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Abstract

A multifield variational finite element (FE) cross-sectional analysis is developed following the Reissner’s
partially mixed principle for composite blades. The three-dimensional (3D) displacements and cross-
sectional dominant stresses are considered to be the primary unknowns in the framework of the
multifield principle. The cross-sectional warping deformations due to extensional, transverse shear,
bending, and torsional loadings are incorporated. The boundary restraints due to nonuniform torsional
warping are modeled to represent end effects for composite beams. The present formulation results in
a generalized 7×7 Timoshenko-Vlasov sectional stiffness matrix including elastic couplings. Numerical
results for the elastostatic response of composite beams and blades indicate good correlation with the
available experimental data and other approaches. In addition, the stresses computed directly from
the present multifield approach show an excellent correlation with the 3D FE solutions.

1 INTRODUCTION

The analysis and design of composite blades is a
complex task with the cross-section consisting of spar,
shear webs, skin, leading edge cap, and foam or ho-
neycomb core regions. With the availability of ad-
vanced composites technology, the cross-sectional
layup can be tailored for various elastic couplings in
order to improve aerodynamic performance and ae-
roelastic stability, and/or reduce vibration and noise
levels. A full 3D analysis of composite blades is usu-
ally computationally intensive which inhibits its use for
preliminary design and optimization. A vast amount
of literature is available on the efficient beam theo-
ries including the modeling of composites with various
levels of refinements. These beam theories adopt a
decomposition approach by overlaying the spanwise
cross-sections onto the beam lengthwise reference
line [1]. This leads to a two-level analysis: one at a
local two-dimensional (2D) sectional level to compute
inertial and elastic constants, and the other at a glo-
bal one-dimensional (1D) level to predict the global
static or dynamic behavior [2]. The local sectional
analysis is a vital step which involves the modeling of
classical elastic couplings combined with nonclassical
effects present because of 3D warping displacements
and boundary restraints. These effects require careful
consideration for accurate determination of sectional
elastic characteristics which are then provided as in-
put to 1D beam static or dynamic analyses [3]. The
correct recovery of 3D displacements, strains, and
stresses is directly linked to the 2D sectional and 1D
beam analyses.

Most of the previous works such as in [4, 5] are esta-
blished based on the displacement formulations im-
plying that the displacements are the primary unknown
variables. The strains and stresses are obtained by

differentiation of displacements and applying material
constitutive relations which renders those as disconti-
nuous. Although the displacements may be accurately
computed using the displacement-based approaches,
fairly large number of elements are required to achieve
good accuracy for converged stresses. The errors
can be significant especially near the restraint region
where additional internal loads and stresses may de-
velop due to nonuniform warping. The flexibility and
mixed approaches [6] may provide a good alternative
which involves modeling of all or in part stress com-
ponents as unknowns for accurate predictions using
fewer elements without the need for displacement de-
rivatives. One such formulation is proposed in the
present study.

The present formulation is developed based on the
Reissner’s multifield variational principle [6]. This work
is motivated from the analytical shell-wall based mixed
formulation of Jung et al. [3] for composite beams
which is based on the Reissner’s semi-complimentary
energy functional. The proposed theory is implemen-
ted into a FE program called multifield variational secti-
onal analysis code (MVSAC) which is applicable for
nonhomogeneous anisotropic beams with arbitrary
geometric shapes and material distributions. The pre-
sent work has the following unique features: (a) 3D
warping displacements and beam sectional stresses
(one normal and two transverse shear components;
called reactive stresses as defined in [6]) are consi-
dered as unknowns (field variables). The remaining
stress components acting on the planes normal to the
cross-section are however computed using the direct
constitutive relations and represented in terms of dis-
placement derivatives in the strain relations (called
active stresses corresponding to the active compo-
nents); (b) 3D warping displacements (in- and out–
of-plane) and beam sectional stresses are obtained



Figure 1: Schematic of beam kinematics indicating
cross-sectional warping and 1D generalized displacements.

as part of the analysis which results in a generic non-
linear distribution of both 3D warping and reactive
stresses over the beam section; (c) the effects of non-
uniform torsional warping due to boundary restraints
are incorporated resulting in a 7 × 7 generalized Ti-
moshenko-Vlasov like stiffness model. The present
theory also takes into account the classical elastic cou-
plings along with a rigorous treatment of nonclassical
couplings due to the transverse shear and Poisson
deformations.

