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Abstract

Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the
harmonic domain representation of LTI model states is well established in the literature. This paper presents a
computationally efficient scheme for implementation of a previously developed method for extraction of linear time
invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models
is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time
and frequency domains. For time domain evaluations, individual blade control (IBC) inputs that have been tried in
the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep
inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation
results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model
extraction process for its use in integrated flight and rotor control studies.

Nomenclature

LTI model system matrix

LTI model input matrix

LTI model output matrix

LTP model damping matrix

LTI model input-to-output matrix

F, F. fixed system hub forces
LTP model input matrix
LTP model stiffness matrix
number of harmonic components of y
M, M, fixed system hub moments

number of harmonic components of control
number of harmonic components of x
LTP model output matrix associated with x
LTP model output matrix associated with x
control vector
vector of displacement variables
output vector
number of response points used in model
fidelity evaluation
number of outputs used in model fidelity
evaluation
time
changes in U from trim
changes in X from trim
changes in Y from trim
rotor rotational speed
equation imbalance
azimuth angle (= Qt)
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Xx, X first time derivatives of x and X
X, X  second time derivatives of x and X

X , U periodic steady state values of X and U

Subscripts

(o zero-th harmonic component/average
component of ()

(e n™ harmonic cosine component of ()

™ n'™ harmonic sine component of ()

(Daug augmented vector made up of average and
harmonic components

Introduction

Current flight controller designs for helicopters
represent a difficult trade-off between controller
bandwidth and its impact on rotor stability, rotor
vibratory loads, etc. Traditional swashplate controls
in terms of collective, longitudinal cyclic and lateral
cyclic limit the number of controls available to the
control designer in addressing flight and rotor control
issues. For example, a four-bladed rotor using IBC
has four independent controls available. However,
the use of swashplate for control inputs restricts the
number of independent controls to only 3, thus
limiting the control design space available to the
control designer.

Individual Blade Control (IBC) and On-Blade
Control (OBC) concepts offer tremendous potential
for expanding the available control design space in
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tailoring control input signals for desired blade
responses to address flight and rotor control issues in
a unified framework. IBC and OBC concepts offer
the potential to develop innovative controllers for
mitigation of compressibility effects on advancing
blades and reverse flow effects on retreating blades
for improved rotor performance, control of an
individual blade that may be off-track, mitigation of
transient effects associated with rotor speed
variations, mitigation of undesirable coupling
between body and rotor in large size helicopters due
to increased rotor blade flexibility, reduction of
maneuver blade and rotor loads, reduction of
vibratory hub loads, reduction of blade-vortex
interaction noise, etc., while ensuring good flying
qualities as specified in the Aeronautical Design
Standard (ADS-33). While higher flight control
bandwidth can be achieved through innovative
integrated flight and rotor control designs, the
implications of such higher bandwidth control arising
out of IBC and OBC concepts on handling qualities
and vehicle-pilot-biodynamic coupling, etc., need to
be carefully assessed before they can be fully
realized.

Due to the periodic nature of helicopter rotors,
the linearized models including rotor states extracted
from nonlinear models of a rotorcraft will have
periodic coefficients. Though stability analysis of the
extracted linear time periodic (LTP) models can be
performed using the Floquet stability theory, it does
not provide a convenient framework for controller
synthesis and design as the available control design
tools for LTP systems are few in number [1]. Further,
the handling qualities specifications for small
amplitude maneuvers as prescribed in the
Aeronautical Design Standard (ADS 33) are based on
a linear time invariant (LTI) model, and thus cannot
be directly accounted for in the controller design
process using LTP models. If linearized models in
time invariant form are made available, it will open
up the choice of available design and analyses tools
to a rotorcraft control designer [1].

