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ABSTRACT 
 

The cost-efficient method to calculate the sound pressure due to main rotor unsteady forces in far acoustic 
field is proposed. As it is known, the evaluation of the sound pressure in relation to time allows estimating the 
main rotor acoustic characteristics. The paper aims at the enhancing the green safety of advanced 
helicopters and those being up-graded ones. The mathematical simulation of rotor noise emission is needed 
both to find out the phenomena physical essence (currently there is no unanimous opinion in re of noise 
emission processes of several types) and to predict analytically the rotors acoustic characteristics or the 
rotors combinations at different flight regimes. The unsteady load on the main rotor blade components is 
used in the proposed method that is based on Ffowcs Williams –Hawkings equation to calculate the sound 
pressure that is generated by main rotors [1, 2]. This load is estimated by calculation method based on non-
linear theory of main rotor in non-stationary statement [3-5]. Such an approach is recognized as the most 
rational when constructing the methods of main rotor sound characteristics calculation because the rotation 
noise and the non-stationary noise constituents are taken into consideration including the load spikes 
conditioned by the interaction between the blade and the ahead blade tip vortex (BVI). Therefore the 
integrated analytic research is performed of rotation noise and  vortex noise. 
 

 
1. Introduction  
 
The noise generated by helicopter is one of its most 
essential drawbacks. Moreover, the noise 
requirements are getting more toughening. 
Therefore the noise level estimation at design and 
update stages is a challenge. 

Among the main helicopter noises it is to distinguish 
the impulse noise that is conditioned by the blade 
thickness, the main rotor rotation noise, the non-
stationary forces noise on main rotor blades and as 
a consequence the noise generated by the 
interaction between the blade and the ahead blade 
tip vortex (BVI). Within this paper, the approach is 
proposed to calculate the sound pressure in the 
main rotor far acoustic field that is conditioned by 
non-stationary load on rotor blades and 
correspondently to calculate the main rotor acoustic 
characteristics. 

 
2. Problem statement  
 
Let the propagation of acoustic waves in frictionless 
fluid in infinite space be considered. The pressure 
and density are changed at that point where the 
sound wave is passing the medium, thus their 
current values are estimated in relation to the 

undisturbed po and ρo values and correspondently 
as: 

                       p=po+p’;  ρ=ρo+ρ’. 
 

The p’ value is also called a sound pressure. The 
sound waves propagation in the free space for the 
stationary medium or the uniformly moving one is 
described by the homogeneous wave equation that 
is obtained from the linearized equations of 
continuity and momentum conservation

 [1] 
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where:   –  is density; с  –  is  a  sound  velocity;  
х – is a spacial coordinate; □c

2
 – is a wave operator. 

The equation (1) in Lighthill theory
[1]

 is modified by 
substituting into the right part the term that is 
equivalent to the distribution of compact acoustic 
quadrupoles, dipoles and sources correspondently: 
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where: 

jiij UUT   – is a Lighthill stress tensor 

without regarding the viscosity for compact acoustic 
sources case. 



When the Green free space function is chosen to 
solve the equation (2), it is possible to obtain the 
Ffowcs Williams–Hawkings equation

[1]
, that 

describes the sound generation in body related 
system. The emission of quadrupole character may 
be neglected in the far field for which the distance to 
the observation point considerably surpasses the 
rotor diameter. Then this equation for acoustically 
rigid surface by neglecting its acceleration may be 
reduced to [1]: 
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where: Vn – normal velocity to surface; x


 – 

observation point radius vector; y


 – radiation point 

radius-vector; Mr – Mach number calculated for 

vector  yx


 ; n


 – normal to surface; 22 yxs


 ; 

dS – surface element. 
The blade is to be considered infinitely thin, 

therefore p – is the delta pressure on the blade 
surface. Let the equation (3) be used to determine 
the sound pressure of rotor. Firstly we investigate 
the sound emission defined by dipoles, i. e. the 
second member of Equation (3). 
The t time denotes the time required for the 
disturbance to achieve the observation point but as 
far as the time lag is different from the different 
blade points it is impossible to integrate by surface. 
The time differentiation is to be put under integral 

sign with taking into account that  ee tstt  /c and, 

re Mtt 1/ , where te – is a time of radiation 

from a concrete point at blade: 
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Let the codes be introduced (Figure 1): (x0,y0,z0) – 

observation point coordinates, 

 xor Mxz  /arcsin 0 - observation point azimuth 

with consideration of time lag (at te moment of time); 

  oozor ssMy /arcsin   – observation point 

longitude at 
et  moment of time; Mx, Mz – Mach 

numbers estimated by velocity projections on Х and 

Z axis; Ω – rotor circular RPM. Then the current 
blade point azimuth will defined by the relation:  
 

re
r

x
t   arcsin , 

 

where: х – is a blade point coordinate, counted off 
the leading edge; r – this point radius-vector taken to 
the rotor hub center. 
The  rM1  Doppler factor for far field may be 

recorded as follows: 
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where 
r  – is an angle between the vector towards 

the observer and the rotor hub velocity vector;  
 

r

r

22

cos
).Mcos-1(


c

xr
a


 . 

