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Abstract 

Prediction of helicopter stability in trimmed flight 
is often based on Floquet theory. It involves a non­
linear trim analysis for the control inputs and cor­
responding periodic responses, and then a linearized 
stability analysis for the Floquet transition matrix 
(FTM), and eigenvalues and eigenvectors of this ma­
trix. The shooting method w1th damped Newton It­
eration is used for the trim analysis and generates the 
FTM as a byproduct. The QR method is used for 
the eigenana!ysis. The Floquet analysis comprises the 
shooting and QR methods. A rotor with Q identical 
and equally spaced blades has Q planes of symmetry. 
The fast-Floquet analysis exploits this symmetry, and 
thereby provides nearly a Q-fold reduction in run time 
and frequency indeterminacy of the Floquet analysis. 
Still, the run time for the fast-Floquet analysis on se­
rial computers becomes prohibitive for large models 
(order or number of states > 100); in fact, it grows 
between quadratically and cubically with the order, 
and the bulk of it is for the trim analysis. Accord­
ingly, a parallel fast-Floquet analysis is developed for 
both types of mainstream parallel computing hard­
ware: distributed computing systems of networked 
workstations and massively parallel computers; algo­
rithmically, both types belong to the MIMD (Multiple­
Instruction, Multiple-Data) architecture. Large mod­
els with hundreds of states are treated~ and a compre­
hensive database on parallel performance and compu­
tational reliability is generated. Computational relia­
bility is quantified by parameters such as tbe eigen­
value condition number. Similarly, parallel perfor­
mance is measured by parameters such as speedup and 
efficiency, which collectively provide a measure of how 
fast a job can be completed with a set of processors 
and how well the processors are utilized. Compared 
to the serial fast- Floquet analysis, the parallel analy­
sis reduces the run time dramatically and provides a 
practical means of controlling the growth of run time 
with the order by a judicious combination of speedup 
and efficiency. 

• Paper presented at the 23rd European Ratorcraft Forum, 
Dresden, Germany, September 16-18, 1997. 

Nomenclature 

Unless otherwise stated, the symbols below are 
non dimensional: 
a lift curve slope, rad- 1 

cd, constant profile drag coefficient 
cd resultant profile drag force in the plane of 

the rotor disk opposite to the flight direction 
Cr rolling moment coefficient 
Cm pitching moment coefficient 
CT thrust coefficient 
Cw weight coefficient of the helicopter 
f equivalent flat plate area of parasite drag 
f serial fraction 
M number of states or state variables 

augmented with control inputs, 
M=N+c 

N number of structural and aerodynamic 
states or state variables 

N, number of blade states 
Nw 
p 
Pp 
Q 
t 
T 

I 
G" 

G"k 

iik 

I' 
W( 
[JT 
1111 
(x) 

number of dynamic wake states 
number of processors 
flap natural frequency, rotating 
number of blades 
time unit such that T = 2~r 
period 
k-th eigenvalue of the FTM; see Eq. (2) 
k-th eigenvalue of EFTM; see Eq. (22) 
wake states 
azimuthal position 
k-th mode nonunique frequency of z~;; 
k-th mode nonunique frequency of Z~;; 
T/Q 
perturbation quantity 
Lock number (blade inertia parameter) 
rotor solidity 
k-th mode damping of Z< 
k-th mode damping of Zk 
advance ratio 
lag natural frequency, rotating 
transpose of [ ] 
Euclidean norm of a vector or matrix 
time derivative of x 
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Introduction 

Floquet theory is the primary mathematical tool to 
investigate helicopter stability in trimmed flight. The 
investigation involves two parts. The first part is the 
nonlinear trim analysis of computing the control in­
puts for the required flight conditions as well as the 
corresponding periodic or steady-flight response. The 
second part is the linearized stability analysis of gen­
erating the Floquet transition matrix (FTM) about 
the periodic response (Ref. 1), and then computing 
~ts eigenvalues and eigenvectors for the modal damp­
mg levels and frequencies. For the trim analysis, the 
shooting method with damped Newton iteration is 
~sed increasingly since it is not sensitive to the damp­
mg levels or stability margins~ and therefore is suitable 
for marginally stable and unstable systems. Moreover, 
the shooting method is almost globally convergent and 
generates the FTM as a byproduct (Ref. 2). For the 
stability analysis, the QR method is used almost ex­
clusively (Ref. 3). The trim analysis based on the 
shooting method and the stability analysis based on 
the QR method are collectively referred to as the Flo­
quet analysis (Ref. 1). Moreover, the Floquet analy­
sis has well-quantified computational reliability char­
acteristics (Refs. 2-4) and it is routinely applied to 
small models on conventional serial computers (order 
or number of states N < 100). However, the run 
time for the trim analysis becomes prohibitive for large 
models; indeed, it grows between quadratically and 
cubically with the model order or number of states. 
Such a formidable run-time growth precludes the ap­
plication of Floquet analysis to comprehensive and de­
sign analyses that require large models. Furthermore, 
as we exploit major strides in structural and aerody­
namic modeling and thereby improve prediction ca­
pability, the required run time becomes prohibitive as 
well. Simply stated, the practical utility of the Floquet 
analysis becomes limited to relatively small models. 

In the Floquet analysis, the trim analysis consumes 
nearly 99% of the total run time. It involves a simul­
taneous solution of nonlinear differential equations of 
motion coupled with algebraic transcendental equa­
tions of trim. Basically, the trim analysis predicts 
the control inputs that satisfy the required flight con­
ditions and the corresponding initial conditions that 
guarantee periodic responses. These control inputs 
appear not only in the stiffness and damping matri­
ces but also in the input matrix or forcing-function 
matrix. Therefore, they are specified indirectJy so as 
to satisfy the prescribed flight conditions of required 
thrust level and force-moment equilibrium. Thus, the 
trim analysis is carried out iteratively by solving a se­
quence of linearized problems. This involves varying 
or perturbing the starting or initial values of the state 
variables and control inputs one at a time, integrat­
ing the equations of motion through one complete pe-

riod T~ generating the Jacobian and then improving 
the estimates by a damped Newton iteration. The cy­
cle of perturbing, integrating and improving continues 
till convergence. Thus, the trim analysis requires a 
very l~ge nu~ber of operations of perturbation, in­
tegratwn and Improvement. To be precise, for an N­
order model with c number of control inputs and k 
number of iteration cycles for convergence, the trim 
analysis requires k(N + c + 1) operations, of which 
(N + c + 1) operations in each iteration cycle are in­
dependent. It turns out that the time interval for all 
of the k(N + c + 1) integration operations can be re­
duced from T to T /Q by exploiting the Q-planes of 
symmetry of a Q-bladed rotor; the only condition is 
that all the blades be identical and equally spaced. 
The conventional Floquet analysis that exploits this 
symmetry is referred to as the fast-Floquet analysis. 
Since the bulk of the run time is for such a large num­
ber of repeated integrations, the fast Floquet analysis 
reduces the run time of the Floquet analysis by nearly 
a factor of Q. It also turns out that the fast-Floquet 
analysis reduces the frequency indeterminacy of the 
Floquet analysis by a factor Q as well; for details see 
Refs. 5 and 6. Despite this Q-fold reduction, the run 
time for the trim analysis still grows rapidly, between 
quadratically and cubically with the number of states· 
this precludes treatment of large models even by th~ 
fast-Floquet analysis. Nevertheless, the (N + c + 1) 
mdependent operations in each cycle can be tailored 
to parallel or concurrent computations. In principle, 
parallel computing reduces the run time by a factor of 
(N + c + 1). Significantly, it also provides a means of 
controlling the run-time growth with the order by ju­
diciously choosing the number of processors with the 
model size or number of states as a compromise be­
tween the run-time reduction and effective processor 
utilization. The fast Floquet analysis based on paral­
lel computing is referred to as the parallel fast-Floquet 
analysis; it reduces the run time dramatically - the­
oretically, by a factor as large as Q(N + c+ 1). To put 
this work in perspective, we present the state of the 
art of the conventional- and fast-Floquet analyses in 
the sequel. 

