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Abstract 

 

Several methods for analysis of linear time periodic (LTP) systems have successfully been 

demonstrated using harmonic decompositions.  One method recently examined is to create a linear 

time invariant (LTI) model approximation by expansion of the LTP system states into various harmonic 

state representations, and formulating corresponding linear time invariant models.  Although this 

method has shown success, it relies on a second order formulation of the original LTP system.  This 

second order formulation can prove problematic for degrees of freedom not explicitly represented in 

second order form.  Specifically, difficulties arise when performing the harmonic decomposition of 

body and inflow states as well as interpretation of LTI velocities.  Instead this paper will present a 

more generalized LTI formulation using a first order formulation for harmonic decomposition.  The new 

first order approach is evaluated for a UH-60 rotorcraft model, and is used to show the significance of 

particular harmonic terms; specifically that the coupling of harmonic components of body and inflow 

states with the rotor states has a significant contribution to the LTI model fidelity in the prediction of 

vibratory hub loads. 

 

1. NOMENCLATURE 

𝐴 LTI State Matrix 
𝐵 LTI Input Matrix 
𝐶 LTI Output Matrix 
𝐷 LTI Direct Transmission Matrix 
𝐹(𝜓) LTP State Matrix 
𝐺(𝜓) LTP Input Matrix 
𝑅(𝜓) LTP Output Matrix 

𝑢 Input 
𝑈(𝜓) LTP Direct Transmission Matrix 

𝑥 State 
𝑦 Output 

  State transition matrix 
ψ Non-dimensional time 
Ω Non-dimensional rotor speed 
 
( )0 Average or 0

th
 harmonic term 

( )𝑛𝑐 nth cosine harmonic component 
( )𝑛𝑠 nth sine harmonic component  
 

2. INTRODUCTION  

The analysis of linear time periodic (LTP) 

systems is well understood using several 

methods.  One such method is Floquet 

Theory, developed by Gaston Floquet [1].  

This theory has been shown to provide a 

thorough analysis of LTP systems through the 

use of modal participation factors [2].  These 

modal participation factors describe the 

relative magnitude of each harmonic 

component for each state.   

Other methods involve using a harmonic 

decomposition of the LTP system.  One 

method recently examined is to create a linear 

time invariant model approximation by 

expansion of the LTP system states into 

various harmonic state representations and 

formulating corresponding linear time invariant 

models.  Crimi and Piarulli explore the LTP 

system by harmonic decomposition of periodic 

states [3 and 4].  One method recentely 

examined by Prasad et al [5 - 8] use the 

harmonic decomposition to formulate a 

corresponding linear time invariant (LTI) 

system.  This methodology provides a 

convenient framework, as methods for LTI 

system analysis, controller synthesis and 

design are well developed and understood as 

demonstrated by Lopez et al [9-12].   
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Although the method developed by Prasad 

has shown success, it relies on a second order 

formulation of the original LTP system.  This 

second order formulation can prove 

problematic for degrees of freedom not 

explicitly represented in second order form.  

Specifically, difficulties arise when performing 

the harmonic decomposition of body and 

inflow states as well as interpretation of LTI 

velocities.  

The aim of this work is to develop a more 

generalized LTI formulation using a first order 

formulation for harmonic decomposition. 

Specific objectives are: 

1) Develop and validate an LTI 

approximation of an LTP system using a 

first order formulation with closed form 

expressions. 

2) Evaluate the significance of harmonic 

terms of body and inflow states using 

modal participation. 

3) Evaluate the significance of coupling 

between body, inflow, and rotor harmonic 

terms using additive uncertainty and nu 

gap metric analysis. 

3. LTI MODEL EXTRACTION 

The main results of the LTI model extraction 

from an LTP model using a first order 

formulation are presented here.  The 

derivation in full is presented in the appendix.  

