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Summary 

Inverse solution of the helicopter equations of motion involves the 
calculation of the control sequences required to fly a defined manoeuvre. 
A package capable of performing such solutions has been developed and is 
briefly described in this paper. These inverse solutions have given some 
insight into potential stability problems associated with constrained 
flight, and a technique for predicting these instabilities has been 
developed. 
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1. Introduction 

System matrix of helicopter 

Modified system matrix 
Control matrix of helicopter 
Input matrix for inverse solution 
Altitude 
Roll, pitch and yaw rates 
Manoeuvre time 
Translational velocities in hody axes 
Reference values of translational velocities 

Translational accelerations in body axes 
Control vector 

Translational velocities in earth axes 
Translational accelerations in earth axes 
State vector 

Pitch, roll and yaw attitude angles 
Main rotor collective pitch angle 
Tail II II If II II II II II II 

'' '' II II 

'' • II If 

lateral 
longitudinal 

cyclic pitch angle 
II II If II II II 

The ability to perform flight path constrained manoeuvres is a 
requirement of almost all aircraft. The manoeuvres may be common, such as 
approach and landing, or more specialised as, for example, in maritime 
surveillance or aerial combat. Traditionally it is the task of the pilot 
to control the execution of these manoeuvres but there is an increasing 
application of automatic techniques. This current interest in flight path 

7.7- 1 



constrained manoeuvres has provided the motivation for the development of 
methods for solving the inverse problem of aircraft motion, that is, given 
a specified flight path where the aircraft 1 s position is a known function 
of time, find the control movements which are necessary to fly that path. 

Helicopters flying in a nap-of-the-earth (NOE) environment are 
required to perform well defined manoeuvres associated with concealment, 
obstacle avoidance and weapons delivery (Ref. 1). A method has been 
developed which solves directly the inverse p:robletn for helicopters flying 
these classes of manoeuvre (Refs. 2, 3). This inverse method has been 
incorporated in a computer package designated HELINV. Initially, this 
package was developed for use in evaluation of helicopter agility 
(Refs. 3, 4) but has also provided insight into the potential problems of 
instability which can result from a constrained flight path. 

2. A Description of the Inverse Method 

A comprehensive description of the inverse method used in HELINV is 
given in Reference 3. A brief outline is included here dealing with the 
main aspects of the inverse simulation : the mathematical model, the 
inputs to the model, and the solution algorithm. 

2.1 The Mathematical Model 

Previous m<":thods of solving the inverse problem have relied on 
reduced order or full linear models (Ref. 5). The use of a linearised 
model limits th~ severity of manoeuvre over which valid inverse solutions 
can be obtained. The approach taken at Glasgow University does not 
require any compromise on the quality of the mathematical model, and uses 
the model which is incorporated in the HELISTAB simulation package (Ref.6) 
developed by the Flight Systems Division of the Royal Aircraft 
Establishment. This model is nonlinear, has six degrees of freedom and is 
of proven validity over a wide range of flight conditions. Using the 
HELISTAB model allows valid inverse solutions to be found for various 
configurations flying a wide range of manoeuvres. 

2.2 Definition of Manoeuvres 

In an inverse simulation the inputs into the system are the required 
manoeuvres. A series of NOE manoeuvres (such as pop-ups, turns, 
accele~ations etc.) are available in the HELINV package. Manoeuvres are 
defined by specifying the helicopter's flight velocity, V, position 
(x,y,z), and angle of sideslip\ ~\ as functions of time. A flight path in 
three dimensions is defined by specifying the helicopter's position in the 
xy plane as a function of time, then defining altitude changes around the 
reulting track. Flight speed and sideslip are both constrained either to 
be constant, or vary as a polynomial function of time. For example, the 
hurdle-hop manoeuvre shown in Figure 1 is defined by specifying altitude, 
z, as a function of time, the track simply being the x-axis. All 
manoeuvres in the HELINV package begin and end at a defined trim state 
therefore the flight path specifying function must satisfy the boundary 
conditions 
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I) t ~ 0, z ~ o, z 0' z 0 
2) t ~ tm/2, z -h, z (I 

3) t ~ tm, z ~ 0, z o, z ~ 0. 

