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Abstract

The paper presents a detailed study on how the results ob-

tained from an inverse simulation algorithm based on the

integration method are affected by the modelling approach.

In particular, 9 rotor blade dynamic models, 3 main rotor

inflow models and 3 fuselage aerodynamic databases are

differently combined in order to obtain as many as 13 dif-

ferent helicopter simulation models, which are analyzed in

3 manoeuvres: a hurdle–hop, a slalom and a lateral repo-

sitioning. This large amount of results will allow for a con-

sistent evaluation of the most critical situations in which

a reduction in model complexity results into an unsatisfac-

tory prediction of the expected vehicle behaviour. On the

other side, a minimum level of complexity that allows for a

convenient description of rotorcraft dynamics in different

tasks will be identified, thus allowing for the definition of

a minimum set of vehicle data that allows for a consis-

tent performance prediction as soon as possible during the

design process.

Introduction

The analysis of the effects of different choices in de-
riving a helicopter model suitable for flight dynamic
studies on the results obtained from inverse simula-
tion algorithms (IS) is the subject of this study. In
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the framework of handling qualities (HQ) analysis,
the objective is to assess the uncertainty on com-
mand laws necessary to realize a specified flight task
caused by the level of approximation in the vehicle
model. At the same time, the evaluation of the min-
imum complexity required by the model in order to
provide reliable information on vehicle HQ potential
will allow to perform a preliminary HQ assessment as
soon as a sufficient amount of information is available
on the configuration during the design process,

Inverse simulation has been considered in the past
as a useful and versatile tool for investigating several
aspects of both fixed- and rotary-wing vehicle dynam-
ics [1], from early works aimed at the evaluation of
manoeuvring performance [2], including agility [3], up
to more recent developments in the framework of sup-
port to design [4], model validation [5] and handling
qualities evaluation [6].

A wide plethora of methods for solving inverse sim-
ulation problems in flight mechanics has been consid-
ered, that can be grouped into three major categories:
(i) differential methods [2], suitable for nominal prob-
lems only, where the number of control inputs equals
that of the tracked variables; (ii) integration meth-
ods [7], where the required control action is evaluated
over a discrete time interval and can handle also re-
dundant problems (e.g. by means of a local optimiza-
tion approach [8]); and (iii) global methods [9], where
the time-history of the control variable is determined
over the whole duration of the tracked manoeuvre by
means of a variational approach.

As underlined in [1], the solution of the inverse
problem is a task significantly more challenging for
the rotorcraft case than for a conventional airplane,
especially when individual blade dynamics is incor-
porated in the model [10]. On the other hand, an



advantage of integration methods is the capability of
dealing with complex, that is, high order, mathemat-
ical models of vehicle even though in the rotorcraft
case the issue of unconstrained states is to be ad-
dressed. Computation efficiency can be increased by
application of a two-time-scale approach [11].

If on one side many works considered different
mathematical and numerical approaches to the solu-
tion of inverse simulation problems in flight mechan-
ics, on the other hand little attention was devoted
in the past to the analysis of the effects of mod-
elling issues on the inverse solution. These aspects are
particularly meaningful for the helicopter case, where
model complexity can differ significantly depending
on the approach chosen for modelling vehicle dynam-
ics. On one side, different models of the same rotor-
craft may result in a sizably different computational
burden, sometimes even preventing the applicability
of an algorithm because of the characteristics of the
model itself. At the same time, and more important,
different models may provide significantly different in-
verse solutions for tracking the same manoeuvre.

Rutheford and Thomson compared the results ob-
tained for a helicopter model where rotor was rep-
resented either as a disk or by means of individual
rotor blade dynamics [10], but their paper was more
focused on the extension of the inverse simulation ap-
proach to the individual blade model and the compar-
ison was carried out mainly with a validation purpose.
Some preliminary results on the effects of modelling
approaches on the determination of helicopter steady
state flight conditions were obtained in [12], where
the comparison was carried out by means of different
trim techniques applied to various models of the same
rotorcraft. A significant effect of rotor and inflow
models on controls and vehicle attitude was outlined.
Similarly, differences are expected when determining
command travel during an aggressive manoeuvre by
means of IS. The reliability of the result needs thus to
be carefully analyzed, particularly if the methodology
is used in the framework of a preliminary design phase
or handling quality assessment.