Methods available in the literature for
transformation of LTP models to time-invariant form
suffer from certain disadvantages. For instance, in
the Lyapunov-Floquet transformation method [2], the
system matrix of the LTP model is transformed into a
time-invariant form wusing the time varying
Lyapunov-Floquet transformation matrix. However,
the control matrix of the transformed model will still
be time-periodic. To overcome this difficulty, an
auxiliary system is constructed with pseudo control
variables which bear no resemblance to the control
vector of the LTP model. Controller design is carried
out on the auxiliary system and control laws for the
time periodic system are constructed from feedback
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signals of the auxiliary system. However, this method
suffers from the disadvantage of needing to compute
the state transition matrices of the LTP model over
one rotor period in order to construct the Lyapunov-
Floquet transformation matrix. Analytical
approximations of the coefficient matrices using the
shifted Chebyshev polynomials of the first kind
provide an efficient means in the state transition
matrix computations. While the computational effort
is significantly improved by the use of such closed
form approximations, the accuracy of the results is
significantly influenced by the number of terms used
in the analytical approximations, and such an
approach becomes numerically very sensitive. The
transformation using discrete-time methods, such as
time lifting and frequency lifting methods [3], also
suffer from the same disadvantage of a need for state
transition matrices.

The use of harmonic analyzers as part of the
linearization step to extract a time invariant linear
model for the specific application of flight control
and higher harmonic control is explored in [1]. The
extracted LTI model consists of the body states, time
averaged rotor states, harmonic analyzer states, pilot
controls and higher harmonic controls. Using such a
model, Cheng, et al [1] show that it becomes feasible
to consider the important coupling between the body
states and the higher frequency rotor response in a
combined flight and vibration controller design.
Using numerical perturbations to individual harmonic
components of periodic states of a system, LTI
models are formulated with average and harmonic
components of rotor response as pseudo states in [4].

It is well known that the use of numerical
perturbation techniques for extraction of linear
models from a nonlinear model is sensitive to the size
of state and control perturbations. Also, in cases
where reduced order models are sought from the
linearization, the effect of state and control
perturbations on the neglected states have to be
properly taken into account, thus further increasing
the computational complexity of the linearization
process. More importantly, the number of harmonic
components of rotor states required in the LTI model
for retaining the important coupling between body
states and rotor states is generally not known a priori
in a specific application. As a result, one may be
forced to consider different LTI  model
approximations in order to arrive at the appropriate
model, thus further increasing the computational
complexity of the linearization process.

In [5], a two-step approach for extracting LTI
models from a nonlinear model is proposed. First, a
linear time periodic (LTP) model with sufficient
fidelity is extracted from a nonlinear model about a
specified equilibrium condition using a numerical
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perturbation scheme. In the second step, harmonic
decomposition of the LTP model matrices is used to
arrive at a LTI model of selected order. This is shown
to offer computational flexibility in the LTI model
extraction process as one can use closed form
expressions relating LTI model matrices and the
harmonic components of LTP model matrices.

The present study considers a computationally
efficient scheme for combining the two-step method
of [5] into a single step by carrying out the numerical
perturbation part and the harmonic decomposition
part simultaneously. The scheme is integrated within
a comprehensive flight dynamic model of a
helicopter. The fidelity of the extracted LTI models is
evaluated using response comparisons in both time
and frequency domains.

Linear Time Invariant (L'TI) Models of a
Nonlinear System

Consider a nonlinear system of the form
f(X,X,X,U)=0 )

where X, X and X are respectively the position,
velocity and acceleration vectors, and U is the

control vector. Let ((X (l//),ﬁ (¥))) represents a

periodic equilibrium of the system of Eq. (1) such
that

X(y+2m)=X), UWw+2m)=UW)Q)

A linearization of Eq. (1) can be obtained by
considering changes from equilibrium as

xW)=XW)-XW), u@y)=Uw)-U ) 3)

and expanding Eq. (1) about the periodic equilibrium
in Taylor series to first order as

“)
o |. )f of o |
[axlx+[ax}x+[ax}x+[alj}u—0

The partial derivatives in Eq. (4) are obtained at the
selected periodic equilibrium. Since the periodic
equilibrium also must satisfy Eq. (1), the above
equation reduces to

of |. [ of |. | of )f
{g}x + {ﬁ}x + [g}x + L)U }u 0 ®

which can be rearranged into the form
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—KW)x—D(y)i+Gy)u (6)

where

= [aﬂ [sﬂ
w8 o

[ _1{31}
CW)= [ax} U

Likewise, defining the output equation of the
nonlinear system of Eq. (1) as

Y=g(X,X,X,U) (8)

where Y is a vector of outputs. At a periodic
equilibrium, the value of the out

Y =g¢(X,X,X,U) ©)
A linearized form of the output equation is obtained

by expanding Eq. (8) about the periodic equilibrium
in Taylor series to first order as