2 MULTIFIELD CROSS-SECTIONAL
FORMULATION

The schematic of the beam decomposition is shown
in Fig. 1 indicating 2D cross-section on the ξ2 and
ξ3 coordinate plane and 1D reference line aligned
along ξ1 coordinate. The beam is considered to be
straight and prismatic. The warping deformation of the
2D beam section, and generalized translational and
rotational displacements of the 1D beam reference line
are also indicated. The present formulation is valid for
prismatic beams with assumptions of small and linear
strains at the sectional level and made of linear elastic
material.

2.1 Kinematics

The displacements vector u of an arbitrary material
point located on the section of a deformed beam is de-
fined as the sum of the 1D generalized displacements
ub = b u1 u2 u3 cT and the 3D warping displace-
ments Ψ = b ψ1 ψ2 ψ3 cT , as given by

u = ub + Ψ (1)

where

ub = Bq, q =
⌊
u01 u02 u03 φ1 φ2 φ3

⌋T
B =

 1 0 0 0 ξ3 −ξ2
0 1 0 −ξ3 0 0
0 0 1 ξ2 0 0

 (2)

where u01, u02, u03 indicate the translations, and
φ1, φ2, φ3 indicate the rotations of the beam
section.

The 3D warping displacements in Eq. (1) are six times
redundant due to three translations and three rotati-
ons of the beam section. The constraints on warping
displacements [7] can be applied as∫

A

DwΨ dA = 0 (3)

with A representing the cross-sectional area, and Dw
given as

Dw =


1 0 0
0 1 0
0 0 1
0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

 (4)

where ∂1, ∂2, ∂3 represent the partial derivatives with
respect to ξ1, ξ2 and ξ3, respectively.

With the assumptions of small strains and small local
rotations, the linear strains can be obtained in decom-
posed form as

εas = BΓ + LssΨ + Ψ′, εan = LnsΨ (5)

where the subscripts s and n respectively represent
the sectional stresses and the stresses on the planes
normal to the section, and the superscript a represents
the active components computed directly from kinema-
tical relations. Γ = b γ1 γ2 γ3 κ1 κ2 κ3 cT =
Lqq + q′ indicates the generalized strain measures
with γ1 denoting the extensional strain measure, γ2, γ3
representing the transverse shear strain measures, κ1
denoting the twist curvature, and κ2, κ3 as the bending
curvatures. The terms with (·)′ indicate derivatives
with respect to ξ1, and the matrices Lss, Lns , Lq are
given by

Lss =

 0 0 0
∂2 0 0
∂3 0 0

 , Lns =

 0 ∂2 0
0 0 ∂3
0 ∂3 ∂2



Lq =


0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (6)

The warping and reactive stress fields are discretized
at 2D sectional level as

Ψ(ξ1, ξ2, ξ3) = Nψ(ξ2, ξ3)Λ(ξ1)

σrs(ξ1, ξ2, ξ3) = Nσ(ξ2, ξ3)Υ(ξ1) (7)
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Figure 2: Material orientations.

where Nψ(ξ2, ξ3) and Nσ(ξ2, ξ3) represent the FE
shape function matrices respectively for the warping
and reactive stress fields, and Λ(ξ1) and Υ(ξ1) indi-
cate the corresponding nodal values of warping and
reactive stress fields.

The warping constraints in Eq. (3) can be discretized
using Eq. (7) as∫

A

DwNψΛ dA =

(∫
A

DwNψ dA

)
Λ = DψΛ = 0

(8)
where Dψ denotes the discretized warping constraints
matrix.

2.2 Semi-inverted Material Constitutive
Relations

For a generally anisotropic linear elastic material, the
material constitutive relations can be expressed using
generalized Hooke’s law as given by

σm = Cmεm (9)

where σm denotes the stress vector, εm denotes the
strain vector, and Cm represents the material constitu-
tive matrix. The constitutive relations in the material
coordinate system are transformed to the beam coor-
dinate system through consecutive rotations by fiber
angle θ3 and fiber plane angle θ1 indicated in Fig. 2.

For the multifield formulation, the stresses and strains
are decomposed into sectional stresses acting on the
beam section (normal and transverse shear stresses)
and stresses acting on the planes normal to the beam
section (normal and in-plane shear stresses). The
semi-inverted form of constitutive relations is then ex-
pressed as{

εrs
σan

}
=

[
Css Csn

−CT

sn Cnn

]{
σrs
εan

}
(10)

where the superscript r denotes the reactive compo-
nents and the superscript a indicates the stresses
computed from the strains using Hooke’s law.