A medium complexity helicopter model, obtained
with minor variations from Ref. [13], will be used
as the baseline model for the analysis, featuring rigid
blades with flap, lag and torsional degrees of free-
dom, a 3 dynamic states main rotor inflow model,
and uniform dynamic inflow for the tail rotor. Aero-
dynamic loads on the blades, obtained by numerical
integration in the framework of strip theory, take into
account at least approximately the effects of retreat-

ing blade stall and compressibility. In the present form
the model neglects blade, shaft and fuselage elastic
modes, and aerodynamic effects such as circulation
hysteresis and rotor wake distortion.

The results obtained from the IS of the complete
baseline model will be compared with those obtained
for increasingly simpler models, in order to identify
if and in which cases the predicted command travel
and flight condition necessary for tracking the desired
manoeuvres significantly differ from those obtained
for the reference model. In particular, simpler rotor,
inflow and fuselage aerodynamic models will be con-
sidered. As for the rotor, blade twist and lag degrees
of freedom will be removed first from the individual
blade model in order to reduce model order. Fur-
ther simplifications are then obtained by considering
rotor dynamics in terms of first harmonic flapping co-
efficients (coning, longitudinal and lateral), reducing
rotor inflow models from a 3 state model with triangu-
lar velocity distribution [14] to a single–state uniform
inflow model and, finally, a quasi–steady one where
inflow velocity is determined by means of an iterative
process, as a function of rotor thrust coefficient [15].
In this case, rotor loads are determined analytically
by means of an estimated average value, under the
assumption of linear aerodynamics [15]. As a final
step, inertial coupling between rotor and fuselage is
neglected, and a simple first order tip–path–plane dy-
namics is considered. In the lowest–order model, only
first–order longitudinal and lateral flap coefficient dy-
namics will be included, with quasi–steady inflow, as
in [16], resulting in only 11 state variables for the
whole model.

Tail rotor inflow is always considered as uniform,
featuring a single inflow velocity variable driven by tail
rotor thrust, unless main rotor inflow dynamics is ne-
glected, in which case also tail rotor inflow is assumed
as quasi-steady. Also fuselage aerodynamic modelling
is considered as amenable to simplification. In the
simplest models the force and moment database in
tabular form taken from [13] is substituted by an es-
timate of parasite areas along the three–body axes.

Three typical manoeuvres will be considered [11]
in order to highlight major differences in command
sequences for different tasks: (i) a longitudinal
hurdle-hop; (ii) a slalom manoeuvre and (iii) a lateral
repositioning. The analysis will take into due consid-
eration performance limits of the vehicle estimated by
means of the different helicopter models with respect
to typical handling quality requirements [17], out-
lining those critical aspects in the modelling approach



Table 1: Rotorcraft models test matrix (with line–style legend for the plots)

Main rotor Fuselage aerodynamic model

Blade dynamics Inflow model No. of
states

Forces & Mom.
in tabular form

Forces only in
tabular form

Parasite area

flap, lag & twist 3 state dynamics 37 A1 —

Articulated flap & lag 3 state dynamics 29 A2 - -

flap only 3 state dynamics 21 A3 · · ·

coning, lat. &
long. flap coeff.

3 state dynamics 19 A4 —

2nd order TPP
dynamics

coning, lat. and
long. flap coeff.

unif. dyn. inflow 17 A5 - -

coning, lat. and
long. flap coeff.

unif. static inflow 15 A6 · · · B6 — C6 —

coning, lat. &
long. flap coeff.

unif. dyn. inflow 14 B7 - - C7 - -

1st order TPP
dynamics

coning, lat. and
long. flap coeff.

unif. static inflow 12 B8 · · · C8 · · ·

decoup. lat. &
long. flap coeff.

unif. static inflow 11 C9 —

that may lead to a poor evaluation of the considered
performance metrics. The IS method adopted for the
analysis is an integration method directly derived from
the local optimization technique presented in [8].