A few studies are available on the serial and 
parallel Floquet analyses of large helicopter models 
(Refs. 7 -9). For example, Ref. 7 addresses the appli­
cation of the serial fast-Floquet analysis to models of 
order as high as 500. It also reviews the state of the art 
through 1995, particularly the basic studies of Peters 
(Ref. 5), and McVicar and Bradley (Ref. 6), and shows 
that the fast-Floquet analysis indeed brings in nearly a 
Q-fold saving in run time and reduces frequency inde­
terminacy by a factor of Q. However, the treatments 
therein show that the barrier of run time still remains 
for large models. Developments since 1995 include the 
works of Subramanian et al. who demonstrate that 
parallel computing is a means of removing such a 
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barrier (Refs. 8 and 9); in particular, Ref. 8 treats 
the parallel Floquet analysis, and Ref. 9, the parallel 
fast-Floquet analysis. However, these parallel analy­
ses are designed for SIMD (Single-Instruction, Mul­
tiple Data) architecture and are not suitable for the 
MIMD (Multiple-Instruction, Multiple-Data) architec­
ture that algorithmically forms the basis of both types 
of mainstream parallel-computing hardware - the 
massively parallel MIMD computers and distributed 
computing systems of networked workstations. More 
significantly, the MIMD architecture has been almost 
exclusively used in large-scale computing; indeed, the 
expectation is that except for some specialized applica­
tions (e.g., weather prediction), the SIMD architecture 
will be virtually replaced by the MIMD architecture 
(details to follow). 

Given this background, this paper advances the 
state of the art in the following respects: 
1. It presents a parallel fast-Floquet analysis de­

signed for distributed computing system of net­
worked workstations and for massively parallel 
MIMD computers. The analysis exploits the fast­
Floquet theory and the MIMD computational 
strategy. 

2a. It treats models with hundreds of states to demon­
strate the practical utility of the parallel fast­
Floquet analysis in comprehensive- and design­
analysis applications. The gains achieved through 
distributed and massively parallel computing are 
quantified in terms of the following parallel perfor­
mance metrics: run-time and its growth with the 
order, the dominance of the parallel portion of the 
problem (serial and parallel fractions), speedup 
and efficiency. Descriptively stated, the speedup 
shows how the run time of a parallel algorithm 
running on p processors compares to itself when 
running on one processor. Similarly, efficiency 
provides a measure of how effectively the proces­
sors are used. Moreover, the computational relia­
bility is quantified by the condition number of the 
Jacobian matrix in Newton iteration, the condi­
tion numbers of the eigenvalues and the residual 
errors of the eigenpairs. 

2b. It presents a comprehensive database on paral­
lel performance metrics and computational reli­
ability. In particular, it shows how distributed 
computing compares with serial computing on a 
conventional main-frame computer and with mas­
sively parallel computing on a MIMD massively 
parallel computer with respect to performance 
and computational reliability. Since distributed 
computing is often built on existing hardware 
with little additional cost and with turnaround 
time of a workstation, this comparison demon­
strates the practical utility of parallel computing 
in large-scale Floquet analysis. 

Parallel Computing Hardware 

In general, sequential algorithms are interchange­
able; that is, the same algorithm can be implemented 
on all types of serial computers ranging from PCs to 
workstations to mainframe computers. By compari­
son, such a portability does not yet exist for parallel 
algorithms, which generally belongs to either SIMD 
or MIMD architecture. These two types of parallel 
architecture and their impact on the development of 
algorithms are extensively discussed in the literature 
(e.g., Ref. 10). With respect to cost and speed, the 
MIMD computers are dominating the field of parallel 
computing. Basically, they utilize "off-the-shelf" pro­
cessors, the same used in low-cost workstations, and 
exploit a chip technology that is making exponential 
growth in processing speed. In fact, the processing 
rate of an individual processor is expected to exceed 
200 MFLOPS by the turn of the century (Ref. 11). 
From an algorithmic perspective, the distributed com­
puting system belongs to the MIMD computing. This 
means when based on a same message-passing pro­
gramming paradigm, the algorithms developed for a 
distributed computing system can be implemented di­
rectly on massively parallel MIMD computers and vice 
versa; this ensures portability of parallel algorithms. 
The concept of distributed computing is a relatively 
recent development, mostly since the early '90s. A 
brief account of it is included in the sequel, primar­
ily to provide a better appreciation for the simplicity 
and utility of the parallel fast-Floquet analysis based 
on distributed computing. This account is intention­
ally descriptive with minimal use of parallel-computing 
jargon; for a thorough account see Ref. 11. 
Distributed Computing 

Distributed computing or network computing in­
volves a set of networked computers ranging from 
a general-purpose workstation to a high-performance 
computer to even a parallel computer that works as 
a unified computing resource. In practice, however, a 
distributed computing system represents a cluster of 
heterogeneous workstations networked together, and 
its computational power can be comparable to that 
of a supercomputer. This networking in no way in­
terferes with the stand-alone operation of individual 
workstations; indeed, one of the drivers of distributed 
computing is the feasibility of combining and realiz­
ing the unutilized computational power of these indi­
vidual workstations during off-load (e.g., after-office) 
hours. This unutilized computing power merits spe­
cial consideration since a typical workstation routinely 
delivers several tens of millions of floating point op­
erations per second and its computing power is ex­
pected to increase rapidly. Computing facilities from 
academia to design offices provide access to a large 
number of workstations through some form of inter­
connection network. The bulk of these workstations 
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remains idle for most of the day. Distributed com­
puting provides a means of harnessing this untapped 
computing power. As far as a user's program is con­
cerned, it acts as one single virtual parallel computer, 
no matter how many workstations are connected, how 
different they are and where they are located. 

In contrast, a massively parallel computer represents 
an assemblage of a few hundred to a few thousand 
identical or homogeneous computers or processors and 
provides enormous computing power. Despite the ar­
chitectural contrast - heterogeneous versus homoge­
neous processors - both the distributed computing 
systems and massively parallel computers use the same 
programming paradigm for interprocessor communica­
tion, which ensures all processors understand and ex­
change data. Although several libraries for interpro­
cessor communication are developed by different ven­
dors, the MPI (Message Passing Interface) in the pub­
lic domain has evolved as a standard. The user need 
not worry about the architectural differences among 
the processors and related consequences such as dis­
tribution of tasks and data exchange. In other words, 
the MPI library spans the collection of heterogeneous 
processors in a distributed computing system as it does 
in a massively parallel computer with identical proces­
sors, although in the latter case this spanning is done 
much faster. 

