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Abstract 
 

The determination of the horizontal air velocity component in 
low airspeed regime, typically below 40 KIAS, has been a 
challenge for the rotary-wing engineering development. 
Regarding this issue, this paper develops a mathematical 
model, in neural network, for predicting the horizontal air 
velocity component of the AS 355 F2 helicopter by taking 
advantage of Matlab® Neural Network Toolbox, to be used 
as a real time telemetry tool by Brazilian Institute of 
Research and Flight Tests, IPEV. By using a flight test 
acquisition system installed in the AS 355 F2 tail number 
FAB 8816, some parameters are measured in the fuselage, 
like stick positions, rotating speeds and attitudes, during 
steady-state conditions and leveled flight acceleration 
maneuvers. These measurements are used as input and 
references to backpropagation neural networks with 
supervised learning. Two sort of neural networks are 
developed: one to predict longitudinal air velocity, u, and 
other to predict the lateral air velocity, v. Training process 
approach consists of trying and error by changing input 
parameters set and neural network structure. The Levenberg-
Marquardt algorithm is used to perform the optimization 
process of networks weights and biases. During the 
validation procedure a new data set is applied to the neural 
networks that had provided the best training results for each 
air velocity. It’s verified that one longitudinal and lateral 
neural network association, with 11 input parameters and 2 
hidden layers with 25 processing elements each, provides 
satisfactory results in predicting horizontal air velocity 
component in stabilized maneuvers, with accuracy level of 
3,4 kt and 16°, along with unsatisfactory results in level 
flight acceleration maneuvers. Additionally, as a contribution 
of this work, this neural network association is implemented, 
by using Matlab®, in the Brazilian Air Command IPEV 
telemetry facility proving the viability of this computational 
code as a real-time flight test tool.  
 

Notation 
  

CG = Center of Gravity 
NN = Neural Network 
PE = Processing Element 
R = correlation coefficient 
rb = y-intercept of the best linear regression relating target to 
neural network output (kt) 
rm = slope of the best linear regression relating target to 
neural network output 
u = longitudinal air velocity (kt) 

ue = predicted longitudinal air velocity (kt) 
v = lateral air velocity (kt) 
ve = predicted lateral air velocity (kt) 
Vah = horizontal air velocity component intensity (kt) 
Vahe = predicted horizontal air velocity component 
intensity (kt) 
Vah-Vaeh = standard deviation of horizontal air velocity 
component prediction error (kt)  
σψv- ψve = standard deviation of sideslip prediction error 
(kt) 
ψv = low airspeed sideslip angle (º) 
ψve = predicted low airspeed sideslip angle (º) 
 

Introduction 
 
Helicopters are aircraft capable of performing a 

wide variety of civilian and military missions, such as 
transport of passengers and/or cargo, medical 
evacuation, law enforcement, air-to-ground attack, air-
to-air attack, reconnaissance, anti-submarine warfare 
and Search and Rescue. 

Although helicopters often operate in airspeed 
regime over 100 kt, many of these missions may 
require that a large portion of flight time be conducted 
in the low speed flight regime, typically below 40 kt 
[1]. 

At high airspeeds, the traditional aerodynamic 
sensor based on pressure differences (pitot-static) 
provides reliable indications as well as in fixed-wing 
aircraft. However, these sensors are not able to provide 
appropriate indications in the low airspeed regime, due 
to the sensitivity limit of the pitot-static tubes available 
in the aviation market (above 20 kt), the effects of 
disturbances and non-linearities of the flow caused by 
the main rotor inflow and the multiple degrees-of-
freedom of the helicopter (vertical, backward and 
sideward displacements) [2]. 

I addition to the non-linearities arising from main 
rotor aerodynamic air flow, other non-linear 
phenomena increase the difficult in predicting the air 
velocity, such as: 

- possibility of vortex-ring state of the tail rotor when 
the aircraft is in sideward maneuvering;  

- main rotor tip vortices effect on the tail rotor blade; 
and 

- effects of ground vortex created by the main rotor 
inflow over the airframe in some IGE flight 
conditions.  



