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Abstract

Computational fluid dynamics (CFD) based on the Navier-Stokes eqeasioowadays used by the rotorcraft industry for the
analysis and design of helicopter rotors. Computations for rotor axiat tignefit from the use of a rotating frame of reference
that leads to steady-flow equations and avoids expensive time-maiCkiDganalyses. For rotors in forward flight, efficient
computations could be made by solving the governing equations in theefieglomain assuming that the flow is periodic.
This type of analysis is more efficient in terms of CPU time but requiresemmemory for the computations. In this paper, a
frequency-domain CFD method developed by the authors is demoustoatdemanding rotor cases and is compared against
time-marching analysis at the same conditions.

1 INTRODUCTION use of non-time-marching methods within the framework of
implicit flow solvers. The scheme maintains good compat-

Within the rotorcraft CFD domain, several works are cur- [Pility with existing time-marching implicit flow solversral
rently available in the open literature with good demonstra S relatively easy to implement. To demonstrate this apgtoa
tions of the accuracy of Navier-Stokes-based methods for ro the Helicopter Multi-block Solver (HMB) of Liverpool [3, 17
tors in forward flight [18]. In addition, CFD works consid- IS used. Afterimplementation, the method is demonstrated f
ering rotor-fuselage and complete helicopter configunatio & range of test cases including oscillating aerofoils, faéeo
also begin to appear [17]. The main drawback of these meth-IN Pitch-translation oscillation as well as non-liftingdalift-
ods is most of the times associated with the excessive CPUNG rotors in forward flight. The cases are selected to irsgea
cost needed to resolve the rotor flow and provide data forin compilexity to demonstrate the limitations gnd costs ef th
several azimuth angles. This cost is associated with time-harmonic balance method. Where appropriate, the results
marching solutions that need small steps in azimuth and sev-2ré compared with time-marching solutions obtained wiéh th
eral rotor revolutions to reach a converged state. An atern Same CFD code.
tive would be to solve for the rotor flow using frequency do-
main or time-linearised methods that are popular within the
domain of turbo-machinery research [12]. This challenging
task to compute rotors with non time-marching methods has
so far been addressed by few authors [4,6,7,10,11].

The work of Butsuntorn and Jameson [4] for example, re- The Helicopter Multi-Block(HMB) code, developed at Liver-
lies on the solution of the Navier-Stokes equations on the fr  pool can solve the Navier-Stokes equations in integral form
quency domain and requires Fourier Transformations within using the arbitrary Lagrangian Eulerian (ALE) formulation
the iterative numerical process. The work of Ekici et al][10 for time-dependent domains with moving boundaries:
is an extension of the well-known method of harmonic bal-
ance, that is popular within the aero-elasticity domaine Th
time spectral approach of Gopinath and Jameson [11], has i/ v‘\}dV+/ (E (W) — F, (v?,)) idS =S (1)
been applied to rotors by Butsuntorn and Jameson [4], and V(t) oV (t)

Choi has also used the time spectral method to predict rotor ) ]

loads [6] [7]. Most of these works, however, originate from Where V(¢) is the time dependent control volumay’(t)
explicit time-marching schemes and remain explicit inthei 1S boundary, w is the vector of conserved variables
nature when transformed to the frequency domain. Dugour > P P, pw, pE]” . F; and F, are the inviscid and viscous
al. [9] compared the performance and accuracy of both Lin- flUxes, including the effects of the time dependent domain.
earised and Harmonic balance methods within the CFD codel™0" hovering rotor simulations, the grid is fixed and a source
elsA [5] to predict the unsteady aerodynamic loads for an air €M S = [0, —pd x @, 0]" is added to compensate for the
foil with a flap at subsonic and transonic flows. It was re- inertial eﬁects of the rotationi, is the local velocity field in
ported, for the subsonic cases, that the linearised mettead p  the rotor-fixed frame of reference. .

formed well. However, in the transonic regime the accuracy ~ 1he Navier-Stokes equation are discretised using a cell-
deteriorated and the single mode harmonic balance methodentred finite volume approach on a multi-block grid, legdin
always produced a more accurate answer at the expense dP the following equations:

more computational cost. P

In the present work, a method is proposed that enables the e (WijkVijk) = —Rijr (Wijk) (2)