Substituting Egs. (6) and (9) into Eq. (10) results in

y=PW)x+Qy)i+RYy)u (11

where y represents change in the output Y from its

equilibrium value Y , and P, Q and R matrices can be
obtained using

3¢ [
P =l |~ | K
(v) ox | |ax | (v)
f3e] [
= — || D 12
O(v) x| |ax | (v) (12)
301 [2g]
R(v)=|-2|+|=|G
(v) _8U_+_8X_ (v)
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The linear time periodic (LTP) model of Egs. (6) and
(11) is converted into a linear time invariant (LTI)
form using the following approximation to x:
N
X=X, + D Xpe COSRY + X, Sinny
n=l
where x, is the average component and x,,. and x,, are
respectively the n/rev cosine and sine harmonic
components of x. Likewise, control (z) and output (y)
are expanded in terms of harmonic components as

13)

xaug{A“ Alz}xaugj{Bl}uaug (16)
Ay Axp B,
Cq
Yaug = |:C2:|xaug + [E]”aug an

Closed form expressions for the elements of the LTI
model matrices of Eqs. (16) and (17) have been

M
U=Uy+ Y Uy COSMY + Uy, SN MY (14) derived in [5]. The final expressions taken from [5]
m=1 ' are included here.
L [0......0 0.0 0.......]]
Y= Yo+ Xy cosly+ ygsinly (5)
e
0.....0 O...... 00....... (18)
Now defining an augmented state, control and 10400 00 O
output vectors in terms of their respective average Ap=|
and harmonic components as 0.....0 0....0 0........
r T T T T T T T T . 7T 0....0 O...... 00.....
aug =o' i Nis Xje Xjs o ie Kig Xje s ]T .................................
T T T i
tang =loT - T s _ _
... 0 O......... 0 0.........
_ T T T
yaug = [y() .. le yls “~]T .......................................
0........ I 0. 0 0......... (19)
where x, is the average component, x;. and x;, are Ao = 0........ 0I... 00.........
respectively the i” harmonic cosine and sine e O
components of x, u, is the average component and Ou . 0 0. 70
U, and u,, are respectively the m™ harmonic cosine
. . 0........ 0 O......... 0I...
and sine components of u, and y, is the average
component and y, and yi, are respectively the lfh Loeeeeemmmnnniniiiiiiiiinns ]
harmonic cosine and sine components of y. Using the
augmented state, control and output vectors, the LTP
model of Egs. (6) and (11) can be approximated into
a LTI form as
~Hoo(—Hygic +IQH ) (= H i =iQH | ). (=H g de +JQH ) (= H, s - jQHODjC Yoo
2~2 ) , , . . . ,
_HiCK"'(l Q I - HicK“‘ +lQHiCDi5 ) (_HiCKiS _lHiCDiC )"'(_HiCKJC + jQHiCDjS ) (_HiL‘KJS - ']QHiCDiC) ..........
. 212 . . ; . i
A21 _ _HisK"'(_HistC +lQHisDis ) (l Q I_HisKiS _IQHisDif ) (_HistC + ']QH[S-DJ"" (_HistS - ‘]QHiSDjC ) ............. (20)
. . 2A~2 . .
—H k. (-H Kic +lQHchis) (_Hjckis —zQHjCDiC ). (j7Q I_HjchC +jQHchj5) (—HjCKjS _jQHchjC )...
. . 212 .
“Hjg(CH o HIQH ) (H i) CH 4 JQH ) (PQAI=H = JOH ).
©DGLR 2009 4
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~Hypeo=H o —H  omH —H ...
~Hyp=H, o (2iQI-H,  ).~H . —H . ..
~HypooQQI=Hyp ) —Hypy o= Hypy = Hypy o
Ay = @1
—H . m e ~H ipi H Py (—2jQI-H op# ) I
“Hjpew=H o —H o (2jQI=H ) ~H ...
_0_ HOG“‘HOGmL' HOGms
0 HiCG icG me icGms
O (22) HlSG isG mec isGms (23)
Bl — Bz — A A
0 H_]CG jCGmL‘ H]CG ms ***
0
HjSG jSG’mc Hstms"'
Hopoo(Hopie =IQH ) (Hypi +1QH g )oe(Hypie =JQH ) (Hypss + JOH g i)
.......................... (24)
Co=| Higpe(Hyepe =IQH, ) (Hyopy +iH, ) )oee(Hopie = JQH, ) (Hypio + JQH ).
c c cQ lcQ
Hyporo(Hyypie =IQH, ) (Hyypie +IQH, Voo (Hygpie = JQH, o (Hygpss + JOH, )
CH ... . e o H r 7
UQ 00ic 00 0 c 0 s
0 0 Q] Qj HOR"'HORmc HoRmx
| (25) ................................. (26)
C, = "H/cQ"'chch H/cQ*‘f"chfo g T =\ HicgHygme Hjopms -+
HiguH g Hygis By i Hy s HiseHigeoe Higgen -

