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Abstract 

 
Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the 
harmonic domain representation of LTI model states is well established in the literature. This paper presents a 
computationally efficient scheme for implementation of a previously developed method for extraction of linear time 
invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models 
is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time 
and frequency domains. For time domain evaluations, individual blade control (IBC) inputs that have been tried in 
the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep 
inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input.  The evaluation 
results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model 
extraction process for its use in integrated flight and rotor control studies.    
 

Nomenclature 
A LTI model system matrix  
B LTI model input matrix 
C LTI model output matrix 
D LTP model damping matrix 
E LTI model input-to-output matrix 
Fx,Fy,Fz  fixed system hub forces 
G LTP model input matrix 
K LTP model stiffness matrix 
L number of harmonic components of y 
Mx,My,Mz fixed system hub moments 
M number of harmonic components of control 
N number of harmonic components of x 
P LTP model output matrix associated with x 
Q LTP model output matrix associated with x�  
U control vector 
X vector of displacement variables 
Y output vector 
nt number of response points used in model 

fidelity evaluation 
no number of outputs used in model fidelity 

evaluation  
t time  
u changes in U from trim 
x changes in X from trim 
y changes in Y from trim 
Ω rotor rotational speed 
Ξ equation imbalance  
ψ azimuth angle (= Ωt) 
_________________________________________ 
Paper presented at the 35th  European Rotorcraft 
Forum, Hamburg, Germany, September 22–25, 2009. 
 

 

Xx ��,  first time derivatives of x and X 

Xx ���� ,  second time derivatives of x and X 

UX ,  periodic steady state values of X and U 
 
Subscripts 
( )o zero-th harmonic component/average 

component of ( ) 
( )nc nth harmonic cosine component of ( ) 
( )ns nth harmonic sine component of ( ) 
( )aug augmented vector made up of average and 

harmonic components  
 

Introduction 
 

Current flight controller designs for helicopters 
represent a difficult trade-off between controller 
bandwidth and its impact on rotor stability, rotor 
vibratory loads, etc. Traditional swashplate controls 
in terms of collective, longitudinal cyclic and lateral 
cyclic limit the number of controls available to the 
control designer in addressing flight and rotor control 
issues. For example, a four-bladed rotor using IBC 
has four independent controls available. However, 
the use of swashplate for control inputs restricts the 
number of independent controls to only 3, thus 
limiting the control design space available to the 
control designer.   

Individual Blade Control (IBC) and On-Blade 
Control (OBC) concepts offer tremendous potential 
for expanding the available control design space in 
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tailoring control input signals for desired blade 
responses to address flight and rotor control issues in 
a unified framework. IBC and OBC concepts offer 
the potential  to develop innovative controllers for  
mitigation of compressibility effects on advancing 
blades and reverse flow effects on retreating blades 
for improved rotor performance, control of an 
individual blade that may be off-track, mitigation of 
transient effects associated with rotor speed 
variations, mitigation of undesirable coupling 
between body and rotor in large size helicopters due 
to increased rotor blade flexibility, reduction of  
maneuver blade and rotor loads, reduction of 
vibratory hub loads, reduction of blade-vortex 
interaction noise, etc., while ensuring good flying 
qualities as specified in the Aeronautical Design 
Standard (ADS-33). While higher flight control 
bandwidth can be achieved through innovative 
integrated flight and rotor control designs, the 
implications of such higher bandwidth control arising 
out of IBC and OBC concepts on handling qualities 
and vehicle-pilot-biodynamic coupling, etc., need to 
be carefully assessed before they can be fully 
realized. 

Due to the periodic nature of helicopter rotors, 
the linearized models including rotor states extracted 
from nonlinear models of a rotorcraft will have 
periodic coefficients. Though stability analysis of the 
extracted linear time periodic (LTP) models can be 
performed using the Floquet stability theory, it does 
not provide a convenient framework for controller 
synthesis and design as the available control design 
tools for LTP systems are few in number [1]. Further, 
the handling qualities specifications for small 
amplitude maneuvers as prescribed in the 
Aeronautical Design Standard (ADS 33) are based on 
a linear time invariant (LTI) model, and thus cannot 
be directly accounted for in the controller design 
process using LTP models. If linearized models in 
time invariant form are made available, it will open 
up the choice of available design and analyses tools 
to a rotorcraft control designer [1].  