2.3 Governing Equations

The present formulation assumes sectional normal
and transverse shear stresses to be unknowns along
with the displacements which are modeled through a
variational principle leading to a multifield variational
formulation. The variation of total energy per unit beam
length δΠR is stated as

δΠR = δUs − δWs = δL (11)

where δUs and δWs respectively indicate the variations
of cross-sectional strain energy and external work per
unit beam length. The term δL denotes the variation
of warping constraints which can be obtained from
Eq. (8) using Lagrange multipliers Θψ as

δL = −δ
(
(DψΛ)TΘψ

)
= −δΛTDT

ψΘψ − δΘT
ψ(DψΛ)

(12)

The Reissner’s semi-complimentary energy functional
ΦR [6] can be defined in a generalized form as

ΦR =
1

2

(
(εan)Tσan − (σrs)

T εrs
)

(13)

The sectional strain energy Us is obtained using Reis-
sner’s semi-complimentary energy functional ΦR [6]
as

Us =

∫
A

[
ΦR + (εrs)

Tσrs
]
dA (14)

The reactive strains εrs computed using semi-inverted
material constitutive relations in Eq. 10 and the active
strains εas computed from the kinematics must satisfy
the compatibility condition implying εrs = εas . Substitu-
ting ΦR from Eq. (13), the first variation of the sectional
strain energy is then obtained as

δUs =

∫
A

[
(δεan)Tσan + (δεas)Tσrs + (δσrs)T (εas − εrs)

]
dA

(15)
Substituting Eqs. (10), (5) and (7) into the above

equation, the sectional strain energy variation can be
written in matrix form as

δUs =


δΛ′

δΥ
δΛ
δΓ
δΘψ



T 
0 A 0 0 0
AT −H GT R 0
0 G E 0 0
0 RT 0 0 0
0 0 0 0 0




Λ′

Υ
Λ
Γ

Θψ

 (16)

where

A =

∫
A

NT
ψNσ dA, E =

∫
A

(LnsNψ)
T
CnnLnsNψ dA

G =

∫
A

(
LssNψ −CsnLnsNψ

)T
Nσ dA

H =

∫
A

NT
σCssNσ dA, R =

∫
A

NT
σB dA (17)

The submatrices A, E, G, H, and R describe the
geometric and material coupling effects of the beam
section.



The sectional stress resultants F are defined using the
tractions σs acting on the section as given by

F =

∫
A

BTσs dA (18)

with

F =
⌊
F1 F2 F3 M1 M2 M3

⌋T
(19)

where F1 is the extensional force, F2 and F3 are the
transverse shear forces, M1 is the torsional moment,
and M2 and M3 are the bending moments.

Assuming negligible surface and body forces, the ex-
ternal work per unit length of the beam Ws is given
by

Ws =

∫
A

(
uTσs

)′
dA (20)

Using Eqs. (1), (2), and Eq. (18), and substituting the
discretized warping and reactive stress fields from
Eq. (7), the variation of external work δWs beco-
mes

δWs =


δΛ′

δΥ
δΛ
δΓ
δΘψ



T 
P
0
P′

F
0

+ δqT
(
F′ − LTq F

)
(21)

where

P =

∫
A

NT
ψσs dA, P′ =

∫
A

NT
ψ (σs)

′
dA (22)

Substituting Eqs. (16), (21) and (12) in Eq. (11), and
considering double derivatives of warping and reactive
stresses with respect to ξ1 to be zero, the equilibrium
equations for a unit beam length can be formulated as


−HGT R 0
G E 0 DT

ψ

RT 0 0 0
0 Dψ 0 0




Υ′

Λ′

Γ′

Θ′ψ

 =


0
0
LTq F
0

 (23a)


−HGT R 0
G E 0 DT

ψ

RT 0 0 0
0 Dψ 0 0




Υ
Λ
Γ

Θψ

 =


0 −AT 0 0
A 0 0 0
0 0 0 0
0 0 0 0




Υ′

Λ′

Γ′

Θ′ψ


+


0
0
F
0

 (23b)

The warping displacements and reactive stresses are
considered to be linear functions of sectional stress
resultants, expressed as