The increasing adaptation of distributed computing 
systems with massively parallel computers as neces­
sary or highly desirable adjuncts is due to two fac­
tors. First, distributed computing not only requires 
minimum turnaround time but also involves very lit­
tle cost since it is built on existing system hardware 
as well as software. Thus, it makes parallel computing 
practical, which is aptly referred to as "lowly parallel 
computing" (Ref. 12). By comparison, state-of-the-art 
massively parallel computers typically cost more than 
$10 million, and consequently they are maintained by 
only a few organizations. Since they are heavily used, 
the turnaround time often runs into days for a typical 
large-scale Floquet analysis (N ""400). Second, com­
mon to both types is the message passing programming 
paradigm (e.g., MPI); this means the same algorithm 
and in fact, the same code developed for a distributed 
computing system can be run on a massively parallel 
computer as well. Thus, in the development of a pre­
diction code, the bulk of the computations can be done 
on a distributed computing system at very little cost 
and turnaround time, and the 'final-stage' computa­
tions and other demonstration models can be run on a 
massively parallel computer. Stated otherwise, a judi­
cious combination of distributed and massively parallel 
computing removes the run-time constraint that now 
prevents the routine application of Floquet theory to 
large models. 

Conventional and Fast Floquet 
Analyses 

For a rotor with Q identical and equally spaced 
blades, there are Q planes of symmetry. Exploiting 
this symmetry, the fundamental solution matrix or the 
transition matrix over one period T can be constructed 
from the transition matrix generated over T/Q or !:>.T. 
The fast-Floquet analysis does just that. It exploits 
the Q-fold symmetry in both trim and stability anal­
yses. Specifically, in the trim analysis, the equations 
of motion are integrated through t:.T and the trim 
equations are described in a Q-th part of a revolu­
tion, not through T or in one complete revolution as 
required in the conventional Floquet analysis. As a 
byproduct, the trim analysis also generates an equiv­
alent Floquet transition matrix (EFTM). The eigen­
values and eigenvectors of the EFTM not only lead 
to stability results but also reduce the frequency in­
determinacy by a factor of Q. Thus, in principle, it 
is possible to perform the Floquet analysis in 1/Q-th 
of the run time for the conventional Floquet analysis. 
However, from an algorithmic perspective, the imple­
mentation of the fast-Floquet analysis requires con­
siderable changes and these changes have significant 
impact on subsequent parallelization. Therefore, it is 
expedient to begin with a discussion of the stability as 
well as response of linear and nonlinear systems; this is 
followed by an outline of the shooting strategy based 
on the conventional Floquet analysis. 

Conventional Floquet Analysis 

Consider a linear periodic-coefficient system with N 
states, whose equations of motion are given by 

x(t) = A(t) x(t) + G (t) (1) 

where x(t) represents theN X 1 state vector. Similarly, 
A(t) denotes the state matrix of size N x N and G~t) 
denotes the forcing function or input vector of s1ze 
N x 1; they are periodic with period T = 2rr. For 
such a system theN x N state transition matrix ¢(t) 
is the fundaU:ental solution matrix of the differential 
equation 

if, = A(t)¢, 0 ~ t ~ 2rr, ¢(0) =I (2) 

and the FTM is defined by ¢(27r). Then the stability 
of this linear system is determined by the eigenval­
ues Zk (k = 1, 2, ... N) of the FTM, from which the 
modal damping levels a.nd frequencies are computed: 

"• = 2..ln lz•l (3a) 2rr 

Furthermore, the initial conditions that guarantee 
periodic forced response for Eq. (1) are given by 

[I- ~(2~)J (x(O)- XE(O)) = (xE(2o<)- XE(O)) (4) 
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where XE(2r.) is the non-periodic solution at t = 2rr 
for any arbitrary initial state XE(O). 

In general 1 the governing equations of motion for ro­
torcraft systems are nonlinear periodic-coefficient dif­
ferential equations and can be represented by 

li: = G (x, t) (5) 

For Eq. (5), the initial conditions that yield periodic 
forced response can be obtained by using a damped 
Newton-type iteration. In particular, for the k-th it­
eration, Eq. ( 4) is modified as 

x(D)k+l = XE(O)k +X (I- ¢(2;r)]k"1 

(XE(2rr)- XE(O)). (6) 

where the matrix [I- q\(2rr)J is the Jacobian or par­
tial derivative matrix if? and X is the Newton damping 
parameter. Moreover, </>(2rr) converges to the FTM. 

Showing the role of unknown control-input vector c 
explicitly, Eq. (5) can be recast as 

li: = G(x,c, t) (7) 

Then, the initial state x(O) that generates periodic 
forced response and the control-input vector c that 
gives the desired flight conditions are computed by sat­
isfying 

x(2rr,x(D)) -x(O) = 0 

f(x,c)=O 

(8) 

(9) 

In the above equations, x(2rr,x(O)) is the state at 
t = 2rr with initial condition x(O) and f(x, c) sym­
bolically represents the force-moment balance for the 
required flight conditions. Therefore, Eqs. (8) and (9) 
represent, respectively, periodicity and desired flight 
conditions and are nonlinear algebraic-transcendental 
equations. Therefore, combining Eqs. (8) and (9), we 
have 

f(s) = 0 (10) 

where s = l x, c J T denotes the augmented vector of 
state variables and control inputs. 

Following Ref. (2), Eq. (6) is rewritten to include 
the computation of the control-input vector c as 

{ x(O) L, = { XE;0) } k 
c 

X [ <I>n - I q,"]-' 
<P21 cf-22 

{ XE(2rr); XE(O) } (11) 

where li represents the error in satisfying Eq. (9); that 
is, f(x, c)= C. Moreover, the matrix~ is the Jacobian 
and the submatrix <I> 11 converges to the FTM. 

Fast Floquet Analysis 

In trimmed flight, variations in the blade sectional 
angle of attack and therefore, the air velocity compo­
nents, rotor forces and moments are periodic. This 

means that the contribution of each identical blade 
to the rotor forces and moments will be the same at 
a given azimuthal position since each azimuthal po­
sition has its own blade pitch and corresponding air 
velocity. Therefore, the period of oscillations of rotor 
forces and moments is determined by the number of 
blades. Thus, it is sufficient to rotate through AT so 
that a Q-bladed rotor has a blade in all azimuthal posi­
tions instantaneously, and the variation of trim forces 
and moments in one period (T) can be described com­
pletely in AT. Thus, 

(12) 

Since the blade sectional circulatory lift that influ­
ences the inflow forcing functions can also be described 
completely over the period AT, the periodicity for in­
flow or wake states can be established from 

{ ~f L~a ={ ~f L~aT (13) 

However, for the blade states, it is required to ro­
tate the rotor through a complete period T so that 
each blade passes through all azimuthal positions. 
(The blade states can include structural states such 
as displacements and velocities, and blade-fixed aero­
dynamic states such as stall states.) This means solu­
tions over one complete period are required to establish 
the periodicity of the blade states in trim. Neverthe­
less, the interval for periodicity can be reduced to AT 
since all the blades follow the same trajectory as they 
go through a complete rotation but with a phase shift 
of AT between the paths of each blade. Hence, the 
states of an arbitrary q-th blade at an azimuthal posi­
tion 1{; = AT can be mapped onto the initial states of 
an identical (q + 1)-th blade at 1{; = 0. Therefore, the 
periodicity condition for the blade states becomes 

(14) 

where P b represents the Q N, x Q N, permutation ma­
trix and Xb is the QN, x l vector of blade states, which 
is defined as 

Xb= LXb!ado:l 1 Xbia.de2, ···,Xbia.deQjT 

For an isolated rotor, Pb is given by 

r, 0 
0 r, 

0 0 
0 0 

0 
0 

0 
0 

(15) 

(16) 

where I, is theN, x N, unit matrix. However, Eq. (16) 
requires minor changes when body states are included; 
for details, see Ref. (5). 