In the following paragraph, some details on the he-
licopter models developed for this study will be pro-
vided, together with a description of the numerical
scheme adopted for solving the IS problem. The re-
sults obtained on the considered test cases for the dif-
ferent models will then be compared and discussed, in
order to identify those models that provide a reason-
able estimate of HQ potential while keeping model
complexity (and consequently the overall amount of
information necessary to develop it) down to a mini-
mum level. A section of conclusions ends the paper.

Analysis

Rotorcraft Models

As outlined in the Introduction, the study is based on
the analysis of the results obtained from the inverse
simulation of three different manoeuvres for different
helicopter models of various complexity. Table 1
reports all the cases considered in the analysis in form
of a test matrix, together with line type and color,
used in Figs. 2 to 8. Rotor models of decreasing
complexity are listed top–down in the rows from 1
to 9, while fuselage aerodynamic models of decreasing

complexity are listed left to right in the columns, indi-
cated as A, B, and C. The resulting number of states
for the models is indicated in the fourth column.

One should note that model A1 corresponds to
the UH-60 “Blackhawk” helicopter model described
in [13]. Only minor differences are present in the
fuselage aerodynamic model, which has been com-
pleted in order to remove a few discontinuities and to
make it able to simulate a wide range of manoeuvres,
including backward flight. Model A6 describes the
same helicopter modeled according to the approach
discussed in [18], while the simplest model, indicated
as C9, has been developed according to the guidelines
reported in [16]. These reference models, indicated by
boldface letters in Tab. 1, represent the backbone of
the analysis, whereas intermediate ones will be used
in order to highlight the relevance of specific aspects
of the simplifications adopted.

Individual blade models

A first set of 3 rotor models is considered, which fea-
tures an individual blade dynamic model. In the most
complex version, the model features a full nonlinear
description of fuselage aerodynamics; rigid articulated
blades with a dynamic twist model; an accurate repre-
sentation of the lag damper; a 3 state dynamic model
of main rotor inflow [14], and a simple tailrotor model
with dynamic uniform inflow.



The evaluation of aerodynamic loads on the blades
is based on airfoil lift and drag coefficients given
in tabular form for −180 ≤ α ≤ 180 deg and
0 ≤ M ≤ 1. A total of 3 × Nbl mechanical de-
grees of freedom characterize the rotor model, re-
sulting in 24 rotor states for the 4 bladed articulated
UH-60 rotor. 3 rotor inflow states, 1 for tail rotor in-
flow and 9 translational and rotational fuselage states
complete the 37th order model. Aerodynamic model
of the fuselage has been extended in order to pro-
vide aerodynamic force and moment coefficients in
tabular form for every possible set of values of aero-
dynamic angles in the range −180 ≤ α ≤ 180 deg
and −90 ≤ β ≤ 90 deg.

Reduced order models A2 and A3 are obtained by
eliminating the twist and lag blade degrees of free-
dom, respectively, while keeping every other aspect
of the original helicopter model, including, in partic-
ular, the inflow model and blade airfoil and fuselage
aerodynamic coefficients. Only the equivalent blade
torsional stiffness and lag damper data are no longer
necessary, so that the overall amount of information
necessary for developing these models is not signifi-
cantly reduced, the major savings being related to the
reduction of system order, from 37 to 29 or 21 state
variables for model A2 and A3, respectively.

2nd order TPP dynamics

A more compact representation of rotor dynamics is
obtained in terms of rotor flapping coefficients. In
this case the flap angle of each blade is expressed in
terms of a Fourier series expansion, truncated at the
fundamental frequency Ω,

β(ψ) = β0 − β1s sinψ − β1c cosψ

where, coning, lateral and longitudinal flapping coef-
ficients represent “global” rotor state variables, xR =
(β0, β1s , β1c)T , and the individual blade model is lost.
Assuming small flap angles and linear aerodynamics,
a second order dynamics for xR is obtained in the
form [15]

MẍR + CẋR + KxR = f(t) (1)

Under the above assumptions, rotor loads can be
evaluated analytically, in terms of average values over
one revolution. Inertial coupling between rotor and
fuselage is maintained, but the simpler representation
of rotor aerodynamics causes the loss of compress-
ibility effects and retreating blade stall. With respect
to the original rotor model developed by Chen [15], a

more accurate rotor inflow model is first assumed, fea-
turing a triangular induced velocity distribution (A4),
which is then simplified into a uniform dynamic inflow
model (A5) and a uniform, quasi–steady one (A6), as
in the original version. The number of states thus de-
creases from 19, for model A4, to 17 for A5 and only
15 for A6.