Therefore, the helicopter pilots do not have access to air 
velocity information in hovering flight. These indications are 
important to, for example: 

-  maintain the aircraft control margins, considering that it is 
a flight regime that requires high power level; 

- define a safety takeoff profile (outside the high-velocity 
diagram avoid area); 

- define the one engine inoperative safety takeoff profile; 
- quantify the attack aircraft weapon system performance; 
- develop a warning systems to indicate proximity to 

hazardous conditions such as vortex-ring state (VRSWS) 
and 

- monitor the fatigue life of aircraft and components, since 
high vibrations may occur during maneuvers at low 
airspeeds, such as hovering, steepest approaches, sideward 
and backward displacements. 

 
It`s important to highlight that the vertical air velocity 

component is provided on board the aircraft, by measuring 
the temporal variation of static pressure, and generally has a 
satisfactory accuracy level. Therefore, the problem of 
estimating the air velocity mentioned above actually refers to 
the air velocity component related to horizontal plane, or in 
other words, the horizontal air velocity component. 

The development of an accurate way for measuring the 
horizontal air velocity component has been a challenge since 
the early rotorcraft aviation. In the 50`s, it appears the first 
low-speed devices, consisting of mounted sensors above the 
rotor hub of the aircraft [1]. 

These sensors are based on using two Venturi tubes 
arranged on opposite sides of a rotating arm and installed 
above the main rotor hub, as LORAS, Low Range Airspeed 
System. The pressure differential between these two sensors 
is used to get the horizontal air velocity component of the 
helicopter [1]. 

However, this instrument requires means for transferring 
data captured by the sensor to a fixed reference in the 
airframe (non-rotating), a fact that requires a fine 
instrumentation and therefore more expensive devices. 

Subsequently, it was created a system called LASSIE, 
Low Air Speed Sensing and Indicating System, capable of 
allowing the alignment of the pitot tube at 360 degrees with 
the air flow, providing a measure that is directly related to the 
horizontal air velocity component [3]. However, this system 
uses empirical linearization to predict the air velocity 
components, so that is not capable of providing accurate 
results. 

In addition to these mechanical ways to determine the air 
velocity vector, there are methods based on other forms of 
identification different from anemometric way, as numerical 
or quantitative process, called algorithms. 

They are based on real-time measurements of several 
aircraft  ́ state parameters (for example, pressure altitude, 
longitudinal and lateral attitudes and control stick positions) 
and by applying analytical data previously obtained from 
which it’s possible to identify the horizontal air velocity 
component (intensity and sideslip angle). 

The recent application of neural networks approach to 
predict helicopter low airspeed regime has presented good 
results. This method is very similar to the algorithm, i.e., 
several state parameters of the helicopter are measured and 
there is a process to identify the desired parameter [4]. 

The main difference is the way to calculate the air 
velocity. It makes use of neural network technology to 
determine the correlation between the parameters that direct 

affect the system, which may be non-linear, and thus 
create a calculation methodology, i.e., a mathematical 
model. 

Related to this context, the objective of this work 
is to develop a validated mathematical model to predict 
the horizontal air velocity component of the AS 355 F2 
aircraft, by using Matlab neural network toolbox, for 
further implementation in the telemetry facility of the 
Brazilian Institute of Research and Flight Tests - IPEV. 

 
Identification Process of the 

Horizontal Air Velocity Component 
 
Flight Testing Performed 
 

The data used for training and validating the neural 
networks of this work are obtained in 5 hours and 45 
minutes of low airspeed flight test shared into three 
flights, with three different Take Off Weights, all 
performed in São José dos Campos airfield - Brazil, on 
a instrumented AS 355 F2 aircraft, tail number FAB 
8816, belonging to the IPEV fleet. 

The aircraft is flight tested in stabilized horizontal 
air velocity component, both IGE and OGE conditions, 
by using the pace car method.  

All the flights are performed with no doors opened 
and Automatic Pilot disengaged.  

Figure 1 shows a picture of the flight test carried 
out. 
 

 
 

Figure 1 - Picture of Pace Car Flight Test Method. 
 
The method used to define IGE and OGE 

conditions is the external reference, in which stabilized 
test points are performed by the test pilot keeping the 
vertical ground reference, when in hover, and with the 
help of external references to maintain the height, 
during relative aircraft-ground displacement. 

In addition, longitudinal level flight accelerations 
to simulate normal take off profile are performed, 
starting from hovering, also using the help of external 
references to maintain the height. 

It is used the low airspeed sideslip angle definition 
presented in Figure 2. 
 



 
 

Figure 2 - Notation of the Low Airspeed Sideslip Angle, ψv. 
 