Closed form expressions for the various elements of
A}z, Ay, By, Cy, C, and E can be obtained in terms of
harmonic components of the LTP model matrices D,
K, G, P, Q and R [5]. For example, if the matrix
D(y) is expanded in terms of its harmonic
components as
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Dy)=D,+ §(ch cosky + Dygsinky)  (27)
k=1

where D, is the average component and Dy, and Dy
are respectively the k" harmonic cosine and sine
components of the matrix D( i) such that
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1271'
D,=— |D d
o 27z(j) (Wdy

1 27
Dy =— [ D(w)cosky dy (28)
0

127 .
Dy =— [DW)sinky dy
o

then
1 2
H,p 27 [Dydy =D,
o

127 , D; (29)
H e ey (j)D(l//)coszy/dl// :%

e Dy
HODix iy (I)D(l//)smly/dy/ =
1 Y4 .
Hicp =7 |D(W)cosiydy =D,
0

1272' o 30
Hjp :; [ D(w)siniydy =D (30)
0

127 ' '
Hipie =~ [ D) cos jycosiy dy
0

Dy,
=D, + 26

for i=j wherek=i+j

=@ for i%j andi>j 31)

where k=i+j, l=i—]
Dy.+D,,.
:% for i#j and j>i

where k=i+j, m=j—i
i=1,2,.. and j=1,2,..
1272’ ]
H, s = | D(y)sin jycosiydy
0

D
= 2ks for i=j where k=i+j

Dy, —D
=% for i#j and i>j (32)
where k=i+j, l=i—j
:% for i#j and j>i
where k=i+j, m=j—i

i=12,..and j=1,2,...
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127 S
H,pie =7 (I)D(l//)cos”l/smzy/dy/

D
=% for i=j where k=i+j

Dy, +D
=% for i#j and i>j (33)
where k=i+j, l=i—]

Dkv_

D,
2% f()riij andj>i

where k=i+j, m=j—i
i=12,... and j=1,2,....

1 2 o o
HisDj‘Y :; [ D(y)sin jysiniy dy
0

Dy,
=D,— 2’“ for i=j where k=i+j

D;.— Dy,
=7I‘2 ke for i# j and i>j (34)
where k=i+j, I=i-j
=P =Die g s iand j>i

2
where k =i+ j, m= j—i
i=12,..and j=1,2,.

Likewise, expressions similar to the above can be
obtained for the elements of the LTI model matrices
involving K, G, P, Q and R.

LTI Models from FLIGHTLAB

The LTI model extraction method described in
the previous section is implemented within
FLIGHTLAB™ [6] using the generalized force
formulation written as

E=fU,X,X,X) (35)

—

where E is the equation imbalance of Eq. (1). The
control at each time step is iteratively solved to drive
E to zero for trim. The nonlinear model is first
trimmed at a specified flight condition. Then a
reference blade is set to the zero azimuth position and
the periodic trim condition is recorded over one rotor
revolution. With the reference blade at selected
azimuthal steps, the values of Z due to perturbations
in state/control are computed at each azimuthal step,
and system matrices are obtained by computing the
partial derivatives of E with respect to individual
state/control through central finite differencing. For
example,
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A _SX+AX X D)= FX-AX X, X.0) (36
F% 2AX