Methods available in the literature for 
transformation of LTP models to time-invariant form 
suffer from certain disadvantages.  For instance, in 
the Lyapunov-Floquet transformation method [2], the 
system matrix of the LTP model is transformed into a 
time-invariant form using the time varying 
Lyapunov-Floquet transformation matrix. However, 
the control matrix of the transformed model will still 
be time-periodic. To overcome this difficulty, an 
auxiliary system is constructed with pseudo control 
variables which bear no resemblance to the control 
vector of the LTP model. Controller design is carried 
out on the auxiliary system and control laws for the 
time periodic system are constructed from feedback 

signals of the auxiliary system. However, this method 
suffers from the disadvantage of needing to compute 
the state transition matrices of the LTP model over 
one rotor period in order to construct the Lyapunov-
Floquet transformation matrix. Analytical 
approximations of the coefficient matrices using the 
shifted Chebyshev polynomials of the first kind 
provide an efficient means in the state transition 
matrix computations. While the computational effort 
is significantly improved by the use of such closed 
form approximations, the accuracy of the results is 
significantly influenced by the number of terms used 
in the analytical approximations, and such an 
approach becomes numerically very sensitive. The 
transformation using discrete-time methods, such as 
time lifting and frequency lifting methods [3], also 
suffer from the same disadvantage of a need for state 
transition matrices.  

The use of harmonic analyzers as part of the 
linearization step to extract a time invariant linear 
model for the specific application of flight control 
and higher harmonic control is explored in [1]. The 
extracted LTI model consists of the body states, time 
averaged rotor states, harmonic analyzer states, pilot 
controls and higher harmonic controls. Using such a 
model, Cheng, et al [1] show that it becomes feasible 
to consider the important coupling between the body 
states and the higher frequency rotor response in a 
combined flight and vibration controller design. 
Using numerical perturbations to individual harmonic 
components of periodic states of a system, LTI 
models are formulated with average and harmonic 
components of rotor response as pseudo states in [4].  

It is well known that the use of numerical 
perturbation techniques for extraction of linear 
models from a nonlinear model is sensitive to the size 
of state and control perturbations. Also, in cases 
where reduced order models are sought from the 
linearization, the effect of state and control 
perturbations on the neglected states have to be 
properly taken into account, thus further increasing 
the computational complexity of the linearization 
process. More importantly, the number of harmonic 
components of rotor states required in the LTI model 
for retaining the important coupling between body 
states and rotor states is generally not known a priori 
in a specific application. As a result, one may be 
forced to consider different LTI model 
approximations in order to arrive at the appropriate 
model, thus further increasing the computational 
complexity of the linearization process.  

In [5], a two-step approach for extracting LTI 
models from a nonlinear model is proposed. First, a 
linear time periodic (LTP) model with sufficient 
fidelity is extracted from a nonlinear model about a 
specified equilibrium condition using a numerical 
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perturbation scheme. In the second step, harmonic 
decomposition of the LTP model matrices is used to 
arrive at a LTI model of selected order. This is shown 
to offer computational flexibility in the LTI model 
extraction process as one can use closed form 
expressions relating LTI model matrices and the 
harmonic components of LTP model matrices.   

The present study considers a computationally 
efficient scheme for combining the two-step method 
of [5] into a single step by carrying out the numerical 
perturbation part and the harmonic decomposition 
part simultaneously. The scheme is integrated within 
a comprehensive flight dynamic model of a 
helicopter. The fidelity of the extracted LTI models is 
evaluated using response comparisons in both time 
and frequency domains.  
 
Linear Time Invariant (LTI) Models of a 

Nonlinear System 
 
Consider a nonlinear system of the form 

                0),,,( =UXXXf ���                       (1) 

where  X , X�  and X��  are respectively the position, 
velocity and acceleration vectors, and  U is the 

control vector. Let ( ))(),(( ψψ UX ) represents a 

periodic equilibrium of the system of Eq. (1) such 
that 

)()2(),()2( ψπψψπψ UUXX =+=+ (2) 

 
A linearization of Eq. (1) can be obtained by 
considering changes from equilibrium as  
 

)()()(),()()( ψψψψψψ UUuXXx −=−=          (3) 

 
and expanding Eq. (1) about the periodic equilibrium 
in Taylor series to first order as 
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The partial derivatives in Eq. (4) are obtained at the 
selected periodic equilibrium.  Since the periodic 
equilibrium also must satisfy Eq. (1), the above 
equation reduces to 
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which can be rearranged into the form  
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Likewise, defining the output equation of the 
nonlinear system of Eq. (1) as 
 

