either remains
nearly constant or decreases only slightly. This means
increasing the number of processors beyond a certain
value does not yield a significant reduction in run time
owing to communication overhead, which increases
with increasing number of processors. In the dis­
tributed computing system of networked workstations,
the interprocessor communication is through the eth­
ernet communication channel, which has a small band­
width (typically a few Mbits/sec) that remains the
same even when more workstations are added to the
network. By comparison, the processors of these work­
stations are sufficiently powerful in performing a few
MFLOPS. Therefore, for large models with increas­
ing number of processors, the communication channel
can become a bottleneck with limited communication
bandwidth and high latency. Moreover, in the master­
slave algorithm, the master processor communicates

0

'"
Ill.

.... M =395

--•- M=329

---+ · M = 227

-·-·-· ----- ------
5 10

Number of Processors, p
15

Figure 6: Run-Time Variations with the Order and
Number of Processors on a Distributed Computing
System

with the slave processors (M + 1) times, and the length
of the message to be communicated also increases with
M. Furthermore, in a network of workstations, it is
not always possible to perform the computations in
a 100% dedicated fashion since the workstations have
slight loads due to non-computational related oper­
ations, and the network is still being used by other
workstations that are not actually participating in the
computations. Thus, the overall performance of the
distributed computing system is lower than what the
system can nominally deliver. Nevertheless, we em­
phasize that the parallel code is completely portable
from the massively parallel SP-2 computer to the dis­
tributed computing system and vice versa without any
modification whatsoever.

The effectiveness of the parallel fast-Floquet analy­
sis on a distributed computing system is further ad­
dressed in the next three figures, which, respectively,
show the variation of the speedup and efficiency with
increasing number of processors (Fig. 7), the serial and
parallel fractions with increasing model order (Fig. 8),
and 1/ Ep curve with increasing number of processors
(Fig. 9). As seen from Fig. 7, for a fixed model order,
while the speedup increases with increasing number of
processors, the efficiency basically decreases. More­
over, both speedup and efficiency increase with in­
creasing order for a fixed number of processors. These
results are similar to those obtained from IBM SP-
2 computer (e.g., Fig. 3), In particular, both speedup

92.13

10

9

8

a. 7 (J)

c: ,
6 "tl

"' "' <l. 5 (J)

4

3 (a)

2
100

90

80

~ 70
>!!
~
wa.so

~50
= "' ·c:; 40
:;: -w 30

I
I

I

I

I
I

I

I ·II
I ,.,

I . I ~
/, .. -

,6/~. ~ --- Ideal Speedup

~,v __._ M = 395

/, ·-11-·M=329

-+-· M=227

~- ..

"" ~--. ----"'--...~

5 10
Number of Processors, p

15

Figure 7: Speedup and Efficiency Variations with the
Order and Number of Processors on a Distributed
Computing System

and efficiency are close to the ideal values for M = 395
with p::; 7, which is also the case for other two models
for p ::; 5. Figure 8 basically shows that the parallel
fraction is greater than 0.92 for the models considered;
in fact, it is about 0.97 for M = 395 and consequently
the serial fraction is a small number. This indicates
that the fast-Floquet analysis is tailored to distributed
computing as well. Figure 9 essentially corroborates
the finding of Fig. 5 in that the slope of the 1/ Ep­
versus-p curve decreases with increasing M, indicating
that efficiency increases with M. However, it is seen
that this curve has localized deviations from linearity,
which merit further investigation.

In Fig. 10, we provide a comparison of run time
and its growth with the order for the serial and par­
allel fast-Floquet analyses. Although the differences

0.10

0.09

0.08 ·--------·-
0.07

- ..
-0.06

0.05 "'· 0.04

0.03 ...
0.02
0.98

0.97 }0

0.96

0.95
,.--,!. 0.94

0.93 -· 0.92 ·-------- .. -
0.91

0.90
200 225 250 275 300 325 350 375 400 425

Model Order, M

Figure 8: Variations of Serial and Parallel Fractions
with the Order on a Distributed Computing System