At the latter level, the effects of different fuse-
lage aerodynamic models is also considered, where
in the absence of a complete set of wind–tunnel ex-
periments, only fuselage aerodynamic force (B6), or
parasite area estimate (C6) could be available. This
aspect does not affect the number of dynamic states,
but only the amount of information necessary for
building the vehicle model.

1st order TPP dynamics

An even simpler representation of rotor dynamics is
obtained by neglecting inertial coupling between rotor
and fuselage. This is equivalent to assuming that,
starting from the rotor model described in [15], the
term MẍR in Eq. (1) is negligible with respect to
the others, so that rotor response can be modeled as

ẋR = C−1 [f(t)−KxR] (2)

where only aerodynamic coupling between lateral and
longitudinal flapping coefficients and the effects of
forward speed on rotor response are thus retains in
the model. Only the simplest fuselage aerodynamic
models (B and C) and uniform main rotor inflow will
be considered in this framework, featuring either a
dynamic variation of induced velocity as a function of
thrust coefficient (models B7 and C7, with 14 states)
or a quasi–static one (12th order models B8 and C8).

In the simplest model, equivalent to that described
in [16], a decoupled first–order dynamics for lateral
and longitudinal flapping coefficients are assumed.
Time–constants are held fixed over a wide portion
of the flight envelope, and a correction for low values
of the advance ratio is included in order to simulate
the so–called rotor dihedral effect at low speed.

Inverse Simulation Algorithm

As anticipated in the Introduction, the IS problem is
solved by means of an integration algorithm [7, 8].
Assuming that helicopter dynamics is represented in
terms of a system of nonlinear ordinary differential
equations in the form

ẋ = f(x,u) ; y = g(x) (3)



where a dot indicates the time derivative, x ∈ Rn

is the state vector, u = (θ0, A1s , B1s , θ0TR)T ∈ Rm

is the vector of m = 4 control variables (main rotor
collective, lateral and longitudinal cyclic pitch coeffi-
cients, and tail rotor collective), while y ∈ Rp is the
vector of tracked output variables.

Once a desired variation with time of the output,
ydes(t), is available (i.e. a manoeuvre profile like
those required by ADS–33 specifications [17]), equa-
tions of motion are integrated from an initial condi-
tion xI = xk at time tk over a time interval ∆t for a
piece–wise constant value u?

k of the control variables.
The resulting value yF = g(xF ) of the output vari-
ables at time tF = tk+1 = tk + ∆t is thus a function
of the (given) initial state xk and of the (unknown)
constant control action, u?

k.
Control variables can then be determined in such

a way that yF matches the value of ydes at time tF ,
that is, the inverse problem can be stated in terms of
a set of p algebraic equations in the form

yF = F (xk,u
?
k) = ydes(tF ) (4)

with m unknowns. When m = p, the problem is
nominal and, if well posed, it can be solved by means
of standard numerical techniques, such as Newton–
Raphson (NR) method [7]. If m > p the problem is
redundant, as in many aeronautical applications for
fixed and rotary–wing aircraft, when 4 controls are
available for tracking 3 trajectory variables.

Hess & Gao [7] solved this problem by use of the
so–called Moore–Penrose pseudo–inverse during NR
iterations, which results into the minimum–norm con-
trol vector that solves the problem. A more general
approach was proposed by De Matteis et al. [8],
where an optimization problem was solved in order to
enforce, together with the constraints on trajectory
variables, relevant properties to the inverse solution
by defining a suitable merit function to be minimized
locally at each time step of the inverse simulation.
As an alternative, an additional constraint can be en-
forced, such as a desired value for a relevant param-
eter (e.g. zero lateral acceleration or zero sideslip),
in order to obtain a nominal inverse problem. This
latter approach will be adopted in the sequel.