A simple analytic function which fulfills these conditions is a 
seventh order polynomial. The user then simply specifies the desired 
hurdle height, h, and total distAnce~ s, and an iterative solution is used 
to find the manoeuvre time tm, and hence the coefficients of the 
polynomial. The helicopter's (x,y,z) components of earth axis 
acceleration and velocity can then he found djrectly. It is worth 
emphasizing that these manoeuvres are defined indepet1dently of any 
helicopter model or configuration, and :indeed may not be flyable by the 
helicopter being simulated. 

2.3 The Inverse A1f!orit.hm 

The manoeuvre is divided into a series of equally spaced time 
points, the equations of motion are th~n solved at each of them to give 
the control time histories needed to fly this rncmoenvre. The equations 
are solved using an iterative scheme with the attitude angles 9l@ as the 
unknowns. At each time point, the solution i~ started by making an 
initial guess of the values of these angles. It is then possible (knowing 
the value of sideslip velocity, v, from the spPcified sideslip angle and 
flight velocity) to calculate the corresponding value of the third 
attitude angle, 11· The body fixf'ri axes velocities and accelerations can 
then be found by using an Euler angle transformation. NeKt the t'Otational 
velocities and accelerations are calculated tlsing numerical 
differentiation of the attitude angles. With all of the state variables 
available it is possible to evaluate all of the fuseJagc aerodynamic 
forces and moments, and the equations of motion may be used to solve for 
the cor-rect e and ¢ using the Newton Raphson procedure. Coincidentally 
the main and tail rotor forces and moments are are determined, from which 
the control angles are calculated. Rath~r than s~ek a global solution, 
the equations of motion are solved progressively through the manoeuvre. 
This economic structuring of the algorithm allows rapid soJut:ion which is 
important in making the inverse method a pt·actical tool. The implicit 
nature of the algorithm is conducive to numericaJ stab:i]"iLy. 

3. Examples of Inverse Solutions 

The most useful feature of an inverse method is that a series of 
helicopter configurations can be simulated flyinz a single precisely 
defined manoeuvre. The required control and resulting attitude responses 
can then be compared, highlightins the merits and defficiencies of the 
various configurations. To illustrate this facility, inverse solutions 
have been found for a hurdle-hop manoeuvre flown by two versions of a 
conventional battlefield helicopter of mass of 4500 kg and having four 
blades of radius 6 .. 5m. One of the t""Wo variants has a flapwise stiff, 
Semi-Rigid Rotor (configuration SRR), the other a fully Articulated Rotor 
(configuration AR). In the HELISTAB model, blade flapping is simulated by 
using a centre sprine equivalent rotor with a flapping stiffness spring 
constant, K~. The value of K~ is chosen to to give the same rotating and 
non-rotating flapping frequencies as those of the true blade. In this 
paper the flapping stiffness of the SRR and AR helicopters have been given 
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typical values 170 and 50 kNm/rad respectively. All other rotor and 
ftlselage parameters are the same for both confieurations. 

3.1 Results for a HURDLE-HOP Manoeuvre 

The at.tltude and control tjme histories for both aircraft flying a 
hurdle-hop manoeuvre are given, plotted as displacements from a trim 
condition~ in Figure 2. The hurdle height, h, is 25m, the total 
distance, s, is 500m, angle of sideslip is constrained to be zero and the 
'Who1l" manoeuvre is flown at a conslant velocity of 80 knots. 

The rotors of both helicopter's will produce approximately the same 
thrust in a given flieht condition sine~ they both have the same 
aerodynamic properties. Any small difference between the thrusts will be 
duP to slightly different flappine aneles. This explains why the time 
histories of main rotor collective, 9 0 , are identical. As both vehicles 
are similar, the total rotor mom~nt required to perform the manoeuvre will 
be similar. This moment is composed of a contribution due to the elastic 
stiffness of the rotor (governed by K~) and a contribution due to the 
offset of the thrust vector from the helicopter centre of gravity (caused 
by rotor disc tilt). Since the SRR configuration has a much higher K~, 
the disc tilt required to produce a given rotor moment is less. This is 
evident by the smaller displacements in the longitudinal (9 1 s) and lateral 
(9 1 c) cyclic pitch angles of the SRR configuration. The smaller disc tilt 
of the SRR helicopter also produces sma1ler excursions in pitch attitude, 
e. The higher degree of coupling between longitudinal and lateral 
dynamics associated with rigid rotor helicopters is illustrated by the 
plots of roll angle, ¢. 

This example gives an insight into the power of inverse methods to 
give directly comparable information about different configurations. The 
results appear to be correct in size and trend, however some form of 
validation is obviously necessary. 

