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Abstract

Computational fluid dynamics (CFD) based on the Navier-Stokes equations is nowadays used by the rotorcraft industry for the
analysis and design of helicopter rotors. Computations for rotor axial flight benefit from the use of a rotating frame of reference
that leads to steady-flow equations and avoids expensive time-marchingCFD analyses. For rotors in forward flight, efficient
computations could be made by solving the governing equations in the frequency domain assuming that the flow is periodic.
This type of analysis is more efficient in terms of CPU time but requires more memory for the computations. In this paper, a
frequency-domain CFD method developed by the authors is demonstrated for demanding rotor cases and is compared against
time-marching analysis at the same conditions.

1 INTRODUCTION

Within the rotorcraft CFD domain, several works are cur-
rently available in the open literature with good demonstra-
tions of the accuracy of Navier-Stokes-based methods for ro-
tors in forward flight [18]. In addition, CFD works consid-
ering rotor-fuselage and complete helicopter configurations
also begin to appear [17]. The main drawback of these meth-
ods is most of the times associated with the excessive CPU
cost needed to resolve the rotor flow and provide data for
several azimuth angles. This cost is associated with time-
marching solutions that need small steps in azimuth and sev-
eral rotor revolutions to reach a converged state. An alterna-
tive would be to solve for the rotor flow using frequency do-
main or time-linearised methods that are popular within the
domain of turbo-machinery research [12]. This challenging
task to compute rotors with non time-marching methods has
so far been addressed by few authors [4,6,7,10,11].

The work of Butsuntorn and Jameson [4] for example, re-
lies on the solution of the Navier-Stokes equations on the fre-
quency domain and requires Fourier Transformations within
the iterative numerical process. The work of Ekici et al. [10]
is an extension of the well-known method of harmonic bal-
ance, that is popular within the aero-elasticity domain. The
time spectral approach of Gopinath and Jameson [11], has
been applied to rotors by Butsuntorn and Jameson [4], and
Choi has also used the time spectral method to predict rotor
loads [6] [7]. Most of these works, however, originate from
explicit time-marching schemes and remain explicit in their
nature when transformed to the frequency domain. Dufouret
al. [9] compared the performance and accuracy of both Lin-
earised and Harmonic balance methods within the CFD code
elsA [5] to predict the unsteady aerodynamic loads for an air-
foil with a flap at subsonic and transonic flows. It was re-
ported, for the subsonic cases, that the linearised method pre-
formed well. However, in the transonic regime the accuracy
deteriorated and the single mode harmonic balance method
always produced a more accurate answer at the expense of
more computational cost.

In the present work, a method is proposed that enables the

use of non-time-marching methods within the framework of
implicit flow solvers. The scheme maintains good compat-
ibility with existing time-marching implicit flow solvers and
is relatively easy to implement. To demonstrate this approach,
the Helicopter Multi-block Solver (HMB) of Liverpool [3,17]
is used. After implementation, the method is demonstrated for
a range of test cases including oscillating aerofoils, aerofoils
in pitch-translation oscillation as well as non-lifting and lift-
ing rotors in forward flight. The cases are selected to increase
in complexity to demonstrate the limitations and costs of the
harmonic balance method. Where appropriate, the results
are compared with time-marching solutions obtained with the
same CFD code.

2 NUMERICAL M ETHODS

2.1 Helicopter Multi-Block solver

The Helicopter Multi-Block(HMB) code, developed at Liver-
pool can solve the Navier-Stokes equations in integral form
using the arbitrary Lagrangian Eulerian (ALE) formulation
for time-dependent domains with moving boundaries:

d

dt

∫
V (t)

~wdV +
∫

∂V (t)

(
~Fi (~w) − ~Fv (~w)

)
~ndS = ~S (1)

where V (t) is the time dependent control volume,∂V (t)
its boundary, ~w is the vector of conserved variables
[ρ, ρu, ρv, ρw, ρE]T . ~Fi and ~Fv are the inviscid and viscous
fluxes, including the effects of the time dependent domain.
For hovering rotor simulations, the grid is fixed and a source
term ~S = [0,−ρ~ω × ~uh, 0]T is added to compensate for the
inertial effects of the rotation.~uh is the local velocity field in
the rotor-fixed frame of reference.