in the architecture and algorithm do not permit a di­
rect quantitative comparison between the serial and
parallel run times 1 a qualitative comparison is reveal­
ing in that it shows the necessity of turning to par­
allel computing. As seen therein, the serial run time
grows between quadratically and cubically with the
order {,; M 2·4). Owing to this rapid growth, the
run time is presented for relatively small order models
{94::; M 5 169). For example, the run time is 6 hours
and 45 minutes for M = 94 and it increases to 2 days
and 12 hours for M = 169. Such a run-time growth
shows that the serial fast-Floquet analysis is not prac­
tical for routine treatment of models with hundreds of
states despite the fact that it provides nearly a Q-fold
reduction in run time of the conventional Floquet anal­
ysis (Ref. 7). However, Fig. 10 demonstrates the dra­
matic impact of parallelism on run time and its growth
with the order, which varies from 79 to 395. Specifi­
cally, it shows that the run time for the fast-Floquet
analysis is reduced dramatically. Moreover 1 the run
times from both parallel implementations are much
shorter and their rates of growth are much slower. To
help appreciate this comparison 1 the scale of the ordi­
nate is magnified in the inset of Fig. 10. It is seen that
the run time from the implementation on IBM SP-2
grows very slowly. By comparison) the run time from
the distributed computing system implementation is
much longer and grows with a higher slope. For ex­
ample, for M = 329, the parallel run times are 367
and 7145 seconds on the MIMD and distributed com-

92.14

0.022 r-,....,,....,....,.....,.....,...,.._,....,....,.....,.....,.....,....,....,
0.020

0.018

0.016

0.014

0.006

0.004

0.002

.., M =395

··I>· M=329

-· M=227

0.000 L-J-I.....J"--&.....I.....I.....L.-1..-1..-l..-'--'--'-.......J
0 5 10 15

Number of Processors, p

Figure 9: Variations of 1/ E, with the Order and Num­
ber of Processors on a Distributed Computing System

puting systems, respectively. Such a comparison also
shows that the distributed computing system can de­
liver a performance that is fairly comparable to that
of a massively parallel computer for relatively large
models, say M < 300.

Table 1 presents a sample of computational relia­
bility parameters for the parallel fast-Floquet analysis
from the IBM SP-2 computer and distributed comput­
ing system. It is seen that the reliability parameters
from both the implementations are comparable. More­
over, the condition numbers of the Jacobian as well as
the eigenvalue condition numbers are acceptable and
the residual errors of the eigenpairs are negligible; for
additional details, see Refs. 2 and 4.

Table 1: A Sample of Computational Reliability
Parameters

System
Order,
N+c

227 (M)
227 (D)
395 (M)
395 (D)

M: Massively Parallel Computing
D: Distributed Computing

Condition Eigenvalue Residual
number of condition error of the

the Jacobian number for corres-
matrix for the lag ponding

the converged regressive eigenpair
cycle mode

204351.57 2.5092 0.7254£-14
173326.28 2.5181 0.5247£-14
651771.24 2.6393 0.2812£-13
572671.30 2.6412 0.2223E-13

100

j • - -• Serial (VAX 4320)

............ Massively Parallel (IBM SP-2)

...,.,. Distributed Computing
(Network of 13 SUN SP ARC

Workstations)

5.0 , I ,

- r I i•.ol- ,
• I
~3.0 /~

ti 2.0 /'Y
'ii1.0 _/"

~ .-·--
0.0 1-~~:;:;:;:j LL...t...! ' 'I'

100. 300 400
Model Order or Number of States

200 300

Model Order or Number of States

400

Figure 10: Run-Time Variations on Serial, Parallel and
Distributed Computing Systems

Conclusions

The preceding parallel fast-Floquet algorithm pre­
dicts trim and stability of rotors with identical and
equally spaced blades. It exploits the fact that such
a rotor with Q blades has Q planes of symmetry. It
is designed for MIMD computing architecture, which
is almost exclusively used in mainstream parallel­
computing systems of networked workstations (dis­
tributed computing) and massively parallel comput­
ers. It is also portable in that it can be directly im­
plemented on both systems. Models with hundreds of
states are treated on these two systems as well as on
a serial computer, and a comprehensive database is
generated on run time and its growth with the order,
turnaround time and computational reliability. The
database also includes additional parallel-performance
metrics such as speedup and efficiency, which, respec­
tively, show how fast a job is completed with a set
of processors and how effectively these processors are
used. These data lead to the following findings:

1. The serial run time grows between quadratically
and cubically with order. By comparison, both
the parallel systems reduce the run time dramat­
ically; in fact, the two ratios of serial run time
versus the two parallel run times rapidly increase
with increasing order. More importantly, both the
parallel implementations provide a means of con­
trolling the growth of run time with the order by

92.15

a judicious combination of speedup and efficiency;
that is, increasing the number of processors with
the order.

2. The parallel-performance data of speedup, effi­
ciency and parallel fractions from the two parallel
implementations are comparable; so are the com­
putational reliability figures from the serial and
two parallel implementations. In particular, the
speedup and efficiency figures are close to the ideal
values for some combinations of model order and
number of processors; as expected, the run time
on networked workstations is much longer than
that on a massively parallel computer for very
large models, say for M > 300.