Consider an LTP model with the state 

equation given as  

(1) uGxFx )()(                                 

and the output equation of a LTP given model 

as 

(2) uRxPy )()(                   

where x, u, and y are the state, input, and 

output vectors respectively. An LTP model can 

be obtained from a nonlinear model using a 

perturbation scheme, linearizing about a 

periodic equilibrium at every azimuthal position 

[3].  In order to extract an approximate LTI 

model from Eq.(1) ~ (2) , consider the 

following approximation of x: 

(3) 



N

n

nsnco nxnxxx
1

sincos                                         

where xo is the average component and xnc 

and xns are respectively the n/rev cosine and 

sine harmonic components of x. Likewise,  the 

control u is expanded in terms of  harmonic 

components as  

(4) 



M

m

msmco mumuuu
1

sincos                                      

and the output y is expanded in terms of 

harmonic components as 

(5) 



L

l

lslco lylyyy
1

sincos          

where yo is the average component and ylc 

and yls are respectively the l
th
 harmonic cosine 

and sine components of y.  

The LTI model can be represented in matrix 

form by defining the augmented state vector 

as 

 (6)  TT

js

T

jc

T

is

T

ic

T

o xxxxxX ......  

and the augmented control vector as 

(7)         TT

ms

T

mc

T

o uuuU ......        

where xo is the zeroth harmonic component, 

xic, xis are the i
th
 harmonic cosine and sine 

components of x and umc, ums are the m
th
 

harmonic cosine and sine components of u, 

respectively. The state equation of the 

resulting LTI model is 

(8)    UBXAX                          

Likewise, the augmented output vector of the 

LTI model is defined as 

(9)  TT

ls

T

lc

T

o yyyY .....                   

Then the output equation of the LTI model can 

be written as 

(10)    UDXCY                                        



The LTI model matrices of Eqs. (8) and (10) 

are obtained as 
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Where the H operators have been defined as: 
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The key difference between the newly 

presented first order LTI formulation, Eqs. (8) 

~ (10), and the previous second order LTI 

formulation [2] is the treatment of the velocity 

states.  In the previous second order LTI 

formulation, the LTI harmonic states 

associated with velocities are not directly the 

harmonic decomposition of the LTP velocity 

states.  Rather, they are kinematically related 

via terms involving powers of the rotor speed 

Ω.  Thus, to properly determine information 

about the LTP velocities, one would need to 

perform extra work to relate the LTI harmonic 

states and the harmonic decomposition of the 

LTP velocity states.  In particular, to determine 

modal participation [2] from the LTI 

appropriately [9], one would need to convert 

the LTI harmonic terms associated with 

velocities into the harmonic decomposition of 

the LTP velocities.  Furthermore, since LTP 

body and inflow states do not readily come in 

the second order form required for the second 

order LTI formulation (where the time 

derivatives of the displacement states are 

exactly given by the velocity states), extra 

work is again needed to transform those states 

into a usable form.  

In the first order LTI formulation presented 

here, there is no difference in the treatment of 

LTP velocity and displacement states.  This 

allows for an overall simplified calculation, and 

any information about LTP velocities can be 

given directly by the LTI states associated with 

velocities (such as modal participation of 

velocity states).  Consequently, since there is 

no difference in treatment between any LTP 

states, this formulation easily encompasses 

body and inflow states which are often 

formulated in a more generalized first order 

form.  Thus, this first order LTI formulation 



directly and efficiently approximates any LTP 

which can be cast in first order form. 

4. NUMERICAL EXAMPLE 

The model examined here is a full vehicle 

nonlinear model (NL) in FLIGHTLAB.  The full 

vehicle model is a UH-60 with elastic blade 

mode shapes and a 33 state Peters-He 

dynamic inflow model.  The model has 

previously been validated [13] and been found 

to be consistent with trends from wind tunnel 

data.  The NL is linearized at each azimuthal 

position about a periodic equilibrium at 120 

knots to generate an LTP model.   