Λ = Λ̃F, Υ = Υ̃F, Γ = Γ̃F, Θψ = Θ̃ψF

Λ′ = Λ̃pF, Υ′ = Υ̃pF, Γ′ = Γ̃pF, Θ′ψ = Θ̃ψpF

(24)

where Λ̃ and Υ̃ represent the nodal values of warping
and reactive stress coefficients, and Γ̃ indicate the
strain measure coefficient matrix which is constant
over the beam section. The matrices Θ̃ψ and Θ̃ψp

represent the Lagrange multiplier coefficients for con-
sistency sake. The terms with subscript p indicate the
coefficients corresponding to the derivative of genera-
lized strain measures present in the sectional stress
resultants. The coefficient matrices include contribu-
tions from extension, transverse shear, bending, and
torsion, and these describe a nonlinear distribution
over the beam section. The warping and reactive
stress coefficients are solved by substituting in the
equilibrium equations obtained in Eq. (23). These
coefficient matrices are later used to accurately com-
pute the sectional stiffness constants including any
elastic couplings.

2.4 Generalized Timoshenko-Vlasov
Stiffness Matrix

The generalized Timoshenko like 6× 6 stiffness ma-
trix is first constituted using the Saint-Venant war-
ping which is assumed as uniform along the beam
axis. With the known warping solution from Eq. (23),
the strain energy variation (δUs) from Eq. (16) beco-
mes

δUs = δFT


Λ̃p
Υ̃

Λ̃

Γ̃


T 

0 A 0 0
AT −H GT R
0 G E 0
0 RT 0 0




Λ̃p
Υ̃

Λ̃

Γ̃

F (25)

The variation of the external work can be restated in
terms of Timoshenko like sectional flexibility matrix ST
as

δWs = δΓTF = δFTSTF (26)

where ST can be determined using energy principle
defined in Eq. (11), which results in

ST =


Λ̃p
Υ̃

Λ̃

Γ̃


T 

0 A 0 0
AT −H GT R
0 G E 0
0 RT 0 0




Λ̃p
Υ̃

Λ̃

Γ̃

 (27)

The generalized 6× 6 Timoshenko like stiffness ma-
trix KT can be computed by inverting the flexibility
matrix, which implies KT = S−1T . The stiffness matrix
KT takes into account the effects of elastic couplings,
transverse shear, and Poisson deformation. For the
case of general anisotropic beams, the 6× 6 stiffness
matrix may be fully populated.

In order to account for the boundary effect due to non-
uniform torsion for open section beams, the torsional



warping stiffness and related coupling stiffness con-
stants must be computed. To this end, torsional bimo-
ment Mw1 is introduced following Vlasov’s theory [8].
The sectional stress resultants F̂ and corresponding
generalized strain measures Γ̂ for the Timoshenko-
Vlasov model are then defined as

F̂ =
⌊
FT Mw1

⌋T
, Γ̂ =

⌊
ΓT κ′1

⌋T
(28)

The sectional strain energy variation for the generali-
zed Timoshenko-Vlasov model is derived to include
the warping dependent strain energy in addition to the
generalized Timoshenko level strain energy given in
Eq. (16), which leads to

δUs = δUGTs + δUWs (29)

where δUGTs is the contribution from the generalized
Timoshenko model, and δUWs is the contribution from
the nonuniform warping, respectively given by

δUGTs = δΓTKΓ (30)

δUWs =

{
δΛ′

δΛ

}T [ AH−1AT AH−1GT(
AH−1GT

)T (
E + GH−1GT

)]{Λ′

Λ

}

+

{
δΛ′

δΛ

}T [
AH−1R
GH−1R

]
Γ + δΓT

[
AH−1R
GH−1R

]T {
Λ′

Λ

}
(31)

The nodal reactive stresses Υ are expressed in terms
of warping displacements (Λ), their derivatives (Λ′),
and generalized strain measures (Γ). For the generali-
zed Timoshenko-Vlasov model, only the derivative of
torsional strain measure (κ′1) will be required to repre-
sent the nonuniform distribution along the beam span.
The generalized Timoshenko model readily takes into
account the warping displacements without derivatives.
The expression for the variation of warping-dependent
strain energy can be reduced using a static condensa-
tion procedure which involves the elimination of diago-
nal coupling terms defined in Eq. (31).

For the generalized Timoshenko-Vlasov model, the
nodal warping displacements (Λ) and their derivati-
ves (Λ′) are expressed in terms of generalized strain
measures (Γ) using generalized Timoshenko stiffness
matrix KT , which implies

Λ = Λ̂Γ, Λ′ = Λ̂Γ′, Λ̂ = Λ̃KT (32)

where Λ̃ is the warping coefficient matrix correspon-
ding to generalized stress resultants obtained from
Eq. (23), and Λ̂ is the modified warping coefficients
matrix corresponding to the generalized strain measu-
res Γ.