where AX is the selected value of the numerical
perturbation. Likewise, partial derivatives of the
output with respect to state/control perturbations are
obtained. The numerically computed partial
derivatives are used to assemble the LTP model
matrices D( ), K(y), etc., using Egs. (7) and (12) at
the current azimuthal step. Also, additional
components, such as D(y)cos(ky), D(w)sin(ky),
K(y)cos(ky), K(y)sin(ky), etc., k=0, 1, 2,... required
for harmonic decomposition (see Eq. 28) are also
generated at each azimuthal step of the linearization.
Therefore, once the linearization process 1is
completed over one rotor revolution, it only takes a
few algebraic operations (using Eqgs. 18 through 26
and 29 through 34) to obtain a LTI model of selected
order. The linearization can be configured to generate
either a full linearized model or a reduced order
model as desired. For reduced order models, a quasi-
static model reduction technique is applied by
selecting the dynamically retained states while
residualizing the neglected dynamics.

LTI Model Fidelity Evaluations

A generic helicopter model available in
FLIGHTLAB™ is used for LTI model fidelity
evaluations in this study. The vehicle weight is
15000 1b and it has a four bladed articulated rotor,
conventional tail rotor, horizontal stabilizer and a
vertical fin. The analog and digital SAS portions of
the control system are disabled in this study. The
nonlinear model includes one rigid plus one elastic
mode for flap as well as lead-lag motions of each
blade and a 15-state dynamic inflow model. The
blade feathering is assumed to be rigid

The number of average states in the LTI model is
55 which includes 8 body states (vehicle mass center
velocity components, angular velocity components,
body pitch and roll attitudes), 15 inflow states (4
harmonic distributions combining with 4™ power
radial representation [6]), and 32 Multi Blade
Coordinate (MBC) rotor states (16 for the rigid flap
and lead-lag motions and 16 for the elastic flap and
lag motions). The number of harmonic components
of rotor MBC states is 256 for the case when one
includes 1/rev to 4/rev harmonic sine and cosine
components (64 for rigid mode flap, 64 for elastic
mode flap, 64 for rigid mode lead-lag and 64 for
elastic mode lead-lag) resulting in a LTI model order
of 311. When one includes 1/rev to 8/rev sine and
cosine harmonics of rotor MBC states, the resulting
LTI model order is 567, which includes 55 average
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states and 512 harmonic sine and cosine components
of rotor MBC states. In case of an isolated rotor
representation, the body states are absent, thus
reducing the LTI model order by 8.

Individual blade control (IBC) inputs excite
higher frequencies. A careful study is required to
make an assessment on the number of harmonic
states needed for good fidelity. As the number of
harmonic rotor states required increases, the
computational effort involved in the extraction of LTI
model also increases. An assessment is made of the
number of floating point operations (FLOPS) needed
for a LTI model extraction. It is seen that with the
current approach, the number of FLOPS increases
linearly with an increase in the number of harmonic
states of the LTI model. This is in contrast to roughly
a quadratic increase in FLOPS with the number of
harmonic states using the numerical scheme proposed
in [4] which involves individual harmonic component
perturbations.

Metrics for Evaluation of Model Fidelity

Tischler and Remple [7] suggest the use of the
following metrics for checking the fidelity of flight
mechanics models identified from test data in time
and frequency domains:

Time-domain metric:

1 "
J = \/nn Zt; [(Ayciata - AY)iTW(AYdam - A)’)i] G37)
t

o i=1

Frequency-domain metric:

J?® = ZW [VV

~[T|) +W, (4T, - AT)]

, (38)
where W, (@) =[1.58-(1— e ™I,
W, =10
W, =0.01745

The above metrics are adapted in this study by
treating Vyq.. as the response from the nonlinear
model and y as the response from the LTI model. Ay
in Eq. (37) is the perturbation time history of
response from trim, n, is the number of response
points and n, is the number of outputs. In Eq. (38), T,
is the transfer function from the nonlinear model, T is
the transfer function from the LTI model, v,y is the
coherence function, and n, is the number of discrete
frequency points used.

The normalized fixed system hub forces and
moments are used as outputs for model evaluations in
this study.
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It is suggested in [7] that 1 deg/s error is equivalent to
1 ft/s or 1 ft/s>. Here, this equivalence is extended to
1 deg/s2 as well. Hence, the fixed system hub forces
and moments are normalized by the vehicle mass and
the corresponding mass moments of inertia,
respectively, as shown in Eq. (39). The elements of
the weighting matrix W in J of Eq. (37) are
appropriately selected to achieve this equivalency. It
is suggested in [7] that for good model fidelity, the
value of the time domain error index (J (1)) needs to be
less than 1 ~ 2 and the value of the frequency domain
error index (J (2)) needs to be less than 100.