4.1 LTI Model Evaluations 

The full order LTI is extracted from the LTP 

using the first order methodology developed 

here, including the 0
th
 up to the 24

th
  harmonic 

states for each body, inflow, and rotor state 

resulting in a total of 3577 LTI states (LTI 

model referred to as LTIfull3577).  The linear 

model is compared against the nonlinear 

model using error response plots between 

linear and nonlinear model bare airframe 

responses. An example error response plot is 

given in Figure 1 in capturing the transfer 

function of the LTP model from individual 

blade control, 4
th
 harmonic cosine (IBC4C) 

input to the 4/rev sine and cosine components 

of vertical hub shear (Fz4C and Fz4S 

respectively) by the LTI model.  These 

particular transfer functions would be most 

relevant to vibration reduction.  The error 

response can be measured using a single cost 

function as described by Tischler [14].  The 

average cost function over all IBC input and 

4/rev output transfer functions is 4.92, 

meaning that the LTIfull3577 data is nearly 

indistinguishable from the nonlinear model 

data. 

At this point, the LTIfull3577 model has been 

validated to be nearly indistinguishable from 

the nonlinear model in terms of IBC inputs and 

4/rev output transfer functions.   

4.2 LTI Modal Participation 

The significance of particular harmonic states 

can be evaluated by determining the modal 

participation. [2]. For the LTP, this can be 

done by 1) computing the Floquet Transition 

Matrix, 2) computing the Floquet eigenvalues 

and Floquet eigenvectors, 3) computing the 

system eigenvalues and periodic eigenvectors, 

4) decomposing each periodic eigenvector 

element into its corresponding Fourier 

coefficients, and 5) then taking the normalized 

magnitude of a particular harmonic.  

Computing the modal participation using this 

methodology does pose two particular 

problems. First, in computing the system 

eigenvalues, a multi-valued complex logarithm 

is used, and one must therefore make a 

choice for integer multiple of Ω to be added. It 

has been shown that this choice is arbitrary, 

and simply shifts the resulting numbering of 

harmonics [2]. Secondly, computation of the 

state transition matrix itself as well as the 

solving the corresponding eigenvalue problem 

requires additional processing due to 

numerical difficulties.  

The modal participation can be directly 

computed from the LTI itself [9]. Once an LTI 

has been formed, its system eigenvalues and 

eigenvectors can be directly solved for. The 

modal participation can then be determined by 

converting the eigenvectors from trigonometric 

to complex, and then taking the normalized 

magnitude of a particular harmonic.  

The modal participations were computed for 

harmonic term, for each mode.  Each of the 73 

modes were examined and found to have 

similar trends. For brevity, only 5 sample 

modes are shown here. The modal 

participation is shown for rotor coning in Figure 

2 as computed both by the LTP and LTI 

methods. As expected based on previous work 

[11], the harmonics with the highest modal 

participation are the 0, 1, and even harmonics 

up to 8. Also, the LTI and LTP computations 

result in nearly identical rotor coning modal 

participations, indicating that the LTI captures 

modal participation as accurately as the LTP.  

The modal participation for average inflow is 

shown in Figure 3 and the modal participation 

for pitch attitude is shown in Figure 4. Again, 

the LTI and LTP computations show similar 

results, indicating that the LTI captures modal 

participation as accurately as the LTP. It is 



clear that similar to rotor degrees of freedom, 

body and inflow degrees of freedom also have 

contributions from harmonics 0, 1, and even 

numbered harmonics up to 8 (i.e. harmonics 0, 

1, 2, 4, 6, and 8). These trends were observed 

for all modes and for every rotor, body, and 

inflow state. Thus, it is clear that in addition to 

rotor harmonics, body and inflow harmonics 

are important and need to be included in the 

LTI approximation.  

4.3 LTI Input-Output Fidelity 

Alternatively, the significance of particular 

harmonic states can then be evaluated by 

comparing the full model LTIfull3577 with 

reduced LTI models that do not include 

particular harmonic states.  The first reduction 

is formed by the least significant harmonics, as 

shown by the modal participation evaluations. 