Now," combining the blade states and the inflow 
states, we write 

(17) 
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In the above equation, the N x N permutation matrix 
P is given by 

0 I, 0 0 0 0 
0 0 I, 0 0 0 

P= {18) 
0 0 0 0 I, 0 
I, 0 0 0 0 0 
0 0 0 0 0 Iw 

where Iw represents the unit matrix of size Nw x Nw. 
From Eqs. (12-17), it is seen that the rotor trim forces, 
moments and periodic responses can be described in 
the interval !:,.1'. Accordingly, Eq. (11), which im­
proves the initial conditions and the unknown control 
inputs is modified as (Ref. 6) 

{ x{O) L, = { XE?) } k c 

r [ 'Pn - p ;p,, 
X .cp21 ;p,, 

{ XE(D.T) ~ Pxg(O) } {19) 

Furthermore, in Eq. (19), the matrix pT '!; 11 converges 
to [P <f>(!:,.T)] where <f>(!:,.T) is the transition matrix 
at the end of /:,.T. The matrix [P <f>(!:,.T)] plays a 
major role in determining the stability, which is further 
elaborated in the sequel. 

According to the fast- Floquet theory, the state tran­
sition matrix generated over the interval from ¢ = .6.T 
to 1/J = 2/:,.T is identical to the one computed over the 
interval from 1/J = 0 to 1/J = /:,.T; the only requirement 
is that the blade indices be permuted. This is because 
at 1/J = /:,.T the first blade is in the same position as the 
second blade at 1/J = 0. Therefore, the transition ma­
trix between any two instants that differ by /:,.T can 
be found from the transition matrix computed from 
1/J = 0 to 1/J = !:,.T and the permutation matrix P. The 
general relation between any two instants ¢ = n!:l.T 
to 1/J = (n + 1)/:,.T is given by (Ref. 5): 

P"x[(n + 1)D.Tj = ¢(D.T)P"x[nD.Tj 

n = 0, 1, ... , Q- 1 {20) 

From Eq.(20), we obtain 

Px(D.T) = P¢(D.T)x(O) {21a) 

P 2 x{2D.T) = [Pq\{D.T)]2 x{O) {21b) 

PQx(QD.T) = x(2or) = [Pq\(D.T)]Q x{O) {21c) 

which leads to 

{22) 

Thus, Eq. (22) relates the FTM ¢(2rr) and the ma­
trix [P<f>(!:,.T)]; see also Eq. (19). In other words, the 
FTM can be obtained by simply raising the power 
of [P<,f>(!:,.T)] to Q. Similarly, the eigenvalues Zk of 
the FTM can be found from the eigenvalues Zk of 

[P¢(/:,.T)] using the relation Zk = :!;. Since we are 
interested in the modal damping levels and frequen­
cies, which are computed by taking the logarithm of 
zk (see Eq. (3)), it is just sufficient to take the loga­
rithm of Zk and multiply it by Q: 

{23a) 

c Q (-) Q _, (Im(z•)) 
'>k = - arg Zk = -tan ----

2r. 2r. Re(z•) 
{23b) 

As seen from Eqs. (23b) and (3b), the frequencies are 
computed from an inverse arctangent function, which 
results in multiple values and merits additional com­
ments. In the conventional Floquet analysis, the fre­
quencies are unique up to the addition of ±jr2, where 
j = 0, 1, 2, etc. By comparison, in the fast-Floquet 
analysis, the frequencies are unique up to the addition 
of ±j11Q; also see Eqs. (23b) and (3b). Thus, the fast­
Floquet analysis reduces the frequency indeterminacy 
by a factor of Q. This is further corroborated by the 
numerical results generated from these two analyses 
in which the mode-identification method of Ref. 13 is 
used. Moreover, since the matrix [P<f>(/:,.T)] has one­
to-one equivalence to the FTM, it is also referred to as 
the equivalent FTM (EFTM). 

Parallel Fast-Floquet Analysis 

An algorithm to trim an isolated rotor is presented; 
it is designed for MIMD computing systems, including 
distributed computing systems, and is based on the 
fast-Floquet theory and parallel shooting with damped 
Newton iteration. We consider a single-rotor model 
with N structural.and aerodynamic states, and c num­
ber of control inputs. The bulk of the run time is for 
generating the (N +c) x (N +c) Jacobian in each it­
eration cycle. This involves repeated integrations of 
the equations of motion and estimation of trim forces, 
which are performed sequentially by the sequential 
shooting algorithm. In other words, the (N + c)2 ele­
ments of the Jacobian are generated sequentially one 
element at a time. By comparison, the parallel al­
gorithm generates these elements in parallel by suit­
ably dividing the computations among the available 
processors. Specifically, it generates each column of 
the Jacobian by one processor. To help explain these 
significant fea.tures, we begin with a discussion of the 
sequential shooting algorithm. 

Sequential Fast Shooting 

The sequential shooting algorithm has the following 
seven instructions: 

1. Assume M (= N +c) arbitrary starting or initial 
values for the state variables of the augmented 
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state vector s; that is, N values for x(O) and c 
values for the control-input vector c. 

2. Form the permutation matrix P of size N x N 
according to Eq. ( 18). 

3. Perturb the M initial values one value at a time 
by a small amount Ci, i = 1, 2, ... , M and form 
M + 1 vectors of starting values: 

) , s(24) 

4. Integrate Eq. (7) for M + 1 times using the M + 1 
vectors of starting values through a time interval 
t;.T = 21rjQ and generate the solution vectors: 

y' = { x(~T) } where i= 1,2, ... ,M 
5+f; 

andy = { x(~T) } • (25) 

where the vector 8 represents the trim error in 
satisfying Eq. (9). Moreover, the subscripts sand 
s+ £i, respectively, indicate the differences in the 
starting values; that is, one solution vector, y, 
with starting-value vector s and M solution vec­
tors, y' ( i = 1, 2, · · · M) with M vectors of per­
turbed starting values. 

5. Form the M columns of the Jacobian matrix <!> 
using 

v,~Y}. i = 1, 2, ... , M or equivalently 

(26) 

where pT;pll converges to P¢(C;.T). 

6. Generate the error vector Ek. Specifically, at the 
k-th iteration counter 

E' = { x(LI.T)-; Px(D) } ' (27) 

where x(C;.T) represents the solution vector at the 
end of D..T and 8 is the trim-error vector corre­
sponding to the initial-condition vector s. 