Results

LTI model fidelity evaluations are carried out for
a forward flight case of 0.15 advance ratio. The types
of IBC inputs used are taken to be similar to those
used in the literature for vibration and noise control
applications (for example, see [8-10]). In time
domain evaluations, the simulation time is set at 5
seconds for all cases. In each case, simulation begins
at trim, and the selected input is applied at 1 sec into
the simulation. The input is turned off at 3 sec into
the run, and the simulation is continued till 5 sec. All
fidelity evaluations in this study are carried out using
the generic helicopter model with an elastic blade
representation and a 15-state dynamic inflow model.

Time Domain Evaluations

Higher harmonic inputs (2/rev, 3/rev, 4/rev, etc.)
are used in the literature for reductions in vibration,
noise and rotor power [8 — 10]. For reducing rotor
power, a 2/rev individual blade control (IBC) input is
suggested in [8]. In order to evaluate the fidelity of
the extracted LTI models for their use in active rotor
power reduction studies, a 2/rev IBC input of 2°
magnitude (similar in magnitude to what has been
tried in [8]) and (an arbitrarily selected) 125° phase
is used in the LTI model fidelity evaluations. The
resulting fixed hub load variations with time as
predicted from FLIGHTLAB and from the extracted
LTI model are compared in Fig. la. The LTI model
includes up to 4/rev harmonic components of rotor
MBC states. Figure 1b is a zoom-in of results from
Fig. 1a. The time-domain error index computed using
Eq. (37) is obtained as 0.316 indicating good fidelity
of the extracted LTI model. It is interesting to see that
2/rev IBC inputs impact the steady state components
of rotor thrust and torque as evident from the
response predictions of F, and M, in Fig. la.
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It is well known that N/rev vibration in the fixed
system arises from blade force variations in the
rotating frame at (N-1)/rev, N/rev and (N+1)/rev
vibrations, where N is the number of blades [11].
Hence, as suggested from several studies in the
literature (for example, [8]), it is expected that IBC
inputs at these frequencies can be used for vibration
control. An IBC input consisting of 3/rev, 4/rev and
S/rev components is used as a way to test the fidelity
of the extracted LTI models for their use in active
vibration control studies. The magnitudes of the
harmonic components of IBC are selected to be 1.5°
of 3/rev, 1° of 4/rev and 0.5° of 5/rev. These values
are similar to the IBC harmonic component
magnitudes used in [8]. The phases of the individual
harmonic components of IBC are selected arbitrarily.
The extracted LTI model includes up to 4/rev
harmonic components of rotor states. The fixed
system hub load responses to the selected IBC input
as predicted from FLIGHTLAB is compared with
those predicted using the LTI model in Fig. 2a with a
zoom-in of the results shown in Fig. 2b. The time-
domain error index computed using Eq. (37) is
obtained as 0.612 indicating good model fidelity of
the extracted LTI model, suggesting that the
proposed LTI model extraction process can be used
in active vibration control studies.

It is suggested in [9] that a combination of 6/rev
and 7/rev may be used for simultaneous vibration and
noise control. In order to verify the LTI model
fidelity for its use in active vibration and noise
control studies, a test case IBC input with 6/rev and
7/rev components of magnitudes (0.5° of 6/rev and
0.5° of 7/rev) similar to those considered in [9] is
used. Two different orders of LTI model
approximations are used, one that includes up to
4/rev harmonic components of rotor states and the
second one that includes up to 8/rev harmonic
components of rotor states. The predicted fixed
system hub load responses from FLIGHTLAB are
compared with those from the LTI model predictions
in Fig. 3a with a zoom-in of the results shown in Fig.
3b. It is seen that the inclusion of up to 8/rev
harmonic components of rotor states in the LTI
model improves the LTI model fidelity significantly
(error index of 0.037) when compared to that of the
LTI model with only up to 4/rev harmonic
components of rotor states (error index 0.71). The
higher frequency variations in the fixed hub load
responses seen in the FLIGHTLAB results are well
captured in the predictions from the LTI model that
includes up to 8/rev harmonic components of rotor
states (see Fig. 3b).