Using the above relations and retaining only the deriva-
tive of nonzero torsional strain measure, the variation
of the total sectional strain energy (δUs) from Eq. (29)
is updated as

δUs =

{
δΓ
δκ′1

}T [
KT KTW

KT
TW KW

]{
Γ
κ′1

}
(33)

where KW is the torsional warping stiffness and the
vector KTW consists of torsional warping related cou-
pling coefficients.

The variation of external work for the generalized
Timoshenko-Vlasov model can be accordingly redefi-
ned as

δWs = δΓ̂T F̂ = δΓ̂TKΓ̂ (34)

where K is a 7 × 7 Timoshenko-Vlasov like stiffness
matrix which can be determined using the variational
principle defined in Eq. (11) resulting in

K =

[
KT KTW

KT
TW KW

]
(35)

The additional stiffness coefficients KTW and KW in
the above equation represent the nonuniform torsio-
nal warping effect due to the presence of boundary
restraints.

3 VALIDATION RESULTS

The present multifield formulation is implemented into
a FE analysis called MVSAC. Several composite be-
ams and blades are presented to substantiate the
efficacy of the present analysis in comparison to 3D
FE solutions and/or experimental data. The 3D war-
ping deformation modes and 1D elastostatic response
are presented for elastically coupled blades and be-
ams. The influence of nonuniform torsional warping
on the elastostatic response is demonstrated for open-
section composite I-beams. The sample results on the
recovery of sectional stresses are also presented for
thin laminated strips.

3.1 Two-cell Composite Blades

Two-cell composite blades originally studied by
Chandra and Chopra [9, 10] are considered first. Fi-
gure 3 shows the geometric and material layup of the
blade section. The outer profile of the blade section
is that of NACA 0012 airfoil with a chord length (c) of
3 in. The blade has an effective length of 25.25 in
excluding the clamped root end. The blade is made
of graphite-epoxy material with the properties given
as [10]: E11 = 19×106 psi, E22 = E33 = 1.35×106 psi,
G12 = G13 = G23 = 0.85 × 106 psi, and ν12 = ν13 =
ν23 = 0.4. The blade exhibits bending-torsion and
extension-shear couplings due to angle ply configura-
tions. The fiber angle θ is varied as 15, 30, and 45
degrees. The blade section is discretized using 2,760
eight-node quadrilateral elements and 9,159 nodes
leading to a total of 54,954 degrees of freedom.

Figure 4 presents the warping displacement modes for
composite blade with fiber angle having 45 degrees.



Figure 3: Composite blade with bending-torsion coupling.

(a) Extension (F1) (b) Shear (F2)

(c) Shear (F3) (d) Torsion (M1)

(e) Bending (M2) (f) Bending (M3)

Figure 4: Warping displacement modes of bending-torsion
coupled composite blades with θ = 45 deg (exaggerated).

The extensional mode depicted in Fig. 4a shows out-
of-plane deformation due to coupling with the shear
mode. The bending mode in Fig. 4e indicates out-of-
plane deformation due to coupling with the torsional
mode. The determination of these couplings affects
the prediction of global behavior of composite bla-
des.

Next, the 1D elastostatic response of cantilevered com-
posite blades is investigated under the application of
a tip shear force of 1 lb. The torsional warping is re-
strained at both the root and tip ends. Because of
the bending-torsion coupling, twist will be induced due
to the tip shear force. The present results are com-
pared with the experimental results of Chandra and
Chopra [9, 10], and Jung and Park [11]. Reference 11
followed a mixed analytical approach to compute the
sectional elastic constants. Figure 5 presents the com-

parison of tip bending slope and tip induced twist under
a tip shear force. The present multifield MVSAC shows
an excellent correlation for both tip bending slope and
tip induced twist with the exception of tip induced twist
at 15 deg fiber angle. The present predictions are very
close to those of displacement-based RDSAC and are
reported to be better than Jung and Park [11]. Overall,
a better correlation is achieved compared to that of
analytical results of Ref. 11 and displacement-based
FE analysis RDSAC. Note that the present MVSAC
accurately describes the geometric layout and compo-
site material distribution using 2D FEs as opposed to
a shell-wall contour based analytical approach adop-
ted in Ref. 11. It is remarked that Ref. 11 follows the
zero hoop stress flow assumption whereas the present
approach does not make any such ad-hoc assumpti-
ons. It is observed that the present multifield-based
MVSAC clearly achieves improved correlation with the
experimental data for elastically coupled composite
blades.