7. Improve the solution with Newton damping pa­
rameter x: 

(28) 

The instructions 3-7 are repeated till the convergence 
of control inputs and periodic responses. 
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Parallel Fast Shooting 

The parallel fast-shooting algorithm is a self­
scheduling MIMD algorithm and utilizes the widely 
used master-slave processor approach (e.g., Ref. 10). 
A processor, designated as the master, partitions a 
task and/or data domain, distributes the various sub­
tasks together with data to be operated upon to other 
active processors (designated as the slaves), and col­
lects and assembles the results from the slaves. The 
slave processors receive and execute the assigned sub­
tasks and return the results to the master. Moreover, 
the inherently sequential parts of the algorithm are 
performed by the master. Specifically, in the trim anal­
ysis, the master processor sets up the initial conditions 
for integration and distributes them among the slave 
processors, forms the Jacobian matrix using the solu­
tions received from the slaves, and upgrades the trim 
values of control inputs and initial conditions for peri­
odic responses at the end of each iteration. Similarly, 
each slave processor receives a set of initial conditions 
from the master processor, integrates the equations of 
motion, estimates the forces and moments, and sends 
these solutions to the master processor. Thus, in each 
iteration cycle, each column of the Jacobian is gen­
erated by one slave processor, and this process is re­
peated (if necessary) until all the columns of the J aco­
bian are generated. Figure 1 schematically represents 
these operations, which shows that the algorithm is 
composed of two parts. While the first part corre­
sponds to the master processor, the second part to the 
slave processors; they are referred to as the master and 
slave part, respectively. As seen from Fig. 1, the mas­
ter part contains the entire shooting algorithm, which 
is executed sequentially on the master processor until 
a parallelized step is reached. At that step, the exe­
cution control switches to the slave processors, which 
perform the computations and return the control to 
the master. Then, the master processor proceeds to 
the next step. For simplicity and generality, the calls 
for interprocessor communication are not shown ex­
plicitly in Fig. 1. In the present study, the algorithm is 
implemented using the MPI routines for interprocessor 
communication. Given this background, we present 
the instructions of the algorithm in the respective parts 
in a format that is implemented. 
Master Part: 

1. Assumes a vector s of size N + c = M, which 
represents a set of arbitrary initial conditions for 
structural and aerodynamic states as well as for 
control inputs. 

2. Forms the permutation matrix P. 

3. Forms (M + 1) sets of initial-condition vectors by 
perturbing only one element of s for each set of 
initial conditions. The (M + 1)-th set is a vector 
of unperturbed states; see Eq. (24). 



Slave Part 

I 
' 

I l ______ _ 

!mprove ~. Eq.\2S) 
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Figure 1: Schematic of Parallel Fast Shooting for 
MIMD Architecture 

4. Sends as many sets of initial conditions as the 
available number of slave processors. For exam­
ple, if (M +1) > p, (p, =number of available slave 
processors), it sends the first p, sets of initial­
condition vectors. 

5. Receives the solution vectors y' (i = 1, 2, . .. M) 
or y (see Eq. (25)) at the end of the period 6.T 
from the slave processors and stores them. 

6. Checks whether all sets of initial-condition vec­
tors are processed. If not, identifies the slave pro­
cessors that have completed their tasks and dis­
tributes the remaining sets of initial conditions 
till all the columns of the Jacobian are generated. 
Otherwise, sends an end signal to the slave pro­
cessors. 

7. Forms the Jacobian matrix il! using Eq. (26). 

8. Generates the error vector Ek from Eq. (27). 

9. Improves the solution according to the Newton 
iteration (Eq. (28)). 

Repeats steps 3-9 till convergence. 

Slave Part: 

1. Receives one set of initial conditions for the struc­
tural and aerodynamic states and control inputs 
from the master processor. 

2. Integrates Eq. (7) through the time interval 6.T 
and computes response x(6.T) as well as trim­
error b. In other words, generates the solution 
vectors y' (i = 1, · .. , M) or y (see Eq. (25)). 
Thus, each column of the Jacobian is generated 
by one processor. 

3. Sends the solution vectors yi or y. 

4. Repeats steps 1-3 till an end signal is received 
from the master processor and then exits to the 
master part. 

Stability 

Since the EFTM comes out as a byproduct of the 
trim analysis, the stability analysis involves determina­
tion of the modal damping levels and frequencies from 
the eigenvalues of the EFTM and involves hardly 1% 
of the total run time; see Eqs. (23a) and (23b ). An LA­
PACK subroutine DGEEV for real unsymmetric ma­
trices is used to compute the eigenvalues and eigenvec­
tors of the EFTM (Ref. 14); in the master-slave pro­
cessor approach, this routine is executed by the master 
processor; that is serially. As seen from Eq. (23b), the 
inverse arctangent function results in multiple values 
or nonunique frequencies. Therefore, to compute the 
frequencies and thereby identify the correct modes, the 
mode-identification method of Ref. 13 is used with the 
modification of replacing the eigenvalues and eigenvec­
tors of the FTM with those of the EFTM. Specifically, 
for each eigenvector, say Xi, the complex ratio of the 
derivative Xi and the state Xi corresponding to the 
most dominant component is computed. The imagi­
nary part of this complex ratio} with a suitable cor­
rection, which is an integer multiple of Q (not an inte­
ger as in the conventional Floquet analysis; see also 
Ref. 13), closely approximates the frequency of the 
mode. Thus 1 the frequency indeterminacy is reduced 
by a factor of Q using the fast-Floquet analysis. 

Computational Reliability 

The trim and stability analyses require solutions for 
nonlinear differential equations of motion coupled with 
algebraic transcendental equations of trim. Solving 
such a complex system is computationally demand­
ing and involves a very large number of numerical op­
erations such as integrations of equations, lineariza­
tions for Newton improvement and repeated iterations 
with improved starting values. These computations 
are prone to numerical corruptions or small deviations 
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from the exact values due to round-off or discretiza­
tion errors, which can get magnified and finally affect 
the trim and stability predictions: Therefore, it be­
comes necessary to quantify the computational relia­
bility of the fast-Floquet analysis. Specifically, in the 
trim analysis, the Jacobian influences the convergence 
of trim results of control inputs and periodic responses; 
see Eqs. (26) and (28). Furthermore, as seen from 
Eq. (26), the EFTM is extracted from the Jacobian, 
and the stability results are generated from the eigen­
values and eigenvectors of the EFTM, which are also 
susceptible to numerical corruptions. Therefore, the 
computational reliability concerns both trim and sta­
bility analyses. Following earlier studies (e.g., Ref. 8), 
we use three computational reliability parameters. 

First, the condition number of the Jacobian matrix 
!I;, which is defined as 

l. 
[max. eigenvalue of.PT ~) 2 

Cond.(<P) = J. (29) 
[min. eigenvalue of~T<p]2 

Second, the condition number, Cond.(-'), for the 
eigenvalue of the mode of interest. Let x and y, re­
spectively, be the right and left eigenvectors of the 
EFTM corresponding to an eigenvalue .A; that is, 
(EFTM]x =Ax and (EFTMjTy = .>,y. Then, Cond.(.\) 
is computed from the expression 

(30) 

Third, the residual error c of the eigenpair (-', x) is 
given by 

II[EFTM]x- .l.xll 
e = ll>.xjj (31) 

For additional details, see Ref. 4. 

Performance Metrics 

Measuring the performance of parallel algorithms is 
an important aspect of parallel computing. In general, 
the performance metrics provide a means of estimating 
the overall effectiveness of parallel algorithms on dif­
ferent computing systems, and for problems of varying 
size. Under ideal conditions, irrespective of the prob­
lem size, a perfect parallel algorithm implemented on a 
computing system with p processors is expected to re­
duce the run time by a factor of p. However, there are 
several limiting factors such as communication over­
head and memory size, because of which the perfor­
mance of a parallel algorithm deviates from the ideal. 
Following the literature (e.g., Refs. 15 and 16), we use 
five performance metrics to measure the effectiveness 
of the parallel fast-Floquet analysis: run-time saving 
and its growth with the order 1 speedup, efficiency, se­
rial and parallel fractions, and portability. 