 
In the formula (5), the first factor defines the time lag 
that is related with the rotor hub rotation and the 
second one defines the lag related with blades 
rotation in re to hub. 
 

 
 

Figure 1. On the problem statement 
 

As taking into account the mentioned above the 
expression (4) for the р(t) acoustic pressure at t 

moment of time is reduced as follows: 
 

 
 

   
dxdz

a

p

a

Mcs
tp

R

r

x

x

r

r

t

l























  









sin1sin1

1

cos14

sin

0

2

. 

 
Here the integration is made on the blade span from 
the tip of finned section of the blade r0 till its end R 
as well as on the chord line from the leading edge till 
the trailing edge. Thus, to calculate р(t) in any point 
of acoustic far field it is necessary to know the 
temporal distribution of aerodynamic load on blades. 
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3. BLADES AERODYNAMIC LOADS AND SOUND 
PRESSURE ESTIMATION  
 

The methodology to calculate the main rotor blades 
unsteady aerodynamic loading is given in [3-5]. The 
movement kinetic parameters are assumed to be 
known. There are no restrictions imposed on neither 
rotor blade shape nor the type of their movement. 
The rotor blades are changed for infinitely thin basic 
surfaces. To define the loads on lifting surface areas 
the Cauchy-Lagrange integral is used. Under the 
numerical implementation of calculation method the 
continuous processes and distributions are 
substituted by time- and space discrete ones. Each 
rotor blade is divided into a certain number of panels 
along the radius and chord. In the center of these 
panels there are control points where the no-fluid-
loss condition is implemented and the aerodynamic 
loads (Figure 2) are calculated. The blade azimuth 
position angle is taken as a non-dimensional time. 

 

 
 

Figure 2. On the calculation method implementation 
 

The blade-distributed aerodynamic loads obtained 
by the calculation method of nonlinear unsteady 
aerodynamic characteristics are substituted in 
Ffowcs Williams-Hawkings equation (3) to obtain the 
sound pressure as a time function. 
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where: 
Fklp – blade panel area where the differential 

pressure acts, 

vk  – is a number of rotors in combination, 

L – is a number of blades of the k  – th rotor,  

kp – is a number of blade panels of the k  – th rotor. 

 
The observation point coordinates are specified in 
the rotor related system. The main rotor kinetic 
parameters to be specified are: Vн, -velocity, αн, -
angle of attack, ωн,- main rotor angular rotation rate, 
ωнR, -blade tip circular velocity, the time quantization 

parameters- – Δψ blade rotation angle per one 
design pitch. 
Figure 3 presents as a pattern the results of 
simulating by the method proposed the 5-bladed 
main rotor flow around. The reference data are as 
follows: R=8.65 m is a rotor radius; ω

н
R=214 m/s is a 

blade tip circular velocity; V
н
=60 m/s is a flow 

velocity. 

 

Figure 3. Simulation of the main rotor flow around 

 
To check the validity of the proposed method the 
calculation results are compared with the flight test 
data (Figure 4). The flight test data are: helicopter 
weight 11 tons, D=17.25 m; ΩR=218 m/s; V=60 m/s, 
5-bladed rotor. The observation point is situated at 
the distance of 150 m and its angle of elevation is 
θ=60°. 

 

 
 

Figure 4 – Comparison to the flight test 
 

E.g. Figure 5 and 6 show the results of determined 
sound pressure oscillation in observation points 
where the sound pressure is generated by the main 
rotor of the helicopter that has the in-flight weight of 
10000 kg, the speed V=60 m/s (216 km/h). 
The distance to the observation point was 
Robs=150 m, the angle of elevation was θ=1°, 10° and 
30°. 

 



 
 

Figure 5 – Sound pressure oscillation, θ=1° 
 

 
 

Figure 6 – Sound pressure oscillation, θ=10° 
 

 
 
Figure 7 – Sound pressure oscillation, θ=30° 
 

 

 
 

Figure 8 - Amplitude-frequency response, θ=1° 
 

 
 

Figure 9 - Amplitude-frequency response, θ=10° 
 

 
 

Figure 10 - Amplitude-frequency response, θ=30° 

The overall sound pressure subject to harmonic 
analysis is defined. Figure 5, 6 and 7 show the 
sound pressure oscillation characteristics for the 
angle of elevations θ=1°, 10° and 30°. The influence 
of angle of elevation on the amplitude-frequency 
response is simulated (Figure 8, 9 and 10). 
The diagrams of sound emission directivity are 
made for 5-bladed rigid main rotor (Figure 11 and 
12) in vertical and horizontal planes. 



 

Figure 11 – Diagram of sound emission directivity in 

vertical plane, SPL (dB) 

 

Figure 12 – Diagram of sound emission directivity in 
horizontal plane, SPL (dB) 
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