The helicopter horizontal air velocity component is 

determined by recording the horizontal ground speed 
provided by DGPS installed in the aircraft with 2 Hz sample 
rate. For this, the completion of the test points is restricted to 
wind intensity less than 5 kt. The actual wind conditions 
(intensity and direction) were measured during the flight 
tests, resulting in 2,31,1 kt, and, consequently, an 
uncertainty level of 3,4 kt on the DGPS horizontal air 
velocity. 
 
Training and Validation Data Sets 
 

According to McCool & Hass [1] and Goff [5], the 
selection of neural network of set data is crucial to the 
success of this tool. In addition, it should be used two data 
sets during the development phase: one for training and 
another to validate the neural network model.  

The training set should consist of representative points of 
the whole flight envelope in which the network model is 
intended to be used, i.e., at least combinations of weight, 
environment conditions, horizontal air velocity and low 
airspeed sideslip angle must be tested. 

Additionally, factors that can significantly affect the 
relationship between input and output parameters should be 
considered and analyzed to select the data set. For example, 
McCool & Hass [1] and Samlioglu [6] indicated that the 
ground effect affects the results of neural networks, due the 
high aerodynamic level of change between IGE and OGE 
conditions. 

Therefore, the stabilized test points are divided into two 
data sets, training and validation, as presented in the polar 
plots (Figures 3 to 5). These sets selection process are based 
on the idea of defining a set of training data that better 
represents flight tested domain and also different ground 
effect conditions. 

 
Figure 3 – IGE Stabilized Average Points of Training and Validation 

Sets Obtained in Flight 1. 
 

 
Figure 4 – IGE Stabilized Average Points of Training and 

Validation Sets Obtained in Flight 2. 

 
Figure 5 – OGE Stabilized Average Points of Training and 

Validation Sets Obtained in Flight 3. 
 

These two data sets, whose averages are presented 
in Figures 3 to 5, represent the total number of sampled 
points shown in Table 1. 
 
Table 1: Samples Number of Stabilized Test Points for Training 

and Validating Data Sets. 
 

Data Set Flight 
Condition 

Number of 
Stabilized Points 

Number of 
Samples 

IGE 60 2195 
OGE 31 782 Training 
Total 91 2977 
IGE 54 1742 
OGE 28 629 Validation 
Total 82 2371 

 

As performed to stabilizing test points, the 
longitudinal level flight accelerations are also divided 
into training and validation sets. 

Figures 6 to 10 present the horizontal air velocity 
components, longitudinal and the lateral, u and v 
respectively, selected to training and validation data 
set. 

 
 

Figure 6 – IGE Level Flight Acceleration of Training Database 
Set Obtained on Flight 2. 



 
 

Figure 7 – Second IGE Level Flight Acceleration of Training Database 
Set Obtained on Flight 2. 

 

 
 

Figure 8 – OGE Level Flight Acceleration of Training Database Set 
Obtained on Flight 3. 

 

 
 

Figure 9 – IGE Level Flight Acceleration of Validation Database Set 
Obtained on Flight 2. 

 

 
 

Figure 10 – OGE Level Flight Acceleration of Validation Database Set 
Obtained on Flight 3. 

 

The total amount of samples of longitudinal level flight 
acceleration is 202 points, for training data set, and 102 
points for validation data set. 
 

Neural Network Model 
 

The networks input parameters selected for this 
study of predicting the horizontal air velocity 
component by neural network are presented in Table 2. 

 
Table 2: 

Neural Network Input Parameters. 
 

# Parameter 
1 Ddc, collective stick position (%) 
2 Ddl, lateral cyclic stick position (%) 
3 Ddm, longitudinal cyclic stick position (%) 
4 Ddn, pedal position (%) 
5 θ, pitch attitude (º) 
6 , roll attitude (º) 
7 p, roll rate (º/s) 
8 q, pitch rate (º/s) 
9 r, yaw rate (º/s) 
10 Tq, engines torque (%) 
11 W, helicopter gross weight (kgf) 
12 Nr, main rotor RPM (rpm) 
13 Xcg, longitudinal CG position (m) 

 
Based on these thirteen input parameters presented 

in Table 2, three input sets are defined: 
- Set 1: Ddc, Ddl, Ddm, Ddn, θ, , p, q, r e Tq; 
- Set 2: Set 1 with addition of W; and 
- Set 3: Set 1 with addition of W, Nr e Xcg. 
 