          ),,,( UXXXgY ���=                              (8) 

 
where Y is a vector of outputs. At a periodic 
equilibrium, the value of the out  
 

          ),,,( UXXXgY ���=                              (9) 

 
A linearized form of the output equation is obtained 
by expanding Eq. (8) about the periodic equilibrium 
in Taylor series to first order as 
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Substituting Eqs. (6) and (9) into Eq. (10) results in  
 

uRxQxPy )()()( ψψψ ++= �                (11) 

 
where y represents change in the output Y from its 

equilibrium valueY , and P, Q and R matrices can be 
obtained using 
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The linear time periodic (LTP) model of Eqs. (6) and 
(11) is converted into a linear time invariant (LTI) 
form using the following approximation to x: 

�
=

++=
N

n
nsnco nxnxxx

1

sincos ψψ               (13)                

where xo is the average component and xnc and xns are 
respectively the n/rev cosine and sine harmonic 
components of x. Likewise, control (u) and output (y) 
are expanded in terms of  harmonic components as  
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Now defining an augmented state, control and 

output vectors in terms of their respective average 
and harmonic components as  
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where xo is the average component, xic and  xis are 
respectively the ith harmonic cosine and sine 
components of x, uo is the average component and  
umc and ums are respectively the mth harmonic cosine 
and sine components of u, and yo is the average 
component and ylc and yls are respectively the lth 
harmonic cosine and sine components of y. Using the 
augmented state, control and output vectors, the LTP 
model of Eqs. (6) and (11) can be approximated into 
a LTI form as  
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Closed form expressions for the elements of the LTI 
model matrices of Eqs. (16) and (17) have been 
derived in [5].  The final expressions taken from [5] 
are included here. 
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Closed form expressions for the various elements of  
A12, A22, B2, C1, C2 and E can be obtained in terms of 
harmonic components of the LTP model matrices D, 
K, G, P, Q and R  [5]. For example, if the matrix 
D(ψ) is expanded in terms of its harmonic 
components as 
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where Do is the average component and Dkc and Dks 
are respectively the kth harmonic cosine and sine 
components of the matrix D(ψ) such that 
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Likewise, expressions similar to the above can be 
obtained for the elements of the LTI model matrices 
involving K, G, P, Q and R. 
 

LTI Models from FLIGHTLAB 
 

The LTI model extraction method described in 
the previous section is implemented within 
FLIGHTLABTM [6] using the generalized force 
formulation written as  

 

                ),,,( XXXUf ���=Ξ                      (35) 

 
where Ξ is the equation imbalance of Eq. (1). The 
control at each time step is iteratively solved to drive 
Ξ to zero for trim. The nonlinear model is first 
trimmed at a specified flight condition.  Then a 
reference blade is set to the zero azimuth position and 
the periodic trim condition is recorded over one rotor 
revolution. With the reference blade at selected 
azimuthal steps, the values of Ξ due to perturbations 
in state/control are computed at each azimuthal step, 
and system matrices are obtained by computing the 
partial derivatives of Ξ with respect to individual 
state/control through central finite differencing. For 
example, 
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where ΔX is the selected value of the numerical 
perturbation. Likewise, partial derivatives of the 
output with respect to state/control perturbations are 
obtained. The numerically computed partial 
derivatives  are used to assemble the LTP model 
matrices D(ψ), K(ψ), etc., using  Eqs. (7) and (12) at 
the current azimuthal step. Also, additional 
components, such as D(�)cos(k�), D(�)sin(k�), 
K(�)cos(k�), K(�)sin(k�), etc.,  k=0, 1, 2,… required 
for harmonic decomposition (see Eq. 28) are also 
generated at each azimuthal step of the linearization.  
Therefore, once the linearization process is 
completed over one rotor revolution, it only takes a 
few algebraic operations (using Eqs. 18 through 26 
and 29 through 34) to obtain a LTI model of selected 
order. The linearization can be configured to generate 
either a full linearized model or a reduced order 
model as desired. For reduced order models, a quasi-
static model reduction technique is applied by 
selecting the dynamically retained states while 
residualizing the neglected dynamics. 
 