3.2 Validation of Results 

In the context of an inverse method using an established 
mathematical model (HELISTAB), the validation stage is striclty to confirm 
the consistency of the results between HELINV and HELISTAB. Verification 
of results is therefore achieved by performing a conventional time 
response calculation using the control time histories generated by HELINV 
Rs. inputs to the HELISTAB mathematical model. The resulting "control 
generated" flight path can then be compared with the "commanded" flight 
path. 

The control time histories of the AR helicopter flying the 
hul~dle-hop manoeuvre have been used to perform a time response solution, 
from which a control generated flight path has been computed. This is 
compared ~ith the commanded path in Figure 3. There is little difference 
between the two paths : a small discrepancy at the exit is visible on the 
altitude plot, and a maximum drift of about 0.06m over the SOOm track. 
The discrepancies are entirely consistent with the different numerical 
integration methods used in the forward and inverse solutions. A result 
of similar quality is obtained using the control time histories of the SRR 
helicopter. 
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3.3 Oscillatorv Solutions 

Not all solutions found by HEL!NV are as wel1 defined or easily 
explained as those for the hurdle-hop described above. When a small 
calculation time step is usedt oscillations often begin to appear in the 
solution. As the time step is reduced the amplitude of these oscillations 
increases, their period rema]nine constant. These oscillations can be 
observed in the following example of the simulation of turning flight. 
Turning manoeuvres are specified by defining turn rate as a function of 
time. This allows continuity where linear sections of track join curved 
sections. In this example turn rate is defined, as shown in Fig11re 4) as 
having a constant value over the main section of the manoeuvre (giving a 
circular track) with cubic polynomial functions of time to define the 
entry and exit transients. The flight path co-ordinates at the exit are 
supplied (in terms of an effective radius) and an iterative sequence is 
used to find an appropriate value of maximum, steady turn rate, Xm. The 
control and attitude time histories for the SRR helicopter flying this 
type of turn, of effective radius 200m, nt constant height and velocity of 
80 knots is given in Figure 5. The calculation time step is 0.08 seconds. 

Again, the plots appear, intuitively, to be correct both in size and 
trend. As the middle section of the manoeuvre is a steady turn, ell 
variables would be expected to reach a certain steady value, then remain 
constant until the exit transient~ However, it is noticable, especially 
in the plots Of fuselage attitUde, 9, and longitudinal cyclic, 9 15 , that 
there is a damped oscillation about this steady value. Despite the 
oscillations, valid solutions are still being found~ as can be observed in 
the comparison of control generated and commanded flight paths shown in 
Figure 6. The oscillations become more pronounced when the calculation is 
repeated ~ith a smaller time step, as shown in Figure 7 where it was 
reduced to 0.02 seconds. There appear to be two distinct oscillations -
one of period just over 1 second (visible in the plots of e and e 1 s) 1 and 
the other has a period of about 0.7 seconds (visible on all other plots). 
The dependence on the size of the time increment is suggestive of an 
inconsistency of the discrete formulation but its origin has a simpler 
explanation and is discussed in section 4.3 after some preliminary 
analysis. 

To check whether the oscillations were simply due to the natural 
modes of the aircraft, a linearised version of the HELISTAB model was used 
to compute the helicopter's eigenvalues. Oscillatory modes of period 2.8 
and 16.8 seconds were predicted for the SRR helicopter at a steady 
velocity of 80 knots. Neither of these modes match the oscillations 
visible in the inverse solution. The conclusion is that the constraint of 
flying a predetermined flight path is significantly modifyingthe dynamic 
characteristics of the system. An investigation to quantify this effect 
is a required adjunct to the inverse method. 

4. A Linearised Representation of the Inverse Problem 

A convenient way of analysing the stability of a nonlinear dynamic 
system is by linearising its equations of motion. The equations can be 
written in a convenient matrix form and simple matrix operations used to 
determine the dynamic characteristics of the system. For this reason it 
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would seem logical that a linearised statement of the inverse method will 
be of use in the investigation of the irregularities present in the HELINV 
solutions. For consistency, a linearised version of the HELISTAB 
mathematical model was used. The linearised helicopter equations of 
motion can be written in the form : 

X = A X + B ~ (I) 

where 

A ; the system matrix, 

B the control matrix. 