These sets are defined based on McCool & Hass 

[1] and Goff [5] previous results and on the parameters 
acquired by the flight test acquisition system of FAB 
8816 aircraft. 

The first set, containing 10 parameters, is 
favorable for a real time onboard application, regarding 
that all parameters are obtained directly from the flight 
instrumentation bus, i.e., it is not necessary to insert 
any additional aircraft´ pre start up conditions, as in the 
case of W and Xcg parameters. 

The main rotor RPM, Nr, was removed from set 1 
because of its small variation during the flight, as the 
aircraft provides an automatic control of it. Moreover, 
the results presented by Goff [5] shows low 
contribution of the Nr variation in the prediction of the 
horizontal air velocity component. 

Set 2 represents the set 1 plus the parameter W, 
which is easily derived from the amount of remaining 
fuel in the tanks, but still needs the insertion of the 
initial condition of Zero Fuel Weight. 

Set 3, containing 13 parameters, is the data set that 
has provided the best results, in McCool & Hass [1] 
work, to predict the horizontal air velocity component. 
 
Neural Networks Architecture 
 

Analogous to Goff [5], two neural networks are 
built: one to estimate the longitudinal air velocity, u, 
and one to the lateral air velocity, v. 

By means of the vector sum of the predicted 
longitudinal and lateral air velocity components by 
neural network is possible to determine the predicted 
horizontal air velocity component (Figure 11). 
 



 
 

Figure 11 – Schematics of Neural Network Approach to Predicting the 
Horizontal Air Velocity Component of the AS 355 F2 in Low Airspeed 

Regime. 
 
In Figure 11, 
Vahe is the predicted horizontal air velocity component 
intensity (kt); and 
ψve is the predicted low airspeed sideslip angle (º). 

 
Based on McCool & Hass [1] and Samlioglu [6] 

prediction results, this paper uses the backpropagation 
algorithm approach to predict the intensity of horizontal air 
velocity components. In addition, to produce a faster and 
more efficient optimization process of NN weights and 
biases, the Levenberg-Marquardt algorithm is used. 

It`s important to highlight that the predicted low airspeed 
sideslip angle is obtained indirectly, since it is the 
combination of predicted longitudinal and lateral air velocity 
components, ue and ve respectively. Therefore, the signs of ue 
and ve define direction, while their intensities determine the 
predicted horizontal air velocity component. 

 
Neural Networks Training Process 
 

The definition of optimal neural network architecture to 
predict the longitudinal and lateral air velocity components is 
performed by trying and error, by modifying the input 
database (ground effect, stabilized and non-stabilized flight 
condition), the input data set, the number of hidden layers, 
the transfer function (or activation functions) and the number 
of Processing Elements per layer. 

The whole training process is conducted using the 
backpropagation neural network with Levenberg-Marquardt 
optimization existing on Neural Network Toolbox of 
Matlab®.  

The NN architecture is changed, during the training 
process, according to: 

- Input database (stabilized IGE, stabilized OGE and 
level flight acceleration); 

- Input data set (1, 2 and 3); 
- Number of PE per layer (15, 25 and 35); and 
- Transfer function of hidden layers (tansig, logsig and 

radbas). 
During the training process it is noted that the increase in 

the number of PE and hidden layers increase the requested 
processing time for the same number of iterations. However, 
this change provides better adherence to the required 
longitudinal and lateral air velocity components output 
values. The maximum number of PE per hidden layer is 35, 
since the computational code takes about 20 minutes to run 
just one iteration over this PE value, in the case of an Intel® 
CoreTM 2 Duo CPU T5800 2.00 GHz, 4.00 GB RAM 
processor. 

Additionally, it is verified that two hidden layers 
and 25 PE per layer network architecture present, in 
general, the best trade off between number of 
iterations, time and prediction quality. As a 
consequence of this observation, this work gives 
special attention to this neural network architecture 
during the trying and error training process. 

As statistical analysis tool for evaluating the 
training results of longitudinal and lateral air velocity 
networks is used:  

- the standard deviation of the prediction error, and 
- the linear regression between the measured air 

velocity components and the output predicted by 
using neural networks approach. 

At the linear regression, a perfect fit corresponds 
to a unitary slope, i.e., rm = 1, intercepting zero, i.e., rb 
= 0. Thus, these neural network results would indicate 
a perfect mapping of the desired output. 