A further problem with aeronautical applications
of IS integration methods is represented by undesir-
able oscillations in the control action or even instabil-
ities in the inverse solution, discussed in some details
in [1, 19, 20, 21] that may be due to uncontrolled
states and/or numerical issues in the evaluation of
the output Jacobian matrix J = ∂yF /∂u?

k. These

issues can be circumvented, at the cost of increas-
ing the computational burden, by solving the inverse
problem stated by Eq. (4) over a longer time–horizon,
that is, choosing t?F = tk +N∆t > tk+1, that is, the
piece–wise constant control action is propagated for a
longer time interval in order to allow for uncontrolled
dynamics to settle down. The initial condition xk+1

for the next step is then evaluated at time tk+1 [8].
As a variation to a standard integration method, a

different definition of the algebraic system is adopted
in this paper, where, rather than solving Eq. (4) in
terms of the actual value of the tracked variables at
time tF , their increments over the time step between
tI and t?F are required to be equal. Equation (4) is
thus replaced with

∆y = F (xk,u
?
k)− g(xk) = (5)

= ydes(tF )− ydes(tI) +K [ydes(tI)− g(xk)]

where the additional term in square brackets mul-
tiplied by a gain K avoids that the actual solution
“drifts” away from the desired path because of the in-
complete implementation of the considered step dur-
ing the forward propagation, as outlined above. This
term also enforces asymptotic convergence on the
tracked variables when they achieve a steady value.
By some simple manipulation, Eq. (5) can be rear-
ranged as

F (xk,u
?
k) = ydes(tF ) + (K − 1) [ydes(tI)− g(xk)]

where for K = 0 the additional term disappears and
one simply requires that the increment of the actual
output variables at the end of the whole inverse sim-
ulation step ∆t = tF − tI equals the increment for
the desired variation of y.

Results and Discussion

Test Manoeuvres

As anticipated in the introduction, the IS algorithm
was tested, for all the different models outlined in
the previous section, for 3 different manoeuvres: (i)
a hurdle–hop, (ii) a slalom manoeuvre, and (iii) a
lateral repositioning.

Manoeuvres (i) and (ii) start from a horizontal trim
flight condition at V0 = 30 m/s ≈ 58 kts and V0 = 35
m/s ≈ 68 kts, respectively. Both manoeuvres are per-
formed at constant speed. In the first case a purely
longitudinal manoeuvre is considered, with a com-
manded altitude variation given by



∆z = 0 for t ≤ t0, t ≥ t0 + T

∆z =
∆h
16

{
9 cos

[
2π(t− t0)

T

]
+

− cos
[

6π(t− t0)
T

]
− 8

}
for t0 < t < t0 + T

In the second case, the helicopter is required to
perform a sequence of 4 turns, in order to follow a
lateral path defined by the equation

∆y = 0 for t ≤ t0, t ≥ t0 + T

∆y =
∆Y

27
√

3

{
32 sin

[
2π(t− t0)

T

]
−20 sin

[
4π(t− t0)

T

]
+

+2 sin
[

8π(t− t0)
T

]}
for t0 < t < t0 + T

The third manoeuvre starts from a hovering con-
dition that needs to be recovered after a lateral dis-
placement of YF = 120 m, where the lateral coordi-
nate is expected to vary as

y = 0 for t ≤ t0

y =
YF

16

{
8 + cos

[
3π(t− t0)

T

]
+

−9 cos
[
π(t− t0)

T

]}
for t0 < t < t0 + T

y = YF for t ≥ t0 + T

The data used for specifying the three manoeuvres
are reported in Tab. 2. Note that the parameters
for manoeuvres (ii) and (iii) are defined according to
the standards set by ADS–33 requirements [17]. On
the converse, manoeuvre (i) is not one of those spec-
ified in [17], but it is nonetheless one of the classic
test–cases adopter in the literature on IS. A graphical
representation of the desired variation of the relevant
trajectory variables for the three manoeuvres is also
reported (Fig. 1).