Next, the LTI model fidelity is evaluated using
pulse inputs of IBC when a blade is passing through a
selected azimuthal range. This input has been
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suggested in the literature [10] for avoidance of blade
vortex interactions (BVI) using a trailing edge flap
actuation. A similar type of input is used with IBC in
the present study. The selected IBC input as a
function of rotor azimuth angle is shown in Fig. 4.
The isolated rotor with the elastic blade and 15-state
dynamic inflow model is used in this case. The
predicted flapping response is shown in Fig. 5 in
terms of vertical deflection from the hub (shown in
inches) at three different locations along the radius of
a reference blade. A visual comparison of the isolated
rotor elastic blade flapping responses from
FLIGHTLAB and those from the LTI model
indicates that the fidelity of the extracted LTI model
is good, suggesting that the proposed LTI model
extraction process can be used in active BVI control
studies.

Frequency Domain Evaluations

The Comprehensive System Identification from
Frequency Responses (CIFER) [12] is used to obtain
frequency responses between the fixed system hub
loads and a single blade IBC input. Both
FLIGHTLAB and LTI models are excited through a
single blade IBC frequency sweep input. The
frequency sweep magnitude is set at 1 deg and the
frequency is linearly varied from 0.3 rad/sec to 135
read/sec (=5Q) with time. The duration of the
frequency sweep is set at 120 seconds and the
azimuthal increment (sampling rate) is set at
Ay=2.5°. Five different sizes of moving windows (24
sec, 12sec, 8 sec, 2 sec and 1 sec) are used in the
construction of a composite frequency response from
the frequency sweep input and output data. The
generic helicopter with the elastic blade and 15-state
dynamic inflow model is used.

The predicted frequency responses between the
fixed system rotor thrust (F,) and rotor torque (M,) to
single blade IBC input are shown in Figs. 6 and 7,
respectively. The frequency domain error index for
model fidelity is computed using Eq. (38), which are
obtained as 17.6 and 16.8 for the cases of F, and M,
cases, respectively. These values are well within the
bound of 100 suggested in [7], indicating a good
fidelity of the extracted LTI model.

Concluding Remarks

Formulation of linear time invariant (LTI)
models of a nonlinear system about a periodic
equilibrium  using the  harmonic = domain
representation of LTI model states is well established
in the literature. A computationally efficient scheme
for extraction of linear time invariant (LTI) models of
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a nonlinear helicopter model about a periodic
equilibrium is developed in this study. The proposed
computational approach makes use of previously
developed closed form expressions relating various
elements of a LTI model with harmonic components
of a corresponding linear time periodic (LTP) model.
A numerical perturbation scheme is used to compute
various elements of a LTP model at discrete
azimuthal steps over one rotor revolution from a
helicopter nonlinear model about a periodic
equilibrium. Simultaneously, computations needed
for decomposition of LTP model matrices into
harmonic components are performed. Once the
linearization for a LTP model is completed over one
rotor revolution, it takes only a few algebraic
operations to assemble a LTI model of selected order.
The proposed numerical scheme is seen to improve
computational speed by an order magnitude when it
is compared with the numerical scheme from the
literature involving individual harmonic components
of state/control perturbations.

The proposed computational scheme is
implemented within FLIGHTLAB™ and is used to
extract LTI models of a generic helicopter nonlinear
model in forward flight. The fidelity of the extracted
LTI models is evaluated in both time and frequency
domains by using error metrics from the literature.
Simulation comparisons are made between the
nonlinear model and the extracted linear models
using predicted fixed system hub load responses to
typical individual blade control (IBC) inputs that
have been suggested in the literature for vibration and
noise control applications. The evaluation results
demonstrate the fidelity of the extracted LTI models,
and thus, establish the validity of the LTI model
extraction process for its use in integrated flight and
rotor control studies.

Further evaluation of the developed LTI model
extraction process is needed for its use in active rotor
control studies involving on-blade control (OBC)
actuation such as trailing edge flaps, active twist, etc.
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Figure 1a. Predicted Fixed System Hub Load Variations to 2/rev IBC Input.
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Figure 7. Predicted Frequency Response of Rotor Tofque to a Single Blade IBC Input.
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