The matrices, A and B, contain the aerodynamic derivatives and relevant 
gravitational and velocity terms. The linearjsed equations, when arranged 
in the form given by equation (1), can be used to describe the 
unconstrained motion of a helicopter in response to an applied series of 
control inputs. The eigenvalues of the helicopter are found from the 
system matrix, hence the period and damping of any oscillatory modes can 
be found. 

The inverse ·solution of the nonlinear equations of motion is made 
unique by imposing four constraints on the helicopter's dynamics : the 
three accelerations in earth-axes (functions of the flight path geometry 
and the helicopter's speed), and sideslip velocity, are all given 
specified values: In effect~ specifying the earth-axes accelerations, 
applies constraints to the body-axes accelerations. Specifying sideslip 
velocity leads, through yaw angle, v, to a constrainL on yaw rate, r. The 
four principally constrained variables can be grouped together to form a 
vector x 1 • Hencet if : 

and 

then the system matrix of equation (1), when partitioned, becomes 

The 
are 
(2) 

[ ~. l = [ 
~2 

vectors ~ 1 and ~ 1 
therefore known at 
can be rewritten 

~. 

~2 

From equation (3) 

(2) 

contain the specified values of the constraints and 
every point in the manoeuvre. The matrix equation 

(3) 

(4) 
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~ = Bt-
1 t ~~ - A11 ~1 - A12 ~zJ• 

Substituting this into equation (4) gives, with manipulation 

~ 2 = (A 22 - B2 B1 -
1 A12 ] ~ 2 + [(A 21 - B2 B1 - 1 A11 ) ~ 1 + (B 2 B1 - 1 ) ~ 1 ] 

Hence, if 

• • • • • ( 5) 

~c [ :: ] 

then the constrained system is represented by 

(6) 

Ac and Be can be considered as the system and control matrices of the 
constrained helicopter. Since it contains the constraint vectors, uc is 
equivalent to a control vector in an inverse solution, the constraints, in 
effect~ being the inputs to the system. The only limitation on the use of 
this analysis is that the matrix, B1 ) must be nonsingular. 

4.1 Calculation of Constrained System and Control Matrices 

The first stage in the calculation of the new system and control 
matrices must be to replace the constrained variables (u,v,w,r) by their 
specifying functions. 

a) Body-axes Velocities and Accelerations 

The helicopter's body-axes velocities and accelerations are found 
using the Euler transformations, the velocities and accelerations in the 
earth-axes system being specified as functions of time. By linearising 
the transformation equation the perturbed body-axes velocities are given 
by 

[ 
u 

l [ ' .. 120 '•• l [ x 

l [ 
uo l v = m,o mzo m,o y vo 

w n, o nzo n,o z wo 

The body-axes accelerations are given by the same transformation 
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r ~ 1 
H;; , 

r 1 
r 1 1 0 

120 1,0 I wc,q - v 0 r 

m, o m "o II y ' u 0 r WoP (7) 

- ~ J 
mzo I ......... 

l n,o n 2 C• n '3l) 
I ~ 

I l VoP - u 0 r J JLZ 
b) Yaw Rate and Acceleration 

An expression relating yaw rate to th~ sideslip constraint can be 
developed from the second of equations (7) 

1 
Cm10 'i r = - X + mzo y + m,o - " + WoP) 

uo 

and by differentiation : 

l 
Cm1o ·x· ")! ... \i "'oP) r = + m,o + m,o z - + 

Uo 

The fourth of the original linearisPd equations of motion is used for p, 
i.e. from equation (1) 

P a41 u + a4Z v + . • •.... + b44 eotr 

where a 41 etc. are entries in the original system and control matrices. 
The sideslip angle is constrained as a function of time. Hence, the 

sideslip velocity is given by : 

v = V sin/3 ..... (8) 

The values of v and v are found by differentiation of equation (8) 

V = V sin/3 + V~ COS/3 

) ..... ( 9) 

'V = (V- V{l 2 ) sinf.l + (2iJ(l + gv) cosf.l 

Using the relationships above to eliminate the state variables u,v,w,r and 
their rates of change gives a system with slate and control matrices Ac 
and Be as described above. The exact: composition of Ac and Be together 
with a detailed derivation is given in Reference 3. 