Additionally, the correlation coefficient, R, is a 
measure of the relationship level between two 
parameters. In the case of linear regression it 
corresponds to the measure of how linear is the 
relationship between the predicted longitudinal and 
lateral air velocity components and their actual values 
measured in flight. If this coefficient is equal to 1, it 
indicates a perfect linear correlation between network 
output and desired one. 

About the different transfer functions used for 
training the networks to predict the longitudinal air 
velocity component, it is noted that the best results, 
maintaining other NN architecture parameters constant, 
both in terms of standard deviation of the prediction 
error and of linear regression, are obtained for 
networks trained with the tansig transfer function. On 
the other hand, it is not observed any higher 
performance transfer function to predicting lateral air 
velocity component. 

Similarly to the results presented in the work of 
McCool & Hass [1] and Samlioglu [6], it is noted that, 
taking the same network architecture, a better 
prediction match for the networks trained with OGE 
stabilized database is reached then for the networks 
trained with IGE database. This fact is justified by the 
inherent nonlinearities aerodynamic conditions caused 
by the proximity of the aircraft with the ground, which 
complicate the building of neural networks logical 
connections and therefore, the learning process. 

To predict the two horizontal air velocity 
components, in general, the standard deviation of the 
prediction error is ranged between 0,4 kt and 1,7 kt, 
with a correlation coefficient above 98% when 
accounting the NN architecture of two hidden layers, 
25 PE per layer and input database derived from 
stabilized conditions (IGE and OGE) and level flight  
accelerations up to 40 kt.  

As for the horizontal air velocity components, 
measured by the DGPS during flight tests of this study 
(they have uncertainty of ±3,4 kt) it is used this value 
as a reference of training process quality. Therefore, 
the prediction results with standard deviation of 
prediction error below the flight test uncertainty is 
considered satisfactory. 

By this analysis, it is selected the longitudinal and 
lateral neural networks that have reached satisfactory 
standard deviation for the prediction error, obtained 



good linear regression results, and whose input database 
came from a diversity of flight conditions (stabilized and 
non-stabilized). 

Based on these premises, the longitudinal and lateral air 
velocity components trained neural networks chosen for 
validation step are given in Tables 3 and 5, respectively. All 
the networks selected have two hidden layers. In addition, it 
is presented their training statistical results on Tables 4 and 6. 

Table 3: 
Longitudinal Air Velocity Component NN Trained and Selected for 

Validation Process. 
 

Longitudinal 
NN 

Training Input 
Database 

Data 
set # PE Transfer 

function 

#1 1 25 Tansig 
#2 1 25 Radbas 
#3 1 35 Tansig 
#4 3 25 Tansig 
#5 

Stabilized IGE 
and OGE 

2 25 Tansig 
#6 Stabilized OGE 1 25 Tansig 
#7 Stabilized IGE 3 25 Logsig 
#8 1 25 Logsig 
#9 1 25 Radbas 

#10 2 25 Logsig 
#11 

Stabilized IGE, 
stabilized OGE 
and level flight 

acceleration up to 
40 kt 2 25 Radbas 

 

Table 4: 
Training Results of the Longitudinal Air Velocity Component NN 

Selected for Validation Process. 
 

Longitudinal 
NN  u-ue (kt) rm rb.10-2 

(kt) R 

#1 1,01 0,993 1,11 0,997 
#2 1,24 0,990 1,60 0,995 
#3 1,04 0,993 1,21 0,997 
#4 0,70 0,997 0,55 0,998 
#5 1,00 0,994 1,12 0,997 
#6 1,00 0,994 1,12 0,997 
#7 0,76 0,997 0,73 0,998 
#8 1,41 0,988 2,66 0,994 
#9 1,16 0,992 1,81 0,996 

#10 1,15 0,992 1,78 0,996 
#11 1,90 0,977 5,12 0,989 

 

Table 5: 
Lateral Air Velocity Component NN Trained and Selected for 

Validation Process. 
 

Lateral 
NN Training Input Database Data 

set 
# 

PE 
Transfer 
function 

#1 1 25 Tansig 
#2 1 25 Radbas 
#3 1 35 Tansig 
#4 

Stabilized IGE and OGE 

3 25 Tansig 
#5 Stabilized OGE 1 25 Logsig 
#6 Stabilized IGE 1 25 Tansig 
#7 1 25 Logsig 
#8 1 25 Radbas 
#9 

Stabilized IGE, stabilized 
OGE and level flight 

acceleration up to 40 kt 2 25 Tansig 
 

Table 6: 
Training Results of the Lateral Air Velocity Component NN Selected for 

Validation Process. 
 