Commands necessary for tracking the desired ma-
noeuvres will be represented in the following sub–
sections in terms of main rotor collective, longitudinal
and lateral cyclic pitch and tail rotor collective, by
means of the percentage of the total available travel.
A variation between 0 and 1 is considered for main
rotor collective pitch, while ranges of variation be-
tween -1 and 1 are assumed for the other commands.
Attitude variables (i.e. roll, pitch and yaw angles)
and rotor states (in terms of multi–blade variables,
when individual blade models are considered, or first
harmonic flapping coefficients, when TPP dynamics
is adopted) will also be analyzed. On the converse,
trajectory variables will not be shown, as far as the IS
algorithm successfully tracks the desired trajectories,
in all the considered test–cases.

Table 2: Test manoeuvres

I. Hurdle hop
Manoeuvre duration T = 20 s
Height variation ∆h = 40 m

Peak climb rate ḣmax = 9.4 m/s
Initial velocity V0 = 30 m/s
Additional constraint ψ ≈ 0

∆y ≈ 0

II. Slalom
Manoeuvre duration T = 13 s
Lateral deviation ∆Y = 15 m

Peak turn rate ψ̇max = 16 deg/s
Initial velocity V0 = 35 m/s
Additional constraints ay ≈ 0

∆z ≈ 0

III. Lateral repositioning
Manoeuvre duration T = 16 s
Lateral displacement YF = 120 m
Peak lateral velocity ẏmax = 18 m/s
Initial velocity V0 = 0
Additional constraints ψ ≈ 0

∆z ≈ 0
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Figure 1: Geometry of the desired trajectories.

The IS algorithm adopts a piece–wise constant con-
trol over a time step ∆t = 0.2 s. For the individual
blade models (A.1 to A.3) N = 3 is used, so that the
inverse simulation problem is solved over an interval
∆t? = t?F − tI = 0.6 s. For all the other models (A.4
to C.9), N = 2 is chosen, resulting in an inverse sim-
ulation time–step ∆t? = 0.4 s. In all the considered
cases a gain K = 0.3 in Eq. (5) is selected.

Manoeuvre i: Hurdle–hop

Figure 2 depicts the command travel required for per-
forming the hurdle–hop manoeuvre for all the consid-
ered models, the most relevant aspects of the ma-
noeuvre appearing to be almost independent of the



model, if not for the initial trim state, which is signif-
icantly affected by the inflow model. In this respect,
differences are particularly evident in the lateral cyclic
pitch time–history (Fig. 2.b), where two groups of so-
lutions are clearly visible: the individual blade models
(A.1 to A.3, blue lines), together with model A.4 (red
continuous line), featuring the 2nd order TPP dynam-
ics with triangular inflow on one side, and the models
featuring uniform inflow (from A.5 to C.8).

The only minor difference in the first group of so-
lutions (A.1 to A.4) is represented by θ0, affected
by the presence of the dynamic twist model which
causes a 3% variation of main rotor collective pitch
with respect to those models where a blade torsional
degree of freedom is not present. This difference is
hardly visible on the reported results and appears as
truly negligible with respect to the command travel
required for the manoeuvre. Similarly, a slight vari-
ation on commands is also apparent when fuselage
aerodynamic moments are dropped (models B and
C), a difference particularly evident on longitudinal
cyclic pitch (Fig. 2.c), where command values are
shifted by almost 5%, but command travel is practi-
cally unaffected. If command displacement from trim
value was reported instead of the absolute command,
the first 12 models (A.1 to C.8) would provide al-
most identical results. The only exception is repre-
sented by model C.9, (magenta line), which exhibit
significant differences. In particular, a smaller com-
mand displacement from trim is apparent for A1s and
θ0TR (Fig. 2.b and d), due to the fact that in–plane
rotor forces are neglected, according to the elemen-
tary rotor model formulation reported in [16]. This
fact clearly demonstrate that, even for this relatively
simple, purely longitudinal manoeuvre, the most el-
ementary model misses important aspects of the re-
quired control action, thus harming a correct analysis
of vehicle manoeuvre potential.