The run time and its variation with the order are 
of particular importance. They are directly measured 
quantities and the easiest to interpret. The parallel 

run time is defined as the total elapsed time from the 
beginning to the end of the execution of the parallel 
program. It includes computation time, communica­
tion time and processor idle time. The computation 
time depends mainly on the problem size and the num­
ber of processors and to a lesser extent, on the memory 
size and speed of the processors. The communication 
time is the time spent for message startup and transfer. 
It depends not only on the type, bandwidth and la­
tency (time to initiate and complete a communication 
process) of the communication network, but also on 
the size and number of messages being communicated 
(Ref. 16). The processor idle time basically occurs due 
to the lack of computation, or data contention dur­
ing execution. To achieve a better performance, the 
processor idle time needs to be minimized; this can 
be done by properly balancing the workload among 
the processors and, wherever possible, by overlapping 
computation and communication. In this study, we use 
the MPI timer routine MPLWTlME for measuring the 
parallel run time (Ref. 11). The other three metrics­
speedup, efficiency, and serial and parallel fractions­
are derived from the measured parallel run time and 
the predicted uniprocessor run time. The uniproces­
sor run time often is not a measured quantity owing to 
constraints in the architecture, algorithm or excessive 
run time. For example, the master-slave processor ap­
proach requires at least two processors and precludes 
a direct measurement of the uniprocessor run time. 
Under such circumstances, it has to be predicted. 

Speedup Sp provides a measure of how a parallel 
algorithm executing on p processors reduces the run 
time of the same algorithm executing on one proces­
sor. Ifti and t1 represent the run time on j processors 
and one processor, respectively, speedup is defined as 

t, 
Sp = t :<:; p (32) 

p 

Similarly, efficiency Ep provides a measure of how 
well the processors are kept busy. In other words, it is 
a measure of effective utilization of the processors and 
is given by 

Ep = s, :<:; 1 (33) 
p 

Under ideal conditions, Sp = p and Ep = 1. This 
means the algorithm is perfectly parallel and the 'best' 
the processors can do has been achieved. However, as 
seen from Eqs. (32) and (33), speedup and efficiency 
both depend upon the number of processors, and on 
the run time constraint with increasing model order. 
In practice, for a given model order, the saving in run 
time decreases with increasing number of processors. 
Therefore, while the speedup increases with increasing 
number of processors, efficiency drops progressively. 
Therefore, it is necessary to interpret the speedup and 
efficiency in a relative sense as a compromise between 
how fast a job needs to be completed (speedup) and 
how well the processors are utilized (efficiency). 
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In this study, we follow Ref. ( 17) to predict the 
uniprocessor run time. Basically, it is taken to be a 
sum of serial portion It, and parallel portion It,. The 
assumption is that the problem can be divided into 
a completely serial portion and a completely parallel 
portion, which can be divided equally among the pro­
cessors. Thus, we have 

(34) 

Since only the parallel portion can be speeded up, the 
expression for run time with p processors is 

(35) 

We measure a set of values for the parallel run time 
tp by executing the same job on a different number 
of processors p. Then using Eq. (35), It, and It, 
are determined by following a least-square approach. 
Thus, the uniprocessor run time It(= It,+ It,) and 
thereby speedup and efficiency are calculated; see also 
Eqs. (32) and (33). 

Now, it is expedient to express t1. and t1P in terms 
of dimensionless serial fraction f. This is done in 
Eq. (36): 

t 1, = jt, and t 1, = (l - f)t 1 (36) 

Using Eq. (36) in Eq. (35), the parallel run time can 
be expressed as 

tp = jt, + (l - f)t, 
p 

(37) 

Therefore, the expression for speedup can be rewritten 
as 

(38) 

which is the well known Amdahl's law (Ref. 10). Ba­
sically, it demonstrates the significance of the serial 
fraction on the overall effectiveness of a parallel algo­
rithm and shows that the speedup is limited by the 
reciprocal of f. 

From Eq. (38), the serial fraction is expressed in 
terms of speedup and number of processors as 

f=l-l-l/Sp 
l-l/p 

(39) 

which shows f is strictly not independent of p. 
Although p takes only integer values, substituting 
Eq. (38) in Eq. (33) and differentiating l/ Ep with re­
spect to p, we get 

:p UJ =! ( 40) 

which shows that the serial fraction can be an indirect 
measure of efficiency. 

Portability is a performance measure that cannot be 
quantified; nevertheless, it is very important in prac­
tical parallel computing. Portability is the ease with 
which the same parallel algorithm can be implemented 

on different machines/architectures. The parallel fast­
Floquet algorithm developed in this study employs the 
MPI (Ref. ll). It is a standard message passing library 
for interprocessor communication, which facilitates de­
velopment of portable algorithms as demonstrated by 
the implementation of the same parallel fast-Floquet 
analysis on both the massively parallel computer and 
distributed computing system of networked worksta­
tions. 

Results 

The results refer to the parallel performance met­
rics as well as computational reliability. Specifically, 
the performance metrics data include run time and 
its variation with the order and number of proces­
sors p, speedup, efficiency, rate of change of recip­
rocal of efficiency with respect to p, and serial and 
parallel fractions; see also Eqs. (32), (33), (36) and 
(40). The run time refers to the total elapsed time 
for generating both trim and stability results. Besides 
these. metrics, we also address the portability of the 
parallel fast-Fioquet algorithm on different comput­
ing systems. The computational reliability parameters 
comprise the condition number of the Jacobian in the 
converged cycle, condition number of the eigenvalue 
of the lag regressive-mode damping level and residual 
error of the corresponding eigenpair; they are com­
puted according to Eqs. (29)-(31). The serial com­
putations are performed on a mainframe VAX 4320 
computer. The parallel computations are done on two 
types of hardware: a distributed computing system of 
13 SUN SPARC networked workstations and a mas­
sively parallel IBM SP-2 computer. We reiterate that 
these systems follow MIMD architecture and, there­
fore, the same algorithm is implemented on both the 
systems using FORTRAN 77 and the MPI library for 
interprocessor communication (Ref. 11). 

The results are generated for isolated-rotor models 
of hingeless helicopters in trimmed flight. The rotors 
have three and more blades undergoing rigid flap and 
lag motions and are isolated in that their support sys­
tems are rigid or stationary. The airfoil aerodynam­
ics is based on the ONERA dynamic stall models of 
lift and drag, and the rotor downwash dynamics is 
represented by a finite-state three-dimensional wake 
model. Moreover, the trim conditions include the mo­
ment equilibrium (zero rolling and pitching moments) 
and the equilibrium of the longitudinal forces in the 
longitudinal-vertical plane of the rotor. For additional 
details on the equations of motion for structural and 
aerodynamic representations as well as for trim for­
mulation, see Refs. 8 and 9. The blade is discretized 
with 10 aerodynamic elements with four dynamic stall 
states per element, and then the model order or num­
ber of states is controlled by varying the number of 
wake harmonics or wake states in modeling the wake. 
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Unless otherwise stated, the following baseline param­
eters are used: I" = 0.3, -y = 5, Pfi = 1.15, w( = 
1.14, <T = 0.05, a = 6.28, Ca, = 0.0079, Cw = 
0.00375, and 7 = 0.01. The results are generated for 
three models with M = 227, 329 and 395 and they are 
presented in two phases according to the type of hard­
ware used. Specifically, Figs. 2-5 refer to a massively 
parallel IBM SP-2 computer, and Figs. 6-9 to a dis­
tributed computing system of networked workstations; 
this is followed by Fig. 10, which shows a summary of 
the run-time growth with the order on the serial and 
two types of parallel hardware. 