The Navier-Stokes equation are discretised using a cell-
centred finite volume approach on a multi-block grid, leading
to the following equations:

∂

∂t
(wi,j,kVi,j,k) = −Ri,j,k (wi,j,k) (2)
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wherew represents the cell variables andR the residuals.
i, j andk are the cell indices andVi,j,k is the cell volume. Os-
her’s [14] upwind scheme is used to discretise the convective
terms and MUSCL variable interpolation is used to provide
third order accuracy. Van Albada limiter is used to reduce the
oscillations near steep gradients.

Temporal integration is performed using an implicit dual-
time step method. The linearised system is solved using the
generalised conjugate gradient method with a block incom-
plete lower-upper (BILU) pre-conditioner [1].

Multi-block structured meshes are used for HMB. These
meshes are generated using ICEM-Hexa™of Ansys. The
multi-block topology allows for an easy sharing of the cal-
culation load for parallel computing. Adding sliding meshes
[17], as well as allowing for mesh overlap makes the HMB
a very flexible solver for dealing with complex geometries.
Given the existing data structure of the solver, the modifi-
cations required for the mesh overlap were restricted to a
small part of the code. Within HMB, hallo cells are employed
by each block, and are populated from boundary conditions,
bloc-to-block data exchanges, data from sliding surfaces or
data from overlapping meshes. For as long as a block has
correct information on the hallo cells, its solution can be up-
dated and then shared with other neighbouring blocks. In the
strongly implicit HMB method, only the preconditioner em-
ployed for the solution of the linear system of equations is
decoupled between blocks. For overlap regions though and
to minimise the exchange of data, the Jacobian matrix is also
de-coupled for overlapping mesh regions. Another necessary
modification for the solution on overlapping grids is related
to the treatment of cells marked as holes. These are identified
and kept in the original system of equations even if their solu-
tion is not to be updated. This allows for the structure of the
solver to remain the same and has minimal overhead in the
computation.

2.2 Harmonic Balance

An alternative to time marching, is the Harmonic Balance
method that allows for a direct calculation of the periodic
state. Starting from the semi-discrete form as a system of
ordinary differential equations:

I(t) = V
dW (t)

dt
+ R(t) = 0, (3)

and considering the solutionW and the residualR to be peri-
odic in time and functions of the frequencyωi,

W (t) =
∞∑

k=−∞

Ŵke
ikωt

, (4)

R(t) =
∞∑

k=−∞

R̂ke
ikωt (5)

we can truncate the series to a specified number of harmonics
NH :

W (t) =
NH∑

k=−NH

Ŵke
ikωt

, (6)

R(t) =
NH∑

k=−NH

R̂ke
ikωt

. (7)

Then equation (3) can also be truncated using a Fourier series
expansion,

I(t) =
NH∑

k=−NH

Îke
ikωt

. (8)

The discrete Fourier transforms can be substituted into the
semi-discrete form equation (3) with the time derivative of
the state variables pushed inside the series summation. Using
the orthogonality of the Fourier terms results in an equation
for each wave numberk

iωkV Ŵk + R̂k = 0. (9)

It should be noted that sinceR(W (t)) is a non linear function
of W (t) then each coefficient̂Rk depends on all the coeffi-
cientŴk. Hence equation 9 represents a non-linear system of
equations which must be solved iteratively so

Îk = iωkV Ŵk + R̂k = 0. (10)

The system isNT = 2NH + 1 equations inNH unknown
harmonics and can be expressed as

ωAŴ + R̂ = 0 (11)

whereA is aNT×NT matrix. There are several approaches to
calculating the residual in the frequency domain. The first ap-
proach is to attempt to form an analytical expression between
R̂k andŴk. This approach requires a complex series of con-
volution sums to calculatêRk directly from Ŵk. Hall [12]
rightly discards this approach due to its massive complexity
and the fact that the cost scales quadratically with the num-
ber of modes. The alternative approach by Hall was to use
the pseudo-spectral approach in the time domain while Mc-
Mullen et. al. [13] employs a similar approach in the fre-
quency domain.