A similar trend is apparent also for attitude (Fig. 3)
and rotor variables (Fig. 4). The time–histories are
almost identical for all these variables and attitude
angles all lie within ±1 deg from the solution for the
most complex model, A.1. As for rotor variables, only
model C.9 presents a few more significant variations
with respect to the trend identified on the basis of
the other models. Some differences, from the quan-
titative point of view, are visible on the coning angle,
β0, for individual blade models (blue lines in Fig. 4.a),
which show wider variations in response to rotor loads
changes along the manoeuvre. This means that TPP
models underestimate coning angle variations. This
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could be detrimental, when a pitch–flap coupling is
considered, but in the present case tan δ3 = 0, and
this difference does not affect significantly rotor ma-
noeuvre loads. As far as every other aspect is con-
cerned, the two classes of rotor models provide very
similar results. A few minor but systematic differ-
ences on flapping coefficients are also apparent be-
tween 2nd and 1st–order TPP models (Fig. 4) and on
lateral flapping coefficient, β1s (Fig. 4.c), in relation
to the inflow model, a difference that is compensated
by the slight variation in rotor cyclic pitch, as out-
lined above, in order to provide the correct load for
performing the desired manoeuvre.



1

2

3

4

5

β 0

−6

−4

−2

0

2

β 1c

0 5 10 15 20

−1

0

1

β 1s

t (s)
Figure 4: Manoeuvre I: Flapping coefficients.

a)

b)

c)

As a general limitation for the validity of the re-
sults, it should be noted that a negative peak value
of collective pitch is required during the descent phase
(Fig. 2.a), which means that the manoeuvre cannot
be completed at constant speed without violating a
constraint on command travel.

Manoeuvre ii: Slalom

A second set of test–cases is considered for a more
complex, three–dimensional slalom manoeuvre. The
command travel required around all control axes is
quite large for all the considered models, which shares
most of the qualitative features, but quantitative dif-
ferences on control effort are rather significant, as it
is evident from the plots reported in Fig. 5, where
results for the 3 reference models A.1, A.6, and C.9
are reported, together with those obtained for models
A.4 and C.6. The other individual blade models ex-
hibit a behaviour very close to that shown by A.1. In
a similar fashion, models B.6, 7, and 8 demonstrate a
behaviour very close to that obtained for models C.6
to 9, and they are not reported in order to limit the
number of lines in the plots.

If one drops model C.9, that as for the hurdle–hop
manoeuvre exhibits major differences with respect to
all the other test cases, the control on lateral cyclic
pitch appears similar for all the models, although the
individual blade model requires significantly less com-
mand travel for performing the required turns. Dif-
ferences are even more dramatic for the other com-
mands: model A.4 follows relatively well the com-
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Figure 5: Manoeuvre II: Command travel.
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Figure 6: Manoeuvre II: Pitch angle.

mand profile for θ0, but control activity on longitudi-
nal cyclic pitch and tail rotor collective is significantly
more intense for models A.4 to C.6, if compared with
A.1. This is at least partially due to the need for
a stronger filtering action on the command law ob-
tained by the IS algorithm, when an individual blade
model is dealt with, in order to avoid the insurgence
of command oscillations, but it is also related to the
effects of nonlinear dynamic terms not included in the
simplified TPP linear dynamic models and the related
evaluation of rotor loads and inertial coupling terms.

Similar considerations apply to rotor flapping pa-
rameters, not reported for the sake of conciseness. As
for attitude variable, roll and yaw angles (also not re-
ported) show very similar variations, with differences
limited to less than 2 deg for φ, over variations as high
as±50 deg, and less than±1 deg for ψ over variations
between −12 and 14 deg. On the converse, sizable
differences are present on the pitch angle θ (Fig. 6),



where differences as high as 5 deg are present, which
are equivalent to the whole amplitude of the motion
around the pitch axis. From this discussion it is appar-
ent that, when more aggressive tasks are considered,
the role of higher order terms in rotor dynamics has
a sizable effect on the simulated manoeuvre.