To help appreciate the results, we recall that the 
standardization of the parallel perfor!Ilance metrics is 
still evolving, and distributed computing in particular 
is an emerging area of the past few years. Furthermore, 
the evaluation and interpretation of these metrics de­
pend upon several factors such as the type of the prob­
lem and the parallel-computing hardware, and merit 
additional comments. According to Eqs. (32) and (33), 
the speedup Sp and efficiency Ep are derived metrics, 
and they depend on the measured parallel run time tp 

as well as on the predicted uniprocessor run time t1 
for the parallel algorithm. The uniprocessor run time 
t 1 is predicted by following the assumption of Eq. (34) 
and using a series of measured values for tp; this re­
quires executing the same job with a fixed model order 
for a varying number of processors and then predict­
ing t 1 by a least-square approach. This means t1, Sp 
and E are strongly dependent on the problem and 
hardw~re; in particular, Sp and Ep are sensitive to the 
accuracy of predicting t 1 . Therefore, it becomes nec­
essary to exercise considerable care when comparing 
these performance metrics from the SP2 computer and 
the distributed computing system although the same 
algorithm is used on these two systems. Nevertheless, 
these metrics along with the measured values of run 
time and its variation with the order and number of 
processors collectively provide a means of assessing the 
overall effectiveness of the parallel fast- Floquet analy­
sis on a specific hardware. 

Figure 2 shows the variation of the run time with the 
number of processors for 2 ~ p ~ 64. Overall, as ex­
pected, the run time decreases with increasing number 
of processors for a fixed model order and increases with 
increasing model order for a fixed number of proces­
sors. In particular, for the model with M = 227, the 
run time remains nearly constant for p > 10; that is, a 
further increase in the number of processors yields no 
appreciable saving in run time. For the larger mod­
els with M = 329 and 395, the rate of reduction in 
run time with p is significant only for p::; 16, and the 
run time virtually flattens out for p > 32 or so. This 
lack of reduction in run time with increasing p is as­
sociated with delays in interprocessor communication. 
In IBM SP-2 communication takes place through a 
switch, which is much slower when compared to the 
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Figure 2: Run-Time Variations with the Order 
and Number of Processors on a MIMD Computer 
(IBM SP-2) 

speed of individual processors. Thus, as the number 
of processors increases, the communication delays in­
crease accordingly. This negates any computational 
gains achieved through parallelism. The impact of this 
communication overhead on speedup and efficiency is 
studied in Fig. 3, where the results are presented for 
2 ::; p::; 32. 

In Fig. 3, while part 'a' shows the variation of 
speedup with the number of processors and model or­
der, part 'b' shows the corresponding variation of ef­
ficiency. As expected, for a fixed order with increas­
ing number of processors, the speedup increases and 
efficiency decreases. However, for a fixed number of 
processors, both speedup and efficiency increase with 
increasing order M. This means if the job needs to be 
completed faster, it is necessary to increase the num­
ber of processors; see also Fig. 2. But this increase 
in speedup is accompanied by reduced efficiency. Fig­
ure 3 also shows that the speedup and efficiency figures 
are close to the ideal for p ::; 6 for M = 329 and 395. 
For example, the speedup and efficiency are, respec­
tively, equal to 1.8 and 95% for M = 395 with p = 2, 
and with p = 10, a five-fold increase, the speedup in­
creases to 7.5 and the efficiency comes down to 75%. 
However, in general, Fig. 3 shows that Sp and Ep de­
viate considerably from the ideal values with increas­
ing number of processors (p > 10). This is related to 
idling of the processors and interprocessor commum­
cation. In the master-slave algorithm, the slave pro-
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cessors, which are larger in number, remain idle when 
the master executes the serial portion. Similarly, the 
master remains idle when the slaves are performing 
the parallel portion of the problem. Consequently, the 
estimated uniprocessor run time is dominated by the 
serial portion of the problem, which limits speedup; 
see Eqs. (36) and (38). Moreover, the computations 
involved in the simple rigid blade model is not large 
enough to fully exploit the enormous computing power 
of the SP-2 computer with p > 10. 

The next two figures address the overall effectiveness 
of the parallel fast-Floquet analysis based on the serial 
and parallel fractions (Fig. 4) and on the rate of change 
of reciprocal of efficiency with respect to the number 
of processors (Fig. 5); see also Eqs. (36), (38) and (40). 
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Figure 4: Variations of Serial and Parallel Fractions 
with the Order on a MIMD Computer (IBM SP-2) 

Recall that the serial fraction limits the upper bound 
of speedup and can be an indirect measure of efficiency . 
As seen from Fig. 4, with increasing model order the 
serial fraction decreases or equivalently the parallel 
fraction increases. For example, the serial fraction, 
which is about 0.18 for M = 227 decreases to 0.045 
for M = 395. Therefore, the upper bound of speedup 
increases from 5.5 to 20. This means the degree of par­
allelism increases with increasing M. This is expected 
as well; in the parallel fast-Floquet analysis, the bulk 
of the saving in run time is achieved by performing 
the repeated integrations in parallel, and the number 
of these integrations increases with increasing order. 
Similarly, Fig. 5 shows that the 1/ Ep-versus-p curve 
is approximately linear for all three models and that 
the slope of the curve decreases with increasing order. 
In other words, the serial fraction decreases and con­
sequently efficiency increases with increasing lvf; see 
also Fig. 3. 

In Figs. 6-9, we present the results from a dis­
tributed computing system. The computations are 
carried out on a network of 13 low-end SUN SPARC 
stations (IPC and LX). These workstations are het­
erogeneous in that the individual processors differ in 
memory and clock speed. Such architectural differ­
ences are dealt with efficiently by dynamically balanc­
ing the load among the processors through the master­
slave processor algorithm. The workstations are acces­
sible through a department-wide network; it is a local 
area network (LAN), which uses ethernet communica-
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tion channel. 
Figure 6 shows how the run time varies as we in­

crease the number of processors and model order. For 
illustration, we consider the same three models treated 
earlier with M = 227, 329 and 395. As expected, the 
run time for a given model decreases with increasing 
number of processors and increases with increasing or­
der. These features are similar to those observed on 
IBM SP-2 in Fig. 2, except that the run times are much 
longer. Moreover, the reduction lD. run time is appre­
ciable, say for p < 7, for the model with M = 395 
and to a lesser extent for the other two models. For 
p > 7, the run time for all three models either remains 
nearly constant or decreases only slightly. This means 
increasing the number of processors beyond a certain 
value does not yield a significant reduction in run time 
owing to communication overhead, which increases 
with increasing number of processors. In the dis­
tributed computing system of networked workstations, 
the interprocessor communication is through the eth­
ernet communication channel, which has a small band­
width (typically a few Mbits/sec) that remains the 
same even when more workstations are added to the 
network. By comparison, the processors of these work­
stations are sufficiently powerful in performing a few 
MFLOPS. Therefore, for large models with increas­
ing number of processors, the communication channel 
can become a bottleneck with limited communication 
bandwidth and high latency. Moreover, in the master­
slave algorithm, the master processor communicates 
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with the slave processors (M + 1) times, and the length 
of the message to be communicated also increases with 
M. Furthermore, in a network of workstations, it is 
not always possible to perform the computations in 
a 100% dedicated fashion since the workstations have 
slight loads due to non-computational related oper­
ations, and the network is still being used by other 
workstations that are not actually participating in the 
computations. Thus, the overall performance of the 
distributed computing system is lower than what the 
system can nominally deliver. Nevertheless, we em­
phasize that the parallel code is completely portable 
from the massively parallel SP-2 computer to the dis­
tributed computing system and vice versa without any 
modification whatsoever. 