2.2.1 Pseudo Spectral Approach in the Time Domain

In the approach of Hall instead of solving (9) directly in the
frequency domain, the equation is transformed back into the
time domain. The solution is split intoNT discrete equally
spaced sub intervals over the periodT = 2π/ω

Whb =


W (t0 + ∆t)
W (t0 + 2∆t)

...
W (t0 + T )

 Rhb =


R(t0 + ∆t)
R(t0 + 2∆t)

...
R(t0 + T )


(12)

where∆t = 2π/(NT ω). Then, there exists a transformation
matrix [20]E such that

Ŵ = EWhb and R̂ = ERhb

and equation (11) becomes

ωAEWhb + ERhb = 0 = ωE
−1

AEWhb + (13)

E
−1

ERhb = ωDWhb + Rhb

with D = E
−1

AE and the components of D are defined by

Di,j =
2

NT

NH∑
k=1

k sin(2πk(j − i)/NT ).
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Note that the diagonalDi,i is zero. We can then apply pseudo
time marching to the harmonic balance equation

dWhb

dt
+ ωDWhb + Rhb = 0 (14)

This equation is solved using an implicit method, a step of
which is written as

W
n+1
hb − W

n
hb

∆t∗
= −

[
ωDW

n
hb + Rhb(Wn+1

hb )
]

(15)

2.2.2 Explicit Source Term

Returning to the system of equations (15)

dWhb

dt
+ ωDWhb + Rhb = 0. (16)

The first method is to only treat implicitly the residualRhb

but not the source termωDWhb

W
n+1
hb − W

n
hb

∆t∗
= −

[
ωDW

n
hb + Rhb(Wn+1

hb )
]

=
∆Whb

∆t∗
.

(17)
This leads to the linear system

R

W

∣∣∣∣
t0+∆t

0 . . . 0

0
R

W

∣∣∣∣
t0+2∆t

...
. ..

0 0
R

W

∣∣∣∣
t0+T


· (18)


∆W (t0 + ∆t)
∆W (t0 + 2∆t)

...
∆W (t0 + T )

 =

−


R(t0 + ∆t)
R(t0 + 2∆t)

...
R(t0 + T )

− ω


D1,jWhb

D2,jWhb

...
DNT ,jWhb

 .

The right hand side is just the standard residual operator
calculated at theith snapshot plus the approximation of the
source term. The left hand side is just the standard Jacobian
operator calculated at theith snapshot. The matrix is block
diagonal and can be solved independently of each of theNT

instances. HenceNT steady flows are computed and they are
only coupled through the Fourier approximation of the un-
steady residual of the discretised system. This is method has
one very clear advantage in that only theith snapshot of the
Jacobian has to be stored at once so not extra memory is re-
quired for the linear solver over the standard method. How-
ever, the explicit treatment of the source term is likely to re-
strict the size of the CFL number and this problem intensifies
with the number of modes used.

2.2.3 Implicit Source Term

There are a number of ways to treat the source term within
the Harmonic balance framework. Sicotet al. [16] apply an

iterative block-Jacobi method to move the implicit coupling
from the Jacobian matrix to the right hand side to maintain the
2Nh +1 independent linear systems of the explicit at the cost
of having to do several sweeps to ensure the implicit coupling
effect is introduced. In this work, and in order to increase the
size of the usable CFL number and allow for more modes an
implicit treatment of the source term was used.

ωDW
n+1
hb = ωDW

n
hb + ωD(∆Whb). (19)

The unsteady term couples together the variables at allNT

snapshots which leads to a coupling of the increments also
Equation (14) then becomes:

W
n+1
hb − W

n
hb

∆t∗
= −

[
ωDW

n+1
hb + Rhb(Wn+1

hb )
]

(20)

The Jacobian matrixJ is

J =



R

W

∣∣∣∣
t0+∆t

ωD1,2 . . . ωD1,NT

ωD2,1
R

W

∣∣∣∣
t0+2∆t

...
.. .

ωDNT ,1 ωDNT ,2
R

W

∣∣∣∣
t0+T


(21)

where∂R/∂W is the Jacobian matrix of the CFD residual
and the linear system that needs to be solved is[

V

∆t⋆
+ J

]
∆Whb = −R

n
hb − ωDW

n
hb (22)

whereV is the cell volume.
There are two considerations when solving equation (22).

Firstly, for solving the CFD system it is normally more effi-
cient, CPU time wise, to use an approximate Jacobian matrix
based on a lower-order spatial discretisation of the residual
function. This results in a linear system that has less terms
in the coefficient matrix and is better conditioned due to be
more diagonally dominant. Then, a sparse matrix solver is
used to calculate the updates from the solution of the linear
system. For solving the harmonic balance system several ex-
periments were made based on experience with solving for
a CFD steady state. First, for the terms on the diagonal of
J , arising from the CFD residual, an approximate Jacobian
matrix arising from the first-order discretisation ofR is used.
The linear system is solved using a Krylov subspace method
with BILU factorisation with no fill-in. This is effective for
systems rising from CFD [2].