Specifically any harmonics above the 8
th
 

harmonic and any odd numbered harmonics 

above the 2
nd

 harmonic (i.e., removing 

harmonics 3, 5, 7, 9 and any above 9) are 

removed.  The resulting LTI retains the 0
th
, 1

st
, 

and 2-8 even harmonics of all body, inflow and 

rotor states, resulting in 803 states (referred to 

as LTIred803).  The second reduction is 

formed by starting with LTIred803 and 

removing any body harmonic states.  The 

resulting LTI has only 723 states (referred to 

as LTIred703) and contains only the 0
th

 

harmonic body states, and the 0
th
, 1

st
, and 2-8 

even harmonic inflow and rotor states.  The 

third reduction is formed by starting with 

LTIred803 and removing any inflow harmonic 

states.  The resulting LTI has only 473 states 

(referred to as LTIred473) and contains only 

the 0
th
 harmonic inflow states, and the 0

th
, 1

st
, 

and 2-8 even harmonic body and rotor states.  

Finally, the fourth reduction is formed by 

starting with LTIred803 and removing both 

body and inflow harmonic states.  The 

resulting LTI has only 393 states (referred to 

as LTIred396) and contains only the 0
th

 

harmonic body and inflow states, and the 0
th
, 

1
st
, and 2-8 even harmonic rotor states.   

The frequency responses for the various LTI 

model approximations considered above are 

used in evaluating the individual model fidelity.  

For example, comparisons of frequency 

responses from various LTI model 

approximations from IBC4C input to Fx4C hub 

force output, IBC4C input to Fy4C hub force 

output and IBC4C input to Fz4C hub force 

output are shown in Figures 5, 6 and 7, 

respectively.  For all of the frequency 

responses examined, LTIred803 is nearly 

indistinguishable from LTIfull3577.  Thus it is 

clear that in this case, any harmonic terms 3, 

5, 7, 9 and any above 9 do not significantly 

influence overall model fidelity.  Comparing 

LTIred723 with LTIfull3577, there is a 

maximum of a 3 db difference in magnitude at 

6 rad/s for Fx4C, and otherwise a maximum of 

1 dB differences in magnitude over all 

frequency responses examined.  Comparing 

LTIred473 with LTIfull3577, there is a 

maximum of 9.5 dB differences in magnitude 

below 7 rad/s, and 2.5 dB differences above 7 

rad/s.  Comparing LTIred393 with LTIfull3577, 

differences are similar to those from LTIred473 

with a maximum of 10 dB differences in 

magnitude below 7 rad/s, and 2.5 dB 

differences above 7 rad/s.  Thus, it is clear that 

inclusion of harmonics terms for both body and 

inflow states are important, although body 

harmonic terms less so than inflow harmonic 

terms.   

The normalized additive error [10, 11, 15] for 

IBC4C input for each reduction is shown in 

Figure 8 for Fx4C, Fy4C, Fz4C, Mx4C, and 

My4C.  Each reduction is compared with 

LTIfull3577, with LTIfull3577 taken as the truth 

model.  Here it is clear that there is very small 

normalized additive error for LTIred803, 

meaning that virtually no additional robustness 

would be needed for designing a controller 

based on the LTIred803 model compared to 

the LTIfull3577 model.  Normalized additive 

error for LTIred723 is on the order of 

0.01~0.05 meaning that some additional 

robustness would be needed for designing a 

controller using the LTIred723 model 

compared to the LTIfull3577 model.  

Normalized additive error for LTIred473 and 

LTIred393 are both on the order of 0.2, 

meaning that additional robustness would be 

needed for designing a controller using either 

reduced model compared to the LTIfull3677 

model.  Thus, it is again clear that retaining 

harmonic terms for body and inflow states is 

important for reducing additional robustness 

needed in controller design.   