2 NUMERICAL METHODS

2.1 Helicopter Multi-Block solver



wherew represents the cell variables aldthe residuals.  Then equation (3) can also be truncated using a Fouriersserie
i, j andk are the cell indices anid, ; ;. is the cell volume. Os-  expansion,

her’s [14] upwind scheme is used to discretise the convectiv No

terms and MUSCL variable interpolation is used to provide I(ty= Y D" (8)
third order accuracy. Van Albada limiter is used to reduee th k=—Nu

oscillations near steep gradients. The discrete Fourier transforms can be substituted into the

Temporal integration is performed using an implicit dual- semi-discrete form equation](3) with the time derivative of
time step method. The linearised system is solved using thethe state variables pushed inside the series summationg Usi
generalised conjugate gradient method with a block incom-the orthogonality of the Fourier terms results in an equatio

plete lower-upper (BILU) pre-conditioner [1]. for each wave numbeér
Multi-block structured meshes are used for HMB. These ] . .
meshes are generated using ICEM-Hexa™of Ansys. The WwkV Wi + Ry = 0. ©)

multi-block topology allows for an easy sharing of the cal- | should be noted that sinde(W' (1))
culation load for parallel computing. Adding sliding meshe ¢ W (t) then each coefficient, depends on all the coeffi-

[17], as well as allowing for mesh overlap makes the HMB ¢jent1i/, . Hence equatidn 9 represents a non-linear system of
a very flexible solver for dealing with complex geometries. equations which must be solved iteratively so
Given the existing data structure of the solver, the modifi-

cations required for the mesh overlap were restricted to a I, = iwkVWy, + R, = 0. (10)
small part of the code. Within HMB, hallo cells are employed
by each block, and are populated from boundary conditions,
bloc-to-block data exchanges, data from sliding surfages o
data frqm overlgpping meshes. For as Iong'as a block has WAW + R =0 (11)
correct information on the hallo cells, its solution can Ipe u

dated and then shared with other neighbouring blocks. In thewhereA is a Ny x N matrix. There are several approaches to
strongly implicit HMB method, only the preconditioner em- calculating the residual in the frequency domain. The fjpst a
ployed for the solution of the linear system of equations is proach is to attempt to form an analytical expression betwee
decoupled between blocks. For overlap regions though andR; andW,. This approach requires a complex series of con-
to minimise the exchange of data, the Jacobian matrix is alsovolution sums to calculaté,, directly from IW,. Hall [12]
de-coupled for overlapping mesh regions. Another necgssar rightly discards this approach due to its massive complexit
modification for the solution on overlapping grids is rethte and the fact that the cost scales quadratically with the num-
to the treatment of cells marked as holes. These are idehtifie ber of modes. The alternative approach by Hall was to use
and kept in the original system of equations even if theinsol the pseudo-spectral approach in the time domain while Mc-
tion is not to be updated. This allows for the structure of the Mullen et. al. [13] employs a similar approach in the fre-
solver to remain the same and has minimal overhead in thequency domain.

computation.

is a non linear function

The system isN; = 2Ny + 1 equations inNy unknown
harmonics and can be expressed as

2.2.1 Pseudo Spectral Approach in the Time Domain

2.2 Harmonic Balance In the approach of Hall instead of solving (9) directly in the
An alternative to time marching, is the Harmonic Balance frequency domain, the equation is transformed back into the
method that allows for a direct calculation of the periodic time domain. The solution is split int&/r discrete equally
state. Starting from the semi-discrete form as a system ofspaced sub intervals over the periba= 27 /w

ordinary differential equations:

W(to + At) R(to + At)
dW (t) W (to + 2At) R(to + 2At)
I(t) = V=" + R(t) =0, @ W= | Rny = :
and considering the solutidi” and the residuak to be peri- W(t0'+ T) R(to '+ T)
odic in time and functions of the frequeney, (12)
o0 whereAt = 27 /(Nyw). Then, there exists a transformation
W(t)= > Wge, (4) matrix [20] £ such that
heee W = EWpp and R = ERpp
R(t) = Z Ryeket (5) and equation (11) becomes
k=—
we can truncate the series to a specified number of harmonics
Ny P WAEW,, + ERppy, =0 = wEilAEth + (23)
Ne EilEth = wDWhyy + Rup
W(t)= Y Wiet, 6) _ _
ke N with D = E~1AF and the components of D are defined by
N R ) 9 N
R(t)= Y Rpe™". 7 Dij= - ksin(2rk(j — i)/Np).
k=—Ng 7 Nt =