The drawback of the fully implicit method is its memory
footprint that increases faster than2NH + 1 times the steady
state solver requirements. This is due to the extra memory
needed to store the off-diagonal blocks of the preconditioner.
There are several possible methods for calculating the initial
estimates of these2NH+1 snapshots. These range from using
initial freestream values to calculating2NH + 1 steady state
solves with the mesh in the correctly deformed position with
the correct grid velocities, i.e. setting the unsteady source
term of equation (20) to zero. For the harmonic balance re-
sults shown below we have used the later which it provides a
better initial guess and enhances the robustness of the implicit
solve during the initial iterations.
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3 RESULTS AND DISCUSSION

The first test for the harmonic balance, was the well-known
AGARD CT1 oscillating aerofoil case (freestream Mach
number of0.6, mean incidenceαm = 2.89, reduced fre-
quency ofk = 0.0808, and amplitude of oscillation ofα0 =
2.41 degrees, pitching about the quarter chord) and proved
to be well-resolved by the harmonic balance method. Fig-
ure 1 shows the comparison between the time marching and
the harmonic balance results. There is only a tiny difference
between the pressure field of the non linear time marching
method and the single-mode harmonic balance solution, and
the lift and the drag are well predicted even with a very small
number of modes. The AGARD CT5 case, proved much more
challenging since a larger hysteresis is expected for the inte-
grated loads. As can be seen in Figure 2, the solution with one
mode correctly predicts the single shock on the lower side but
the shock is too far forward. Adding a second mode greatly
improves the behaviour but the shock is still not correctly cap-
tured. This does not improve much with the addition of the
3rd and 4th modes. However, by the time the 5th mode is
added the two solutions only have minor differences. Figure
3 shows the lift which is well predicted even with a small
number of modes and the moment, which is much more sen-
sitive to shock location and strength. There is a much wider
scatter around the non-linear time-marching result. The con-
vergence history of the harmonic balance method for the CT5
case is shown in Figure 3(c).

The addition of a translational motion to the aerofoil,
which induces an effective change in Mach number, makes
capturing the flow features difficult. The inviscid and turbu-
lent cases computed here, both use the same pitch schedule
shown in Figure 4. Though this schedule is dominated by a
once per cycle sine component it also has a number of higher
frequencies as one would expect for a rotor section in forward
flight. This implies that the pitch schedule itself will in effect
only be approximate for a low number of modes. The use
of a two equation turbulence model also presented challenges
since with thek − ω model, positivity ofk andω was main-
tained at each iteration by resetting the values ofk andω to
the initial free-stream values if they went negative. Figure 5
shows the comparison between the lift and drag of the time
marching and the 7-mode harmonic balance solutions. The
results suggest excellent agreement between the methods for
the lift and drag throughout the cycle. Figure 6 shows the con-
vergence of drag for the7-mode case against iteration num-
ber. Since there are7 modes there are15 snapshots and hence
15 drag predictions during the oscillation. Within1, 000 it-
erations the drag of all the snapshots has settled down. The
convergence histories of the flow residuals can also be seen
in Figure 7. Finally, a comparison of the Mach number fields
of the non linear time marching and 7-mode harmonic bal-
ance solutions is shown in Figure 8. The shock strength is
slight over-predicted and is too far forward compared to the
time marching on the advancing side however the agreement
on the retreating side is excellent.

The rotor cases for the Harmonic balance method include
the ONERA non-lifting rotor of [19], the fully articulated case
reported in [15], and the UH60-A [8] rotor in fast forward
flight. The ONERA non-lifting rotor was run inviscid with
7 modes. A comparison between the surface pressure on the

blades can be seen in Figure 9. The differences between the
two solutions are more closely examined in Figure 10 at four
different azimuth angles. On the advancing side, the surface
pressure near the blade root is well captured. Near the tip,
however, the shock is very slightly aft of the non-linear time
marching solution and has its strength mildly over-predicted.
On the retreating side, the blade tip is better resolved withthe
blade root showing the largest differences between the time
marching results and the 7-mode harmonic balance solutions.
Figure 11 shows sectional plots at 76% of the blade radius for
the surface pressure coefficient at three azimuth angles. The
time-marching and the harmonic balance results agree quite
well with minor differences observed near the strong shock
on this blade. A Mesh of 2.15 million cells and 236 blocks
was used and the calculation was run in parallel on 80 proces-
sors.