The nu gap metric [10, 11, 16] for IBC4C input 

for each reduction is shown in Figure 9 for 

Fx4C, Fy4C, Fz4C, Mx4C, and My4C.  Each 

reduction is compared with LTIfull3577, with 

LTIfull3577 taken as the truth model.  Here it is 

clear that there is very small nu gap metric for 

LTIred803, meaning that there would be very 

little losses in stability margin if a controller 

were designed using the LTIred803 model and 

applied to the LTIfull3577 model.  Nu gap 

metric for LTIred723 is at most on the order of 

0.1 meaning that there would be very little 

losses in stability margin if a controller were 

designed using the LTIred723 model and 

applied to the LTIfull3577 model.  Nu gap 

metric for LTIred473 and LTIred393 are both 

at most on the order of 0.2, meaning that there 

would be small losses in stability margin if a 

controller were designed using either model 

and applied to the LTIfull3577 model (small, 

but still larger compared to the LTIred723 and 

LTIred803 cases).  Thus, it is again clear that 

retaining harmonic terms for body and inflow 

states is important for reducing losses in 

stability margin when designing controllers 

based on the reduced models.   

5. FUTURE WORK 

The results demonstrated thus far have been 

model fidelity evaluations of a single main 

rotor configuration for a moderate speed. It is 

recommended that the LTI models developed 

here be used for integrated flight and rotor 

control design, such as for an integrated flight 

and vibration controller. It is further 

recommended that these techniques be 

studied with advanced configurations such as 

compound, coaxial rotorcraft which travel at 

very high speeds and have added complexity. 

6. SUMMARY 

A generalized linear time invariant (LTI) 

approximation is developed from a linear time 

periodic (LTP) model using a first order 

formulation. Explicit formulas for LTI state 

space matrices are presented.  

A complete numerical example is given for a 

UH-60 rotorcraft. The resulting LTI is validated 

against the original nonlinear model, and is 

shown to be very accurate in the frequency 

domain. The modal participation is calculated 

directly from the LTI and compared with modal 

participation calculated from the LTP. Modal 

participation, additive uncertainty, and nu gap 

metric analysis are used to evaluate the 

significance of particular harmonic terms. 

7. CONCLUSIONS  

The results presented here support the 

following conclusions: 

1) A nonlinear time periodic rotorcraft model 

can be accurately approximated by a 

linear time invariant model, using 

harmonic decompositions and a first order 

representation. 

2) Modal participation can be accurately and 

easily obtained from a linear time invariant 

approximation, avoiding ambiguities and 

numerical difficulties of obtaining modal 

participation from the linear time periodic 

model.  

3) Body and inflow degrees of freedom have 

harmonic terms with significant modal 

participation. These harmonic terms for 

body and inflow degrees of freedom which 

are most significant are the same as the 

harmonic terms for rotor degrees of 

freedom which are most significant.  

4) Coupling of harmonic terms for body, 

inflow, and rotor degrees of freedom play 

a significant role in the input-output fidelity 

for the purpose of predicting vibratory 

loads 
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10. FIGURES 

 

 
Figure 1. Error Response Plot for Fz4C and Fz4S 

 

 
Figure 2. Modal Participation for Rotor Coning 
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Figure 3. Modal Participation for Average Inflow 

 

 
Figure 4. Modal Participation for Pitch Attitude 

 

 
Figure 5. Frequency Response Comparison for IBC4C to Fx4C 
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Figure 6. Frequency Response Comparison for IBC4C to Fy4C 

 

 
Figure 7. Frequency Response Comparison for IBC4C to Fz4C 

 
Figure 8. Normalized Additive Error Comparison for IBC4C to 4C Outputs 
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Figure 9. Nu Gap Metric Comparison for IBC4C to 4C Outputs 

 

 

11. APPENDIX 

 

The LTI model extraction for an LTP model 

using a first order formulation is shown in full 

here.  

11.1 State Equation of LTI Model 

Consider a Linear Time Periodic (LTP) Model 

with the state equation given as  

(12) uGxFx )()(                                 

An LTP model can be obtained from a 

nonlinear model using a perturbation scheme, 

linearizing about a periodic equilibrium at 

every azimuthal position [3].  In order to 

extract an approximate LTI model from Eq. 