Note that the diagondD; ; is zero. We can then apply pseudo iterative block-Jacobi method to move the implicit couglin

time marching to the harmonic balance equation from the Jacobian matrix to the right hand side to maintagén th
2N}, + 1 independent linear systems of the explicit at the cost
Wb +wDWpp + Rpp = 0 (14) of having to do several sweeps to ensure the implicit cogplin
dt effect is introduced. In this work, and in order to incredse t
This equation is solved using an implicit method, a step of size of the usable CFL number and allow for more modes an
which is written as implicit treatment of the source term was used.

Wi =Wy wDWEHY = WDW}, + wD(AWhy). (19)

NG — [wDW}, + Ruy (W] (15)

The unsteady term couples together the variables avall

- shapshots which leads to a coupling of the increments also

2.2.2 Explicit S T )
Xplicit souree ferm Equation[(14) then becomes:

Returning to the system of equations|(15) il n
Wi = Wi _ _1,pwit' 4 Ryy(wi)]  (20)

dw, *
2 wD W + Ry = 0. (16) At
¢ The Jacobian matriy is
The first method is to only treat implicitly the residual,, C R 7
but not the source termDW,;, W wD1 o ce wD1i Ny
to+At
Wizllj_l — Wi n +1 AWpy, D il
T - [WDWILb + R’Lb(W}?b )] = P J = e w to+2At
a7 .
This leads to the linear system
R
. _ WDNT,I WDNT,2 W
— 0 o 0 L to+T |
w to+AL (21)
0 wheredR/OW is the Jacobian matrix of the CFD residual
W, sons . @18) and the linear system that needs to be solved is
Vv
R |:At* + J:| AWpp = —sz — (,t)l)I/V,?i7 (22)
0 0 —
L Wiiprr | whereV is the cell volume.
[ AW (to + At) There are two considerations when solving equation (22).
AW (to + 2At) Firstly, for solving the CFD system it is normally more effi-
: = cient, CPU time wise, to use an approximate Jacobian matrix
' based on a lower-order spatial discretisation of the residu
AW (to +T) function. This results in a linear system that has less terms
R(to + At) | Dy jWhy in the coefficient matrix and is better conditioned due to be
R(to + 2At) Dy jWhy more diagonally dominant. Then, a sparse matrix solver is
- . i . : used to calculate the updates from the solution of the linear
' ' system. For solving the harmonic balance system several ex-
R(to + T) ] DNT,jth Y 9 y

periments were made based on experience with solving for

The right hand side is just the standard residual operatord CFD steady state. First, for the terms on the diagonal of
calculated at théth snapshot plus the approximation of the </, arising from the CFD residual, an approximate Jacobian
source term. The left hand side is just the standard Jacobiafnatrix arising from the first-order discretisation &fis used.
operator calculated at thiéh snapshot. The matrix is block The linear system is solved using a Krylov subspace method
diagonal and can be solved independently of each of\the with BILU factorisation with no fill-in. This is effective fio
instances. Henca; steady flows are computed and they are Systéms rising from CFD [2].

only coupled through the Fourier approximation of the un-  The drawback of the fully implicit method is its memory
steady residual of the discretised system. This is methed ha footprint that increases faster thaiy + 1 times the steady
one very clear advantage in that only ttie snapshot of the ~ State solver requirements. This is due to the extra memory
Jacobian has to be stored at once so not extra memory is rebeeded to store the off-diagonal blocks of the preconcition
quired for the linear solver over the standard method. How- There are several possible methods for calculating thilinit
ever, the explicit treatment of the source term is likelydo r ~ €Stimates of thes&Vy; +1 snapshots. These range from using

strict the size of the CFL number and this problem intensifies initial freestream values to calculatingVy + 1 steady state
with the number of modes used. solves with the mesh in the correctly deformed position with

the correct grid velocities, i.e. setting the unsteady s®ur
term of equation (20) to zero. For the harmonic balance re-
sults shown below we have used the later which it provides a
There are a number of ways to treat the source term withinbetter initial guess and enhances the robustness of theimpl
the Harmonic balance framework. Sictal. [16] apply an solve during the initial iterations.