The second rotor case concerns a fully articulated rotor.
The inviscid mesh for this case contained 1.05 million cells,
236 blocks and was computed on 100 processors. A viscous
mesh for the same test case contained 6.08 million cells, 272
blocks and was run on 80 processors. For this case, the mesh
had to be deformed to account for the blade pitching and flap-
ping and so the volume changes between the cells at differ-
ent time snapshots have to be taken into account. Figure 12
compares the surface pressure on the blades between the in-
viscid, non-linear time-marching solution, a7-mode inviscid
harmonic balance solution and a2-mode viscous harmonic
balance solution. The viscous effects are small in this case
and hence all three solutions are in close agreement. The ro-
tor was run at a tip Mach number of 0.6, a Reynolds number
of half a million, advance ratioµ = 0.25 and shaft angle of
−3.0 degrees. The trim condition set the collective to4.0 de-
grees, a coning angle of1.5 degrees, a single flap harmonic
with 2.0 degrees for thecos term and2.0 degrees for thesin
term, a single pitch harmonic of2.0 degrees for thesin term
and a single lag harmonic of−2.0 for thesin term.

The more challenging case computed with the harmonic
balance method is the forward flying UH60A rotor. The blade
was articulated and a blade deformation was also imposed
on the mesh according to the results reported by Datta and
Chopra [8] and previous computations with HMB for this
case [18]. The rotor was run at a tip Mach number of 0.642, a
Reynolds number of half a million, advance ratioµ = 0.368
and shaft angle of−7.31 degrees. The trim condition set the
collective to11.6 degrees, the coning angle to3.43 degrees, a
single flap harmonic with−0.7 degrees for thecos term and
−1.0 for thesin term, a single pitch harmonic of−2.39 de-
grees for thecos term and8.63 degrees for thesin term and
no lag harmonics.

Figure 13 compares the surface pressure on the blades be-
tween the2− and4−mode harmonic balance solutions and
the non-linear time-marching results. The2-mode solution
of a 4-bladed rotor has a representation of a blade every18
degrees of azimuth while the4-mode solution resolution is
nearly double that at10 degrees. Overall, the solutions show
good qualitative agreement. Figure 14 shows a quantitative
comparison of the pressure at3 different azimuths. Figure 15
shows the comparison of the surfaceCp at the67.5%R sta-
tion, and at every90 degrees of azimuth. Figure 16 shows the
comparison of Mach squared scaled loads between the exper-
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imental data, non-linear time-marching and the4-mode har-
monic balance methods. This is a very demanding test case,
and the results show good agreement between the CFD and
the experiments as well as a fair agreement between the time-
marching and harmonic balance solutions. For this case, the
memory requirement for the HB method was 95 GBytes for
the 2-mode case and 219 GBytes for the 4-mode case. The
time marching solution required 3 rotor revolutions of 1440
time steps, and a total CPU time of 9.8 days on 128 Pentium
nodes. The 2-mode harmonic balance required a total time of
just one day while the 4-mode harmonic balance required 2.6
days on the same system and grid as the time-marching.

The main drawback of the fully implicit harmonic bal-
ance method is the memory footprint. The ideal scaling would
be2NH + 1 however, the employed Jacobian and precondi-
tioner matrices grow at a faster rate. The growth, is due to
the off diagonal terms added in from the implicit source term
which cause the increased scaling. ForNH modes there are
2NH(2NH + 1) of them but since there are 7 blocks in the
approximate Jacobian the real scaling over the steady state
method is2NH + 1 + 2NH(2NH + 1)/7. Table 1 shows the
scaling for the first 7 modes. For up to about 4 or 5 modes
the performance is not too bad. However for 7 modes, the
memory is already at 3 times the ideal scaling and gets worst
progressively.

4 CONCLUSIONS AND FUTURE WORK

A method suitable for fast analysis of rotor flows was pre-
sented and assessed in this paper. Across the board of the
AGARD CT cases, the method produced results in excellent
agreement with time-marching computations. The in-plane
translation was also well-resolved and a modest number of
flow modes was adequate for predictions of good engineer-
ing accuracy. The method is more expensive in terms of
computer memory than time-marching CFD algorithms, and
requires careful implementation for efficient computations.
The results, however, are more than satisfactory. As part
of this work, inviscid and viscous test cases were assessed
and the harmonic balance method produced excellent results
for the non-lifting ONERA rotor at high blade advance ra-
tio. The same was true for a lifting rotor with articulation
that was assessed in forward flight as well as the UH60A ro-
tor in high speed. It is evident from the current work that
the harmonic balance method is adequate for many engineer-
ing computations and with a reduction in the required com-
puter memory this technique has the potential to change the
way time-marching is used in CFD for engineering analysis
of rotors. Following this work, further efforts are directed to-
wards expanding the method, reducing its memory footprint
and demonstrating more complex flow cases.
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Figure 1: Comparison of the time marching results (shaded contours) and the harmonic balance pressure (black solid lines) for
the flow field of the CT1 test case, at 4.98 degrees down. The lift and drag hysteresis are also shown for up to 5 modes.