Lateral 
NN u-ue (kt) rm rb.10-2 (kt) R 

#1 1,14 0,991 -0,79 0,995 
#2 1,31 0,988 -0,99 0,994 
#3 1,20 0,990 -0,82 0,995 
#4 0,77 0,996 -0,33 0,998 
#5 0,80 0,995 -0,96 0,998 
#6 0,90 0,994 -0,25 0,997 
#7 1,13 0,991 -0,72 0,995 
#8 1,09 0,991 -0,71 0,995 
#9 0,81 0,995 -0,35 0,998 

Neural Networks Validation Process 
 

By introducing the input database selected for the 
validation process, divided in flight conditions, in the 
neural networks chosen in the previous step, it is 
obtained the predicted longitudinal and lateral air 
velocity components, ue and ve respectively. 

Tables 7 and 8 present the longitudinal and lateral 
air velocity components networks results that have 
presented the best performance during the validation 
process. 
 

Table 7: 
Results of Longitudinal Air Velocity Component NN Validation 

Process. 
 

u 

NN 
Validation Input 

Database 
u-ue 
(kt) rm rb.10-2 

(kt) R 

Stabilized IGE and 
stabilized OGE 4,47 0,973 -11,79 0,937 

Stabilized IGE, 
stabilized OGE and 

level flight 
acceleration up to 40 

kt 

4,54 0,962 -11,85 0,936 
#8 

Stabilized IGE, 
stabilized OGE and 
whole level flight 
acceleration data 

6,53 0,809 -3,04 0,901 

Stabilized IGE and 
stabilized OGE 3,38 1,039 -5,12 0,967 

Stabilized IGE, 
stabilized OGE and 

level flight 
acceleration up to 40 

kt 

3,43 1,037 -5,63 0,967 
#10 

Stabilized IGE, 
stabilized OGE and 
whole level flight 
acceleration data 

5,29 0,882 3,66 0,936 

 
Table 8: 

Results of Lateral Air Velocity Component NN Validation 
Process. 

 

v  
NN 

Validation Input 
Database 

u-ue 
(kt) rm rb.10-2 

(kt) R 

Stabilized IGE and 
stabilized OGE 3,83 0,892 17,45 0,925 

Stabilized IGE, 
stabilized OGE and 

level flight 
acceleration up to 

40 kt 

3,83 0,892 15,08 0,924 
#8 

Stabilized IGE, 
stabilized OGE and 
whole level flight 
acceleration data 

3,93 0,885 4,11 0,918 

Stabilized IGE and 
stabilized OGE 3,53 0,963 26,67 0,940 

Stabilized IGE, 
stabilized OGE and 

level flight 
acceleration up to 

40 kt 

3,54 0,962 25,52 0,939 
#9 

Stabilized IGE, 
stabilized OGE and 
whole level flight 
acceleration data 

3,59 0,959 18,24 0,936 

 
Based on the validation results previously shown, 

the longitudinal NN #10 and lateral NN #9 have been 
validated to predict the horizontal air velocity 
components of the AS 355 F2 aircraft, since they 
provide estimation error results within the 
measurement uncertainty of the flight tests data. 



It is important to highlight that these two selected 
longitudinal and lateral networks were trained by using input 
data Set 2. Thus, there is the necessity of introducing the 
Zero Fuel Weight value at the beginning of the test flight, so 
that the prediction process may occur. 
 
Predicted Horizontal Air Velocity Component 
 

As shown in Figure 11, from the predicted values of 
longitudinal and lateral air velocity components, by vector 
sum, the horizontal air velocity component (magnitude and 
direction) can be determined. 

Table 9 presents the standard deviation of horizontal air 
velocity component prediction error, Vah-Vaeh, and standard 
deviation of sideslip prediction error, σψv- ψve, the horizontal 
air velocity component and the linear regression results from 
the neural network association that has reached the best 
performance level. 

 
Table 9:  

Horizontal Air Velocity Component Results in Validation Process. 
 