2.2.3 Implicit Source Term



3 RESULTS AND DISCUSSION blades can be seen in Figlre 9. The differences between the
two solutions are more closely examined in Figure 10 at four

The first test for the harmonic balance, was the well-known different azimuth angles. On the advancing side, the sarfac
AGARD CT1 oscillating aerofoil case (freestream Mach pressure near the blade root is well captured. Near the tip,
number of0.6, mean incidencey,,, = 2.89, reduced fre-  however, the shock is very slightly aft of the non-lineardgim
quency ofk = 0.0808, and amplitude of oscillation af, = marching solution and has its strength mildly over-prestict
2.41 degrees, pitching about the quarter chord) and provedOn the retreating side, the blade tip is better resolved thigh
to be well-resolved by the harmonic balance method. Fig- blade root showing the largest differences between the time
ure[1 shows the comparison between the time marching andmarching results and the 7-mode harmonic balance solutions
the harmonic balance results. There is only a tiny diffeeenc Figure 11 shows sectional plots at 76% of the blade radius for
between the pressure field of the non linear time marchingthe surface pressure coefficient at three azimuth angles. Th
method and the single-mode harmonic balance solution, andime-marching and the harmonic balance results agree quite
the lift and the drag are well predicted even with a very small well with minor differences observed near the strong shock
number of modes. The AGARD CT5 case, proved much moreon this blade. A Mesh of 2.15 million cells and 236 blocks
challenging since a larger hysteresis is expected for iée in  was used and the calculation was run in parallel on 80 proces-
grated loads. As can be seen in Figure 2, the solution with onesors.
mode correctly predicts the single shock on the lower side bu
the shock is too far forward. Adding a second mode greatly 1,

. . oo e inviscid mesh for this case contained 1.05 million cells
improves the behaviour but the shock is still not correctly-c 236 blocks and was computed on 100 processors. A Viscous
tured. This does not improve much with the addition of the

3rd and 4th mod Y by the time the 5th mode i mesh for the same test case contained 6.08 million cells, 272
rd an modes. However, by the ime he MOUE 1S} 5¢cks and was run on 80 processors. For this case, the mesh

ddﬁd th?r:w?ffoll:]t_logg onlyllhavedm|tnc(;r dlﬁererl_;:r(]as. Flgulze had to be deformed to account for the blade pitching and flap-
shows the it which 1S well predicted even with a sma ping and so the volume changes between the cells at differ-

n_u_mber of modes af‘d the moment, which is _much MOTE S€N-ant time snapshots have to be taken into account. Figure 12
sitive to shock location and strength. There is a much wider

. . i compares the surface pressure on the blades between the in-
scatter around the non-linear time-marching result. Thre co

: . viscid, non-linear time-marching solution,7amode inviscid
vergence history of the harmonic balance method for the CT5harmonic balance solution and2amode viscous harmonic
case is shown in Figure 3(c).

" . . .. balance solution. The viscous effects are small in this case
The addition of a translational motion to the aerofoil,

hich ind facti h in Mach b K and hence all three solutions are in close agreement. The ro-
which Induces an efiective cnange in Mach NUMDBer, MakeS,,.\yaq yyn at a tip Mach number of 0.6, a Reynolds number
capturing the flow features difficult. The inviscid and turbu

f half illion, ad tig = 0.2 d shaft le of
lent cases computed here, both use the same pitch schedul(s)a alf a million, advance ratig = 0.25 and shatt angle o