7



X/c

Y
/c

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

X/c

Y
/c

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1-Mode 2-Modes

X/c

Y
/c

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

X/c

Y
/c

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

3-Modes 4-Modes

X/c

Y
/c

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

X/c

Y
/c

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

5-Modes 10-Modes

Figure 2: Comparison of the time marching results (shaded contours) and the harmonic balance pressure ( black solid lines) for
the flow field of the CT5 test case.
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Figure 3: (a,b) Evolution of loads of the time marching (solid line) and the harmonic balance solutions for the CT5 test case. (c)
Convergence history for the harmonic balance method.

9



Azimuth

A
ng

le
of

A
tta

ck

0 60 120 180 240 300 360

-2

0

2

4

6

8

10
Pitch Schedule

Pitch schedule

Azimuth

Li
ft 

C
oe

ffi
ci

en
t

0 60 120 180 240 300 360
-0.15

-0.1

-0.05

0

0.05

0.1

Time Marching
Initial Estimate

Azimuth

D
ra

g 
C

oe
ffi

ci
en

t

0 60 120 180 240 300 360
-0.005

0

0.005

0.01

0.015

Time Marching
Initial Estimate

Lift coefficient Drag coefficient

Figure 4: Pitch schedule and comparison of the non linear time marching (solid line) and the initial loads estimates for the
harmonic balance of the inviscid dMdt test case (M∞ = 0.55, µ = 0.45 andk = 0.3668).
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Figure 5: Comparison of the time marching ( solid line ) and the 7-mode harmonic balance solutions for the loads for the viscous
dMdt case (M∞ = 0.55, Re =5.65x106, µ = 0.45 andk = 0.3668).
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Figure 7: Convergence history of the Harmonic Balance method for the viscous dMdt case (M∞ = 0.55, Re = 5.65x106,
µ = 0.45 andk = 0.3668).
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(black contours) for the viscous dMdt case (M∞ = 0.55, Re =5.65x106, µ = 0.45 andk = 0.3668).
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Non linear inviscid time marching 7 Mode inviscid harmonic balance

Figure 9: Comparison of the surface pressure on the blades for the ONERA non-lifting rotor.
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Azimuth =48o - 2nd time snapshot Azimuth =72o - 3rd time snapshot

Azimuth =120o - 5th time snapshot Azimuth =240o - 10th time snapshot

Figure 10: Comparison of the non linear pressure ( in colour)and a 7-mode harmonic balance pressure (black lines) for theflow
field in the ONERA non-lifting rotor test case.

Azimuth72o - 3rd time snapshot Azimuth120o - 5th time snapshot Azimuth240o - 10th time snapshot

Figure 11: Comparison of the non linear Cp (black lines) and a7-mode harmonic balance Cp (red squares) for the ONERA non
lifting test case.
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Non linear inviscid time marching 7 Mode inviscid harmonic balance

2 Mode viscous harmonic balance

Figure 12: Comparison of the Surface pressure on the blades for the lifting rotor.

(a) 2 Mode Harmonic Balance (b) 4 Mode Harmonic Balance (c) Time Marching

Figure 13: Harmonic balance and time marching results for the UH60 rotor in forward flight.
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(a) Zero degrees Azimuth (b) 90 degrees Azimuth

(c) 270 degrees Azimuth

Figure 14: Harmonic balance and time marching results for the UH60 rotor in forward flight. The colour contours are the pressure
from the time marching simulation, the red lines correspondto the 2-Mode solution, and the black lines to the 4-Mode solution.
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Figure 15: Harmonic balance and time marching results for the UH60 rotor in forward flight. The comparisons of the surfaceCp

are shown for the67.5%R station.
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Figure 16: Comparison of the Mach squared scaled loads between the experimental data, the CFD Timing marching solution and
the 4 mode Harmonic balance solution for the UH60 rotor in forward flight at two different span-wise stations.
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