~.3 The Oscillatory ~ature of the Inverse Solution 

From the analysis in the previous section, the modes of the 
modified, constrained system are found from the new "system matrix", Ac. 
Using the constrained system matrix Ac, it is possible to predict the 
oscillatory form of the solution. For the case of the SRR helicopter 
given above, calculation of the matrix Ac, and its associated eigenvalues 
for a trim flight velocity of 80 knots, gives the following two modes. 
The first is a divergent oscillation of period 0.69 seconds and time to 
double amplitude of 115 seconds. The second mode is a convergent 
oscillation of period 1.19 seconds and a time to half amplitude of 1.7 
seconds. These periods show good correlation with those measured from the 
graphs on Figures 5 and 7 (0.7 and 1.0 seconds). A similar effect can be 
observed using different configurations and manoeuvres. These also 
explain the dependence on the time increment remarked upon earlier. A low 
order implicit method introduces an artificial damping, the effect of 
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which is reduced as the time inc1·ement becomes smaller and the numerical 
solution approaches the correct solution. It is clear from the numerical 
results obtained that the oscillations which become more noticeable as the 
time increment is reduced are thosf' corresponding to the persistent~ 
indeed unstable, oscillations with time to double amplitude of 115 seconds. 

The above analysis gives an insight into another problem associated 
with the inverse solutions. It is noticeable from Figures 2, 5 and 7 that 
not all of the variables return to their commanded trim values. This can 
be explained by consideration of the flight path geometry at this point. 
At the exit, the polynomial representation of the manoeuvre is joined to a 
linear flight path. In the case of the hurdle-hop, there is only 
contintlity up to the second derivative (i.e. ~he boundary condition at the 
exit is for zero acceleration). It is the discontinuity of the higher 
order d0ri va.tj ves whi .:.:h causes the apparent error at the exit.. In an 
inverse solution, a discontinuity in the higher order flight path 
der-ivatives (i.e .. a discontinuity in the "input signal") is analogous: to a 
step input to a control variable in a conventional time response 
solution. The helicopter can therefore be expected to respond in a 

similar manner. The analysis given above predicts that the dynamics of a 
hf'1icopter constrained Lo fly a fixed flight path are dominated by two 
oscillatory modes. The response of the helicopter~ after encountering the 
discontinuity at the exit of the manoeuvre 1 wilJ therefore be to oscillate 
towards the commanded trim state. This is most clearly demonstrated by 
lhe following example .. 

A pop-up manoeuvre can be considered as tl1P first half of a 
hurdle-hop manoeuver - a height gain either to avoid some obstacle or 
follow terrain. The flight path can be rnodf>lled usine a fifth order 
polynomial with boundary conditions at the exit giving constant velocity 
al an altitude h. If a Jinear section is then joir1ed to the exit of the 
pop-up} as in Figure 8, then the flight path derivatives above second 
order will be discontinuous. In effect there will be a slep chanee in the 
input vector uc. Due to the nature of the system, this step in the input 
signal should cause oscillations in the output variables (e,o,p,q) .. This 
is crearly shown in Figure 9. This figure shows the time histories for 
lhe SRR configuration flying the extended pop-up manoeuvre, dimensions 
given in Figure 8, at a velocity of 120 knots. The pop-up section of the 
manoeuvre takes just under 5 seconds 1 after wltich all variables oscillate 
about their trim values. For a veocity 120 knots the eigenvalues of the 
modified system matrix give a divergent oscillation of period 0.75 wit'n 
time to double amplitude of 80.9 seconds, and a convergent oscillation of 
period 1.22 and time to half amp]itude of 1.03 seconds. From Figure 8, 
the periods of the oscillation are 1.05 seconds for (B,q) and 0.72 seconds 
for (¢,p). These values correspond to those predicted by the theory. 

5. Conclusions 

The oscillatory form of certain inverse solutions was initially 
thought to be caused by some sort of numerical inconsistency within the 
algorithm. However the analysis presented in this paper indicates that 
these oscillations are a direct consequence of the constraints imposed on 
the helicopter in terms of the precise definition of its velocities and 
accelerations. As the values of the original system and control matrices 
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A and B used in the above examples were calculated from HELISTAB, which is 
of proven validity, it follows that a real helicopter constrained in a 
similar manner~ v.rill respond in a similar way. The findings of this paper 
are therefore relevant to control system studies for helicopters which are 
guidance orientated, and to piloted conditions where a strict flight path 
is defined, for example in agility studies where circles or figures of 
eight are flown. This research will continue by examining flight data 
from such piloted exerecises. 
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Figure 1 The Hurdle-Hop Manoeuvre. 
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