The effectiveness of the parallel fast-Floquet analy­
sis on a distributed computing system is further ad­
dressed in the next three figures, which, respectively, 
show the variation of the speedup and efficiency with 
increasing number of processors (Fig. 7), the serial and 
parallel fractions with increasing model order (Fig. 8), 
and 1/ Ep curve with increasing number of processors 
(Fig. 9). As seen from Fig. 7, for a fixed model order, 
while the speedup increases with increasing number of 
processors, the efficiency basically decreases. More­
over, both speedup and efficiency increase with in­
creasing order for a fixed number of processors. These 
results are similar to those obtained from IBM SP-
2 computer (e.g., Fig. 3), In particular, both speedup 
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Figure 7: Speedup and Efficiency Variations with the 
Order and Number of Processors on a Distributed 
Computing System 

and efficiency are close to the ideal values for M = 395 
with p::; 7, which is also the case for other two models 
for p ::; 5. Figure 8 basically shows that the parallel 
fraction is greater than 0.92 for the models considered; 
in fact, it is about 0.97 for M = 395 and consequently 
the serial fraction is a small number. This indicates 
that the fast-Floquet analysis is tailored to distributed 
computing as well. Figure 9 essentially corroborates 
the finding of Fig. 5 in that the slope of the 1/ Ep­
versus-p curve decreases with increasing M, indicating 
that efficiency increases with M. However, it is seen 
that this curve has localized deviations from linearity, 
which merit further investigation. 

In Fig. 10, we provide a comparison of run time 
and its growth with the order for the serial and par­
allel fast-Floquet analyses. Although the differences 
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Figure 8: Variations of Serial and Parallel Fractions 
with the Order on a Distributed Computing System 

in the architecture and algorithm do not permit a di­
rect quantitative comparison between the serial and 
parallel run times 1 a qualitative comparison is reveal­
ing in that it shows the necessity of turning to par­
allel computing. As seen therein, the serial run time 
grows between quadratically and cubically with the 
order {,; M 2·4). Owing to this rapid growth, the 
run time is presented for relatively small order models 
{94::; M 5 169). For example, the run time is 6 hours 
and 45 minutes for M = 94 and it increases to 2 days 
and 12 hours for M = 169. Such a run-time growth 
shows that the serial fast-Floquet analysis is not prac­
tical for routine treatment of models with hundreds of 
states despite the fact that it provides nearly a Q-fold 
reduction in run time of the conventional Floquet anal­
ysis (Ref. 7). However, Fig. 10 demonstrates the dra­
matic impact of parallelism on run time and its growth 
with the order, which varies from 79 to 395. Specifi­
cally, it shows that the run time for the fast-Floquet 
analysis is reduced dramatically. Moreover 1 the run 
times from both parallel implementations are much 
shorter and their rates of growth are much slower. To 
help appreciate this comparison 1 the scale of the ordi­
nate is magnified in the inset of Fig. 10. It is seen that 
the run time from the implementation on IBM SP-2 
grows very slowly. By comparison) the run time from 
the distributed computing system implementation is 
much longer and grows with a higher slope. For ex­
ample, for M = 329, the parallel run times are 367 
and 7145 seconds on the MIMD and distributed com-
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puting systems, respectively. Such a comparison also 
shows that the distributed computing system can de­
liver a performance that is fairly comparable to that 
of a massively parallel computer for relatively large 
models, say M < 300. 

Table 1 presents a sample of computational relia­
bility parameters for the parallel fast-Floquet analysis 
from the IBM SP-2 computer and distributed comput­
ing system. It is seen that the reliability parameters 
from both the implementations are comparable. More­
over, the condition numbers of the Jacobian as well as 
the eigenvalue condition numbers are acceptable and 
the residual errors of the eigenpairs are negligible; for 
additional details, see Refs. 2 and 4. 

Table 1: A Sample of Computational Reliability 
Parameters 

System 
Order, 
N+c 

227 (M) 
227 (D) 
395 (M) 
395 (D) 

M: Massively Parallel Computing 
D: Distributed Computing 

Condition Eigenvalue Residual 
number of condition error of the 

the Jacobian number for corres-
matrix for the lag ponding 

the converged regressive eigenpair 
cycle mode 

204351.57 2.5092 0.7254£-14 
173326.28 2.5181 0.5247£-14 
651771.24 2.6393 0.2812£-13 
572671.30 2.6412 0.2223E-13 
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Figure 10: Run-Time Variations on Serial, Parallel and 
Distributed Computing Systems 

Conclusions 

The preceding parallel fast-Floquet algorithm pre­
dicts trim and stability of rotors with identical and 
equally spaced blades. It exploits the fact that such 
a rotor with Q blades has Q planes of symmetry. It 
is designed for MIMD computing architecture, which 
is almost exclusively used in mainstream parallel­
computing systems of networked workstations (dis­
tributed computing) and massively parallel comput­
ers. It is also portable in that it can be directly im­
plemented on both systems. Models with hundreds of 
states are treated on these two systems as well as on 
a serial computer, and a comprehensive database is 
generated on run time and its growth with the order, 
turnaround time and computational reliability. The 
database also includes additional parallel-performance 
metrics such as speedup and efficiency, which, respec­
tively, show how fast a job is completed with a set 
of processors and how effectively these processors are 
used. These data lead to the following findings: 

1. The serial run time grows between quadratically 
and cubically with order. By comparison, both 
the parallel systems reduce the run time dramat­
ically; in fact, the two ratios of serial run time 
versus the two parallel run times rapidly increase 
with increasing order. More importantly, both the 
parallel implementations provide a means of con­
trolling the growth of run time with the order by 
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a judicious combination of speedup and efficiency; 
that is, increasing the number of processors with 
the order. 

2. The parallel-performance data of speedup, effi­
ciency and parallel fractions from the two parallel 
implementations are comparable; so are the com­
putational reliability figures from the serial and 
two parallel implementations. In particular, the 
speedup and efficiency figures are close to the ideal 
values for some combinations of model order and 
number of processors; as expected, the run time 
on networked workstations is much longer than 
that on a massively parallel computer for very 
large models, say for M > 300. 

3. With respect to developing a parallel algorithm 
and turnaround time, treating a large model with 
hundreds of states on networked workstations is 
as routine as treating a small model (N < 100) 
on a workstation. This is a measure of the prac­
tical utility of distributed computing in treating 
large models and offers considerable promise for 
comprehensive- and design-analysis applications. 
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