NN Horizontal Air Velocity 
Component Intensity 

u v 

Validation 
Input Data Vah-Vaeh 

(kt) rm rb 
(kt) R 

σψv- ψve 
(°) 

Stabilized 
IGE and OGE 3,29 1,026 0,152 0,922 10,2 

Stabilized 
IGE and 

OGE, and 
level flight 

acceleration 
up to 40 kt 

3,34 1,022 0,206 0,922 10,3 

# 
10 

#
9 

Stabilized 
IGE and OGE 

and whole 
level flight 

acceleration 
data 

5,27 0,761 3,656 0,862 10,2 

 
The prediction accuracy level of the low airspeed 

sideslip angle is only assessed by the standard deviation of 
the prediction error, because the linear regression of a 
cyclical scale is distorted at the edges, which makes difficult 
to apply the linear regression method. 

Figures 12 to 14 present the linear regression results of 
longitudinal NN #10 and lateral NN #9 association. For all 
these figures the database input consists of stabilized IGE, 
stabilized OGE and level flight acceleration data up to 40 kt. 

 

 

Figure 12 – Linear Regression Analysis of Longitudinal Air Velocity 
Predicted by NN #10 in the Validation Process. 

 

  

 
Figure 13 – Linear Regression Analysis of the Lateral Air 

Velocity Predicted by NN #9 in Validation Process. 
 

 
Figure 14 – Linear Regression Analysis of Horizontal Air 

Velocity Predicted by Longitudinal NN #10 and Lateral NN #9 
Association and Validation Data Set. 

 
As the uncertainty of the flight test data is  3,4 kt, 

based on the wind recorded during the fights, the 
results presented in Table 8 show that the magnitude of 
the predicted horizontal air velocity component has 
satisfactory values of standard deviation of the 
prediction error for stabilized database. This remark is 
also valid for non-stabilized conditions (level flight 
acceleration limited to 40 kt). 

It is noted that the addition of level flight 
accelerations samples above 40 kt range increases the 
standard deviation of the prediction error. As the 
database used for training process, to all validated 
neural networks architecture, is restricted to stabilized 
and non-stabilized points below 40 kt, the accuracy 
level provided by NN for mapping the air velocity 
components above 40 kt is degraded whenever out of 
the training airspeed envelope. 

Regarding linear regression results, the intensity of 
the horizontal air velocity component shows high 
correlation coefficient values (greater than 0,9) for 
stabilized and non-stabilized limited to 40 kt input 
database. Moreover, this NN association presents 
satisfactory levels of slope and y-intercept point. 

From Table 9 one observes that the uncertainty 
level reached by the predicted low airspeed sideslip 
angle is not direct dependent of the training database 



envelope, such as noted with the intensity error. This happens 
because the level flight accelerations were performed only in 
forward direction, since the goal is to identify the horizontal 
air velocity component during a normal takeoff procedure. 
Therefore, the non-stabilized database used for training and 
validation process present the same sideslip angle envelope 
(around zero degrees). 

In conclusion, the longitudinal NN #10 and lateral NN 
#9 association provides satisfactory results to predict the 
horizontal air velocity component of AS 355 F2 in low 
airspeed stabilized and level flight acceleration below 40 kt 
conditions, with an uncertainty level of 3,4 kt and 16°. 

Additionally, in the event of any change in the flight test 
acquisition system installed onboard FAB 8816 aircraft or the 
Automatic Pilot assistance during flight, it is recommended 
to perform new low airspeed flight tests to verify the 
reliability and the prediction performance of the neural 
networks association validated in this work. If the results 
show unacceptable degradation prediction performance, the 
same procedures presented in this paper shall be followed to 
obtain the networks that best fit the changes. 

 
Implementation in a Telemetry Facility  

 
To confirm the feasibility of using the validated 

longitudinal NN #10 and Lateral NN #9 association in the 
Brazilian Institute of Research and Flight Tests a 
computational code to predict the horizontal air velocity 
component, in Matlab® is implemented at its flight test 
facility.  

This predicting code is installed in parallel with 
telemetry facility internal network to provide horizontal air 
velocity component prediction following the instrumentation 
data reception, data reading and calculations estimates in real 
time. Figure 15 presents the telemetry user interface 
implemented. 

 

 
 

Figure 15 – Telemetry User Interface to Predicting the Horizontal Air 
Velocity Component of the AS 355 F2 in Low Airspeed Regime. 