Manoeuvre iii: Lateral Repositioning

The last manoeuvre considered is the so–called lat-
eral repositioning. The command travel on A1s and
B1s is reported in Fig. 7 (the variation of main and
tail rotor collective pitch is not represented as it is
similar for all the models, with the usual exception of
model C.9, which follows the qualitative behaviour,
but misses the correct amplitude of the command
travel required). Major differences are visible on cyclic
pitch commands, A1s and B1s , and lateral and lon-
gitudinal flapping coefficients, β1s and β1s (also not
reported for the sake of conciseness). If on one side,
differences in terms of required command travel re-
main rather limited, on the other one the qualitative
trend shown by command and rotor state variables is
significantly affected by the main rotor inflow model,
where a triangular distribution at the peak lateral ve-
locity close to 20 m/s clearly causes a significant vari-
ation on rotor loads that need to be compensated by
a proper lateral and longitudinal control action, in
order to keep a purely lateral velocity and constant
fuselage heading.

In this latter situation, also the fuselage model ap-
pears to play a more significant role than in the previ-
ous cases. It is clear from Fig. 8, where roll and pitch
angles are reported, that neglecting fuselage aerody-
namic moments (green lines) or moments and side
and lift force components (black ones) results into
a significant difference in the attitude variables dur-
ing the manoeuvre, up to 5 deg for φ and 4 deg for
θ. Such a difference was not apparent in the previous
two manoeuvres, when the flow impinges on the fuse-
lage with small sideslip angles at high speed and most
of the fuselage is outside of rotor wake. On the con-
verse, when aggressive, lateral manoeuvres are dealt
with, all the features of the flowfield around the fuse-
lage play a more crucial role, especially considering
the fact that the manoeuvres starts and ends in a
hover condition passing through a relatively high lat-
eral speed, as high as 20 m/s in the considered case,
where rotor wake impinges on the fuselage for a large
portion of the manoeuvre and large variations of both
aerodynamic angles, α and β are expected.
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IS Algorithm Numerical Performance

Given the objective of the paper, focused on the de-
termination of the minimum level of model complexity
that allows for a reasonable determination of com-
mand travel that tracks a prescribed manoeuvre, the
performance of the simulation algorithm were not op-
timized, in the sense that the same values of the rele-
vant parameters for the IS algorithm were used when-
ever possible for all the considered cases, as previously
indicated. Furthermore, the simplified models were
obtained by simply removing the influence of portions
of the simulation code on vehicle dynamics, so that
only a (relatively small) portion of computational ad-
vantage for the reduced order model was achieved.
This means that a comparison in terms of CPU time
is not truly meaningful, at this stage, as far as effi-
ciency of the IS code for the simplified models could
be greatly enhanced if (i) optimal IS algorithm pa-
rameters are sought for the considered dynamic model
and (ii) simulation code is tailored on the model level.
Nonetheless, the simple reduction in the number of
states already provides a significant decrease of the
computational burden of approximately 66%, when
passing from individual blade models to models fea-



turing a second order TPP dynamics. Neglecting in-
ertial coupling in first–order TPP rotor models allows
for a further 40% average reduction of the CPU time
(that thus become less than 20% of that necessary
for the most complete models), when a dynamic uni-
form inflow model is assumed. In this respect, the
iterative procedure for the determination of a quasi–
steady uniform inflow velocity penalizes performances
of the simulation SW.

Conclusions

The paper shows how rotor, inflow and fuselage aero-
dynamic model may significantly influence the results
obtained from the inverse simulation of a given set of
test manoeuvres. The analysis outlines how, in the
simplest cases, only minor differences are highlighted
while, for more demanding tasks, simpler models may
loose relevant phenomena, thus harming the validity
of the results. In particular, a hurdle–hop longitudinal
manoeuvre is well captured by most of the considered
models, while a more aggressive, lateral slalom is not
well represented, when an individual blade model is
not available. At the same time, fuselage aerody-
namic models play a crucial role in low–speed tasks,
such as a lateral repositioning, when a large variation
of aerodynamic angles is expected.
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