LTI Model Fidelity Evaluations 
 
A generic helicopter model available in 

FLIGHTLABTM is used for LTI model fidelity 
evaluations in this study.  The vehicle weight is 
15000 lb and it has a four bladed articulated rotor, 
conventional tail rotor, horizontal stabilizer and a 
vertical fin. The analog and digital SAS portions of 
the control system are disabled in this study. The 
nonlinear model includes one rigid plus one elastic 
mode for flap as well as lead-lag motions of each 
blade and a 15-state dynamic inflow model. The 
blade feathering is assumed to be rigid  

The number of average states in the LTI model is 
55 which includes 8 body states (vehicle mass center 
velocity components, angular velocity components, 
body pitch and roll attitudes), 15 inflow states (4 
harmonic distributions combining with 4th power 
radial representation [6]), and 32 Multi Blade 
Coordinate (MBC) rotor states (16 for the rigid flap 
and lead-lag motions and 16 for the elastic flap and 
lag motions). The number of harmonic components 
of rotor MBC states is 256 for the case when one 
includes 1/rev to 4/rev harmonic sine and cosine 
components (64 for rigid mode flap, 64 for elastic 
mode flap, 64 for rigid mode lead-lag and 64 for 
elastic mode lead-lag) resulting in a LTI model order 
of 311. When one includes 1/rev to 8/rev sine and 
cosine harmonics of rotor MBC states, the resulting 
LTI model order is 567, which includes 55 average 

states and 512 harmonic sine and cosine components 
of rotor MBC states. In case of an isolated rotor 
representation, the body states are absent, thus 
reducing the LTI model order by 8.  

Individual blade control (IBC) inputs excite 
higher frequencies. A careful study is required to 
make an assessment on the number of harmonic 
states needed for good fidelity.  As the number of 
harmonic rotor states required increases, the 
computational effort involved in the extraction of LTI 
model also increases. An assessment is made of the 
number of floating point operations (FLOPS) needed 
for a LTI model extraction. It is seen that with the 
current approach, the number of FLOPS increases 
linearly with an increase in the number of harmonic 
states of the LTI model. This is in contrast to roughly 
a quadratic increase in FLOPS with the number of 
harmonic states using the numerical scheme proposed 
in [4] which involves individual harmonic component 
perturbations. 

Metrics for Evaluation of Model Fidelity 

Tischler and Remple [7] suggest the use of the 
following metrics for checking the fidelity of flight 
mechanics models identified from test data in time 
and frequency domains:  

Time-domain metric: 
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       Frequency-domain metric: 

( )[ ]

01745.0

0.1

,)]1(58.1[)(

)(
20

2

22)2(

2

1

=

=

−⋅=

∠−∠+−=

−

�

p

g

cpcg

W

W

eWwhere

TTWTTWW
n

J

xy

n

γ

γ

ω

ω
γ

ω

ω

ω

   (38) 

The above metrics are adapted in this study by 
treating ydata as the response from the nonlinear 
model and y as the response from the LTI model. Δy 
in Eq. (37) is the perturbation time history of 
response from trim, nt is the number of response 
points and no is the number of outputs. In Eq. (38), Tc 
is the transfer function from the nonlinear model, T is 
the transfer function from the LTI model,  γxy is the 
coherence function, and nω is the number of discrete 
frequency points used.   

The normalized fixed system hub forces and 
moments are used as outputs for model evaluations in 
this study.   
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It is suggested in [7] that 1 deg/s error is equivalent to 
1 ft/s or 1 ft/s2. Here, this equivalence is extended to 
1 deg/s2 as well. Hence, the fixed system hub forces 
and moments are normalized by the vehicle mass and 
the corresponding mass moments of inertia, 
respectively, as shown in Eq. (39). The elements of 
the weighting matrix W in J of Eq. (37) are 
appropriately selected to achieve this equivalency.  It 
is suggested in [7] that for good model fidelity, the 
value of the time domain error index (J(1)) needs to be 
less than 1 ~ 2 and the value of the frequency domain 
error index (J(2)) needs to be less than 100. 
  

Results 
 

LTI model fidelity evaluations are carried out for 
a forward flight case of 0.15 advance ratio. The types 
of IBC inputs used are taken to be similar to those 
used in the literature for vibration and noise control 
applications (for example, see [8-10]). In time 
domain evaluations, the simulation time is set at 5 
seconds for all cases. In each case, simulation begins 
at trim, and the selected input is applied at  1 sec into 
the simulation. The input is turned off at 3 sec into 
the run, and the simulation is continued till 5 sec.  All 
fidelity evaluations in this study are carried out using 
the generic helicopter model with an elastic blade 
representation and a 15-state dynamic inflow model.  