 
It is important to highlight that the polar diagram 

presented in the bottom left side of Figure 15 is a pictorial 
representation of the real time predicted horizontal air 
velocity component and its longitudinal and lateral 
components predictions, which are presented in the abscissa 
and ordenate axes, respectively. The small blue circle 
presented on the polar diagram corresponds to the predicted 
horizontal air velocity component and the before flight input 
of Zero Fuel Weight value is inserted in the bottom right box 
of the screen (label Wzf). 

As the flight test acquisition system installed in AS 
355 F2, tail number FAB 8816, has been removed from 
the aircraft just after the three flight tests conducted for 
this study, and all recorded data are run on the 
telemetry facility. Thus, simulation data have been 
received in real time and the validated NN 
computational code verified.  

In no time of these simulations is verified data 
reception failure or prediction processing interruption. 

At stabilized conditions, either for IGE or OGE, 
the horizontal air velocity components indications are 
stable and within low intensity oscillation range. This 
prediction characteristic provides enough tools to allow 
the pilot to stabilize the aircraft by using this 
information. 

In predicting horizontal air velocity component 
intensity below 10 kt, due the fact that the magnitude 
level be around the NN prediction uncertainty         
(3,4 kt), it is noted that small ue and ve perturbations 
may turn difficult the use of predicted low airspeed 
sideslip angle indication to stabilize the aircraft. 

Through the use of this feature at the telemetry 
facility, it is verified that the application of horizontal 
air velocity component prediction indication for non-
stabilized maneuvers is unsatisfactory, probably mainly 
due to the fact that the predicted time varying 
maneuver is neither gradual nor progressive, during the 
whole level flight acceleration maneuver.  

In this regard, it has been identified accumulative 
predictions around 0 kt, at the beginning of the 
maneuver, and close to 40 kt, at the end of maneuver, 
as shown in Figure 16. Such behavior is an obstacle to 
perform this sort of maneuver by following the 
predicted air velocity components indications of the 
mathematical model presented in this work. . 

 

 

Figure 16 – Example of Polar View Presented to the Pilot for a 
Complete Time Varying Predicted Level Flight Acceleration. 

 
In general, these features are observed in all run 

level flight accelerations, regardless whether IGE or 
OGE. Thus, the use of the results of this work in this 
kind of maneuver, despite the uncertainty prediction 
level achieved during the validation process, is 
unsatisfactory in trials requiring such information to 
maintain the acceleration rate.  
 
Conclusions and Recommendations 

 
In this work a neural network mathematical model 

to predict the horizontal air velocity component for AS 



355 F2 helicopter, through the use of existing Matlab® neural 
networks toolbox, is validated. 

It’s verified that one longitudinal and lateral 
backpropagation neural network association, with 11 input 
parameters (Ddl, Ddm, Ddn, Ddc, θ, , p, q, r, Tq e W), and 
two hidden layers with 25 processing elements each, provides 
satisfactory results in predicting horizontal air velocity 
component in stabilized maneuvers, with accuracy level of 
3,4 kt and 16°. Unsatisfactory results are observed in level 
flight acceleration maneuvers due to the effect of time 
varying prediction points accumulation.  

In addition, the implementation of the results of this 
work in the telemetry facility of IPEV is performed and 
considered feasible. Besides, it encourages further studies of 
the applicability of predicting the horizontal air velocity 
component in test flights of performance and handling 
qualities of the IPEV´s Flight Test Course syllabus.  

Suggestions for further investigations following this 
research include: 

- increase the amount of training database for training 
the neural networks process and introduce the helicopter 
angular accelerations as input parameters of these 
networks, in order to improve the non-stabilized 
prediction performance; 
- verify the suitability of using, in real time, the 
computational code implemented in IPEV`s telemetry 
facility in hovering testing performance flight, vertical 
climb performance, level flight performance, height-
velocity diagram tests and to determine the Category A 
takeoff profile on the Brazilian Flight Test Course 
syllabus; 
- verify the suitability of using, in real time, the 
computational code implemented in IPEV`s telemetry 
facility to implement new flight test techniques to 
determine the most critical conditions for entry into 
vortex-ring state for AS 355 F2 aircraft; and  
- implement this computational code onboard of AS 355 
F2 flight test instrumented aircraft, by using notebook, 
and verify the suitability of its application as an 
horizontal air velocity component indicator to be used 
by pilots during performance and handling qualities 
flights at the IPEV´s Flight Test Course. 
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