(12), consider the following approximation of x: 

(13) 



N

n

nsnco nxnxxx
1

sincos                                         

where xo is the average component and xnc 

and xns are respectively the n/rev cosine and 

sine harmonic components of x. Likewise, 

control (u) is expanded in terms of  harmonic 

components as  

(14) 



M

m

msmco mumuuu
1

sincos                                      

Differentiation of Eq. (13) with respect to time 

results in 

(15)  



N

n

nsnco nxnxxx
1

sincos         

where 

(16) Nnxnxx nsncnc .....,,2,1                                  

(17) Nnxnxx ncnsns .....,,2,1                            

Substituting Eqs. (13), (14), (15) and (16) into 

Eq. (12) results in 

(18) 

))sincos()](([

))sincos()](([

)sincos(

1

1

1














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n

nsnco

N

n

nsnco

mumuuG

nxnxxF

nxnxx







Equations for the individual harmonic 

components of x can be obtained by 

multiplying Eq. (18) on both sides by cos iψ or 

sin iψ, i= 1, 2, …, N, and integrating the result 

over one rotor revolution. The equation for the 

average component (xo) is obtained by 

integrating Eq. (18) over one rotor revolution. 
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




dmumuuG

nxnxxFx

M

m
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
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Likewise, the equation for the i
th
 harmonic 

cosine component (xic) can be obtained as 

(20)    

Ni

dimumuuG
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M
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and the equation for the i
th
 harmonic sine 

component (xis) can be obtained as 

(21)  
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Using the following notation  

(22)  
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 and substituting Eq. (22) into Eqs. (19) - (21) 

yields  
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Now defining the following operators 
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Eqs. (23), (24) and (25) can be written as 
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11.2 Output Equation of LTI Model 

Given the output equation of a LTP model as 

 (30)             uRxPy )()(                   

an approximation to y in terms of its harmonic 

components is sought as 

(31) 



L

l

lslco lylyyy
1

sincos          

where yo is the average component and ylc 

and yls are respectively the l
th
 harmonic cosine 

and sine components of y. Substituting Eqs. 

(13) and (14) and (31)  into Eq. (30) results in 

(32)   
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Eq. (32) is multiplied with coslψ or sinlψ, l=0, 

1, 2,..,L and is integrated over one rotor 

revolution, resulting in the following 

expressions for yo, ylc and yls.  
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Using similar notation as before, for example, 

P
nc

=P(ψ)cosnψ, etc., and the H operator, 

yields 

 

(36)   













M

m

msoRmcoRooR

N

n

nsoPncoPooPo

uHuHuH

xHxHxHy

msmc

nsnc

1

1

)(

)(

(37)   

Ll

uHuHuH

xHxHxHy

M

m

mslcRmclcRolcR

N

n

nslcPnclcPolcPlc

msmc

nsnc

.....,,3,2,1

)(

)(

1

1















(38)   

Ll

uHuHuH

xHxHxHy

M

m

mslsRmclsRolsR

N

n

nslsPnclsPolsPls

msmc

nsnc

.....,,3,2,1

)(

)(

1

1















 

 

 

 



11.3 LTI Models in Matrix Form 

Equations (27) - (30) and (36) - (38) can be 

represented in matrix form by defining the 

augmented state vector as 

 (39)  TT

js

T

jc

T

is

T

ic

T

o xxxxxX ......  

and the augmented control vector as 

(40)       TT

ms

T

mc

T

o uuuU ......        

where xo is the zeroth harmonic component, 

xic, xis are the i
th
 harmonic cosine and sine 

components of x and umc, ums are the m
th
 

harmonic cosine and sine components of u, 

respectively. The state equation of the 

resulting LTI model is 

(41)    UBXAX                          

Likewise, the augmented output vector of the 

LTI model is defined as 

(42)   TT

ls

T

lc

T

o yyyY .....                   

Then the output equation of the LTI model can 

be written as 

(43)     UDXCY                                        

The LTI model matrices of Eqs. (41) and (43) 

are obtained as 
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11.4 Closed Form Expressions for LTI 

Model 

Closed form expressions for various terms in 

the A, B, C and D matrices above can be 

obtained if one considers harmonic 

expansions of the LTP model matrices. If a 

time periodic matrix M(ψ) is expanded in terms 

of its harmonic components as 
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then it can be shown that 
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