 
Time Domain Evaluations 
 

Higher harmonic inputs (2/rev, 3/rev, 4/rev, etc.) 
are used in the literature for reductions in vibration, 
noise and rotor power [8 – 10]. For reducing rotor 
power, a 2/rev individual blade control (IBC) input is 
suggested in [8]. In order to evaluate the fidelity of 
the extracted LTI models for their use in active rotor 
power reduction studies,  a 2/rev IBC input of 2o 
magnitude (similar in magnitude to what has been 
tried in [8]) and  (an arbitrarily selected) 125o phase 
is used in the LTI model fidelity evaluations. The 
resulting fixed hub load variations with time as 
predicted from FLIGHTLAB and from the extracted 
LTI model are compared in Fig. 1a. The LTI model 
includes up to 4/rev harmonic components of rotor 
MBC states. Figure 1b is a zoom-in of results from 
Fig. 1a. The time-domain error index computed using 
Eq. (37) is obtained as 0.316 indicating good fidelity 
of the extracted LTI model. It is interesting to see that 
2/rev IBC inputs impact the steady state components 
of rotor thrust and torque as evident from the 
response predictions of Fz and Mz in Fig. 1a.    

It is well known that N/rev vibration in the fixed 
system arises from blade force variations in the 
rotating frame at (N-1)/rev, N/rev and (N+1)/rev 
vibrations, where N is the number of blades [11]. 
Hence, as suggested from several studies in the 
literature (for example, [8]), it is expected that IBC 
inputs at these frequencies can be used for vibration 
control. An IBC input consisting of 3/rev, 4/rev and 
5/rev components is used as a way to test the fidelity 
of the extracted LTI models for their use in active 
vibration control studies. The magnitudes of the 
harmonic components of IBC are selected to be 1.5o 
of 3/rev, 1o of 4/rev and 0.5o of 5/rev. These values 
are similar to the IBC harmonic component 
magnitudes used in [8]. The phases of the individual 
harmonic components of IBC are selected arbitrarily. 
The extracted LTI model includes up to 4/rev 
harmonic components of rotor states. The fixed 
system hub load responses to the selected IBC input 
as predicted from FLIGHTLAB is compared with 
those predicted using the LTI model in Fig. 2a with a 
zoom-in of the results shown in Fig. 2b. The time-
domain error index computed using Eq. (37) is 
obtained as 0.612 indicating good model fidelity of 
the extracted LTI model, suggesting that the 
proposed LTI model extraction process can be used 
in active vibration control studies.    

It is suggested in [9] that a combination of 6/rev 
and 7/rev may be used for simultaneous vibration and 
noise control. In order to verify the LTI model 
fidelity for its use in active vibration and noise 
control studies, a test case IBC input with 6/rev and 
7/rev components of magnitudes (0.5o of 6/rev and 
0.5o of 7/rev) similar to those considered in [9] is 
used. Two different orders of LTI model 
approximations are used, one that includes up to 
4/rev harmonic components of rotor states and the 
second one that includes up to 8/rev harmonic 
components of rotor states.  The predicted fixed 
system hub load responses from FLIGHTLAB are 
compared with those from the LTI model predictions 
in Fig. 3a with a zoom-in of the results shown in Fig. 
3b. It is seen that the inclusion of up to 8/rev 
harmonic components of rotor states in the LTI 
model improves the LTI model fidelity significantly 
(error index of 0.037) when compared to that of the 
LTI model with only up to 4/rev harmonic 
components of rotor states (error index 0.71). The 
higher frequency variations in the fixed hub load 
responses seen in the FLIGHTLAB results are well 
captured in the predictions from the LTI model that 
includes up to 8/rev harmonic components of rotor 
states (see Fig. 3b).     

Next, the LTI model fidelity is evaluated using 
pulse inputs of IBC when a blade is passing through a 
selected azimuthal range. This input has been 
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suggested in the literature [10] for avoidance of blade 
vortex interactions (BVI) using a trailing edge flap 
actuation. A similar type of input is used with IBC in 
the present study. The selected IBC input as a 
function of rotor azimuth angle is shown in Fig. 4. 
The isolated rotor with the elastic blade and 15-state 
dynamic inflow  model is used in this case. The 
predicted flapping response is shown in Fig. 5 in 
terms of vertical deflection from the hub (shown in 
inches) at three different locations along the radius of 
a reference blade. A visual comparison of the isolated 
rotor elastic blade flapping responses from 
FLIGHTLAB and those from the LTI model 
indicates that the fidelity of the extracted LTI model 
is good, suggesting that the proposed LTI model 
extraction process can be used in active BVI control 
studies. 