3. With respect to developing a parallel algorithm
and turnaround time, treating a large model with
hundreds of states on networked workstations is
as routine as treating a small model (N < 100)
on a workstation. This is a measure of the prac­
tical utility of distributed computing in treating
large models and offers considerable promise for
comprehensive- and design-analysis applications.

Acknowledgment

This work is sponsored by the Army Research Of­
fice (Grant DAAH04-94-G0185). NASA Ames Re­
search Center, Moffett Field, CA, Maui High Perfor­
mance Computing Center, Maui, HI, and Cornell The­
ory Center, Ithaca, NY, sponsored computer time on
their IBM SP-2 systems.

References

1. Gaonkar, G. H. and Peters, D. A., "Review of
Floquet Theory in Stability and Response Anal­
ysis of Dynamic Systems with Periodic Coeffi­
cients," The R. L. Bisplinghoff Memorial Sympo­
sium Volume on Recent Trends in Aeroelasticity,
Structures and Structural Dynamics, University
Presses of Florida, 1987, pp. 101-119.

2. Achar, N. S. and Gaonkar, G. H., "Helicopter
Trim Analysis by Shooting and Finite Element
Methods with Optimally Damped Newton Itera­
tions," AIAA Journal, Vol. 31, 1993, pp. 225-234.

3. Achar, N. S. and Gaonkar, G. H., "An Ex­
ploratory Study of a Subspace Iteration Method
as an Alternative to the QR Method for Flo­
quet Eigenanalysis," Journal of Mathematical and
Computer Modeling, Vol. 19, 1994, pp. 69-73.

4. Ravichandran, S., Gaonkar, G. H., Nagab­
hushanam, J. and Reddy, T. S. R., "A Study of
Symbolic Processing and Computational Aspects

in Helicopter Dynamics," Journal of Sound and
Vibration, Vol. 137, 1990, pp. 495-507.

5. Peters, D. A., "Fast Floquet Theory and Trim
for Multi-Bladed Rotorcraft," Proceedings of the
51st Annual Forum of the American Helicopter
Society, Fort Worth, TX, 1995, pp. 444-459.

6. McVicar, J. S. G. and Bradley, R., "Robust and
Efficient Trimming Algorithm for Application to
Advanced Mathematical Models of Rotorcraft,"
Journal of Aircraft, Vol. 32, 1995, pp. 439-442.

7. Chunduru, S. J ., "Dynamic Stall and Three­
Dimensional Wake Effects on Trim, Stability and
Loads of Hingeless Rotors with Fast Floquet The­
ory, Ph.D. Thesis, College of Engineering, Florida
Atlantic University, Boca Raton, FL, 1995.

8. Subramanian, S., Gaonkar, G. H., Nakadai, R.
M. and Nagabhushanam, J., "Parallel Comput­
ing Concepts and Methods for Floquet Analysis
of Helicopter Trim and Stability," Journal of the
American Helicopter Society, Vol. 41, 1996, pp.
370-382.

9. Subramanian, S. and Gaonkar, G. H., "Paral­
lel Fast-Floquet Analysis of Trim and Stabil­
ity for Large Helicopter Models," Proceedings
of the 22nd European Rotorcraft Forum and
13th European Helicopter Association Sympo­
sium, Brighton, UK, September 1996, pp. 94.1-
94.14.

10. Kumar, V., Grama, A., Gupta, A. and Karypis,
G., Introduction to Parallel Computing1 Design
and Analysis of Algorithms, Benjamin/Cummings
Publishing Company, New York, 1994.

11. Snir, M., Otto, S., Huss-Lederman, S., Walker, D.
and Dongarra, J. J ., MPI: The Complete Refer­
ence, The MIT Press, Cambridge, MA, 1996.

12. Pfister, G. F., In Search of Clusters- The Com­
ing Battle in Lowly Parallel Computing, Prentice
Hall, New Jersey, 1995.

13. Nagabhushanam, J. and Gaonkar, G. H., "Au­
tomatic Identification of Modal Damping from
Floquet Analysis," Journal of the American Heli­
copter Society, Vol. 40, 1995, pp. 39-42.

14. Anderson, E. et al., LAPACK Users's Guide,
Society for Industrial and Applied Mathematics
Publication, 1992, Chapters 2 and 3.

15. Karp, A. H. and Flatt, H. P., "Measuring Parallel
Processor Performance," Communications of the
Association for Computing 1Vf achinery, Vol. 33,
1990, pp. 539-543.

92.16

16. Foster, I., Designing and Building Parallel Pro­
grams- Concepts and Tools for Parallel Software
Engineering, Addison-Wesley Publishing Com­
pany, Massachusetts, 1995.

17. Morse, S. H., Practical Parallel Computing, Aca­
demic Press, New York, 1994.

92.17