3.2 Composite I-beam

An open-section composite I-beam [9] with a sym-
metric layup is considered, as shown in Fig. 6. The
cross-section exhibits bending-torsion and extension-
shear couplings. The material properties can be found
in [9]. The section is discretized using 400 eight-node
quadrilateral elements and 1,333 nodes.

The warping deformation modes are illustrated in
Fig. 7. The extension-shear coupling can be seen
for extension (F1) mode indicating out-of-plane defor-
mation due to coupling with shear (F2) mode. The
bending-torsion coupling leads to an additional out-
of-plane deformation in the bending (M2) mode with
similar profile as that of torsion (M1) mode. Little
extension-bending coupling can also be observed in
the bending (M3) mode deformation.

The 1D elastostatic torsional response is computed
next for a cantilever beam with length L as 0.762 m.
The cross-sectional warping is restrained at the tip
end where a torsional moment (M1) of 0.113 N m is
applied. Fig. 8 presents the comparison of the twist re-
sponse computed using the present analysis MVSAC
with those of Nastran 3D FE solutions, experimen-
tal data [9], Jung et al. [3], and displacement-based
analysis RDSAC [7]. The present results show good
correlation with both the experimental data [9] and
Nastran 3D FE solutions. The twist angle in Fig. 8a
shows a maximum difference of 6.11 % compared to
3D Nastran near the tip end. The difference in tip twist
between the present MVSAC and the displacement-
based RDSAC [7] is less than 3 %. The twist rate
presented in Fig. 8b also correlates well with 3D Na-
stran solution. The influence of the warping restraint



(a)

(b)

Figure 5: (a) Tip bending slope and (b) tip induced twist of
composite blades under a tip shear force.

25.4 mm

12.7 mm
90° 0° 

15°0.127 mm

Figure 6: Composite I-beam.

on the twist response is clearly visible at the tip end of
the composite I-beam where the twist rate approaches
zero.

(a) Extension (F1) (b) Shear (F2)

(c) Shear (F3) (d) Torsion (M1)

(e) Bending (M2) (f) Bending (M3)

Figure 7: Warping modes for composite I-beam
(exaggerated).

3.3 Thin Laminated Strip

In order to illustrate the stress recovery, a thin lami-
nated strip is considered taken from Liu and Yu [12].
The strip is 0.04 m thick, 0.18 m wide, and 1 m long
with a cross-ply layup of [90/0]2. The beam is cantile-
vered at the root end and an extensional force F1 of
10 kN is applied at the tip end. The strip section is mo-
deled using 2,560 eight-node quadrilateral elements
and 7,905 nodes.

Figure 9 presents the comparison of the normal stress,
along the strip thickness at the mid-span (ξ1 = 0.5 m),
computed by the present MVSAC with those of 3D
FE solutions [12] and mechanics of structure genome
(MSG) approach [12]. Since the strip is composed of
four layers, the stress discontinuity is well captured by
the present analysis. The present stress values show
excellent correlation with the 3D FE solutions which
are indistinguishable in the plot. The present analy-
sis computes these stresses directly without requiring
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Figure 8: Torsional response of composite I-beam under tip
torsional moment.

displacement derivatives while maintaining the stress
continuity within the composite layer and discontinuity
at the layer boundaries.

4 CONCLUDING REMARKS

A multifield variational sectional analysis is developed
taking into account the classical elastic couplings as
well as the nonclassical torsional warping restraint.
Both 3D warping displacements and reactive sectional
stresses are computed as part of the analysis through
the application of multifield variational principle which
leads to accurate prediction of stiffness constants as
well as stresses. A Timoshenko-Vlasov like 7× 7 stiff-
ness matrix is derived from the formulation. The pre-
sent results are validated for thin-walled beams and
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Figure 9: Normal stress sigma11 for thin laminated strip
under an extensional force.

blades with elastic couplings. The elastostatic respon-
ses of composite blade and I-beam computed by the
present multifield-based MVSAC demonstrate a good
correlation with the experimental data and 3D FE so-
lutions. The recovery of sectional normal stress is
illustrated for a thin laminated beam which is almost
identical to the 3D FE solution. These sectional stres-
ses are directly recovered from the reactive stress
coefficients while maintaining stress discontinuity at
the layer interfaces. The present analysis clearly de-
monstrates the application for composite rotor blades
with elastic couplings along with the recovery of secti-
onal stresses through the proposed multifield-based
reactive stress coefficients.
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