   
Frequency Domain Evaluations 
 

The Comprehensive System Identification from 
Frequency Responses (CIFER) [12] is used to obtain 
frequency responses between the fixed system hub 
loads and a single blade IBC input. Both 
FLIGHTLAB and LTI models are excited through a 
single blade IBC frequency sweep input. The 
frequency sweep magnitude is set at 1 deg and the 
frequency is linearly varied from 0.3 rad/sec to 135 
read/sec (=5Ω) with time. The duration of the 
frequency sweep is set at 120 seconds and the 
azimuthal increment (sampling rate) is set at 
��=2.5o. Five different sizes of moving windows (24 
sec, 12sec, 8 sec, 2 sec and 1 sec) are used in the 
construction of a composite frequency response from 
the frequency sweep input and output data.  The 
generic helicopter with the elastic blade and 15-state 
dynamic inflow model is used.  

The predicted frequency responses between the 
fixed system rotor thrust (Fz) and rotor torque (Mz) to 
single blade IBC input are shown in Figs. 6 and 7, 
respectively. The frequency domain error index for 
model fidelity is computed using Eq. (38), which  are 
obtained as 17.6 and 16.8 for the cases of Fz and Mz 
cases, respectively. These values are well within the 
bound of 100 suggested in [7], indicating a good 
fidelity of the extracted LTI model. 
 

 
Concluding Remarks 

 
Formulation of linear time invariant (LTI) 

models of a nonlinear system about a periodic 
equilibrium using the harmonic domain 
representation of LTI model states is well established 
in the literature. A computationally efficient scheme 
for extraction of linear time invariant (LTI) models of 

a nonlinear helicopter model about a periodic 
equilibrium is developed in this study. The proposed 
computational approach makes use of previously 
developed closed form expressions relating various 
elements of a LTI model with harmonic components 
of a corresponding linear time periodic (LTP) model. 
A numerical perturbation scheme is used to compute 
various elements of a LTP model at discrete 
azimuthal steps over one rotor revolution from a 
helicopter nonlinear model about a periodic 
equilibrium. Simultaneously, computations needed 
for decomposition of LTP model matrices into 
harmonic components are performed. Once the 
linearization for a LTP model is completed over one 
rotor revolution, it takes only a few algebraic 
operations to assemble a LTI model of selected order. 
The proposed numerical scheme is seen to improve 
computational speed by an order magnitude when it 
is compared with the numerical scheme from the 
literature involving individual harmonic components 
of state/control perturbations.  

The proposed computational scheme is 
implemented within FLIGHTLABTM and is used to 
extract LTI models of a generic helicopter nonlinear 
model   in forward flight. The fidelity of the extracted 
LTI models is evaluated in both time and frequency 
domains by using error metrics from the literature. 
Simulation comparisons are made between the 
nonlinear model and the extracted linear models 
using predicted fixed system hub load responses to 
typical individual blade control (IBC) inputs that 
have been suggested in the literature for vibration and 
noise control applications. The evaluation results 
demonstrate the fidelity of the extracted LTI models, 
and thus, establish the validity of the LTI model 
extraction process for its use in integrated flight and 
rotor control studies.    

Further evaluation of the developed LTI model 
extraction process is needed for its use in active rotor 
control studies involving on-blade control (OBC) 
actuation such as trailing edge flaps, active twist, etc. 
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Figure 1a. Predicted Fixed System Hub Load Variations to 2/rev IBC Input. 

 

 
Figure 1b. A Zoom-In of Fig. 1a. 
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Figure 2a. Predicted Fixed Stem Hub Load Variations to IBC Inputs with 3/rev, 4/rev and 5/rev Components. 

 
Figure 2b. A zoom-In of Fig. 2a. 
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Figure 3a. Predicted Fixed Stem Hub Load Variations to IBC Inputs with 6/rev and 7/rev Components. 

 
Figure 3b. A Zoom-In of Fig. 3a. 
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Figure 4. Selected Azimuth Dependent IBC Input. 

 
 
 
 
 
 

 

 
Figure 5.  Predicted Elastic Blade Vertical Deflection (inches) in Response to the Selected IBC Pulse Input.   
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Figure 6. Predicted Frequency Response of Rotor Thrust to a Single Blade IBC Input. 

 

 
Figure 7. Predicted Frequency Response of Rotor Torque to a Single Blade IBC Input. 
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