shown in Figur&_ 4. Though this. schedule is dominated py a r?ggs(?e;’::eoensiﬁ; f;i;rlgnoc;gndd;;(r)enesst?t;h;ncgcigef?;lgerlltggjeoniC
once per.cycle sine component it also has a numbgr of hlghea/ith 2.0 degrees for theos term and2.0 degrees for thein
fr_equenc!es_ asone would ex_pect fora roto_r sect|o_n in faowar term, a single pitch harmonic @f0 degrees for thain term
flight. This |mpI|_es that the pitch schedule itself will infeét and a single lag harmonic 6f2.0 for the sin term.
only be approximate for a low number of modes. The use . ) )
of a two equation turbulence model also presented challenge ~ 1he more challenging case computed with the harmonic
since with thek — w model, positivity ofk andw was main- balance_ method is the forward flying UI—_|60A rotor. Th_e blade
tained at each iteration by resetting the valueg ahdw to was articulated and a blade deformation was also imposed
the initial free-stream values if they went negative. Figr ~ ON the mesh according to the results reported by Datta and
shows the comparison between the lift and drag of the time Chopra [8] and previous computations with HMB for this
marching and the 7-mode harmonic balance solutions. TheCase [18]. The rotor was run at a tip Mach number of 0.642, a
results suggest excellent agreement between the methods fd?eynolds number of half a million, advance ratio= 0.368
the lift and drag throughout the cycle. Figlre 6 shows the con @nd shaft angle of-7.31 degrees. The trim condition set the
vergence of drag for the-mode case against iteration num- Ccollective tol1.6 degrees, the coning angledal3 degrees, a
ber. Since there aremodes there art5 snapshots and hence  Single flap harmonic with-0.7 degrees for theos term and
15 drag predictions during the oscillation. Within000 it- —1.0 for the sin term, a single pitch harmonic 6f2.39 de-
erations the drag of all the snapshots has settled down. Th&rees for the:os term ands.63 degrees for thein term and
convergence histories of the flow residuals can also be seef© 12g harmonics.
in Figure 7. Finally, a comparison of the Mach number fields Figurd 13 compares the surface pressure on the blades be-
of the non linear time marching and 7-mode harmonic bal- tween the2— and4—mode harmonic balance solutions and
ance solutions is shown in Figuré 8. The shock strength isthe non-linear time-marching results. Thenode solution
slight over-predicted and is too far forward compared to the of a 4-bladed rotor has a representation of a blade eigry
time marching on the advancing side however the agreementlegrees of azimuth while th&mode solution resolution is
on the retreating side is excellent. nearly double that at0 degrees. Overall, the solutions show
The rotor cases for the Harmonic balance method includegood qualitative agreement. Figurel 14 shows a quantitative
the ONERA non-lifting rotor of [19], the fully articulatedise comparison of the pressureatlifferent azimuths. Figure 15
reported in [15], and the UH60-A [8] rotor in fast forward shows the comparison of the surfaCe at the67.5%R sta-
flight. The ONERA non-lifting rotor was run inviscid with  tion, and at ever0 degrees of azimuth. Figure 16 shows the
7 modes. A comparison between the surface pressure on theomparison of Mach squared scaled loads between the exper-

The second rotor case concerns a fully articulated rotor.



imental data, non-linear time-marching and themode har-

monic balance methods. This is a very demanding test case,
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Figure 1. Comparison of the time marching results (shadetbcos) and the harmonic balance pressure (black solid)lifoe
the flow field of the CT1 test case, at 4.98 degrees down. Tihenld drag hysteresis are also shown for up to 5 modes.
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the flow field of the CT5 test case.
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Convergence history for the harmonic balance method.
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harmonic balance of the inviscid dMdt test case {, = 0.55, u = 0.45 andk = 0.3668).
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Figure 8: Comparison of the time marching solution Mach nenftshaded contours ) - and a 7 mode harmonic balance solution
(black contours) for the viscous dMdt casd (, = 0.55, Re =5.65210°, i = 0.45 andk = 0.3668).
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Non linear inviscid time marching

7 Mode inviscid harmonaldnce

Figure 9: Comparison of the surface pressure on the bladéisd@NERA non-lifting rotor.
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Figure 10: Comparison of the non linear pressure (in coland a 7-mode harmonic balance pressure (black lines) fdlae
field in the ONERA non-lifting rotor test case.
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Figure 11: Comparison of the non linear Cp (black lines) aehaode harmonic balance Cp (red squares) for the ONERA non
lifting test case.
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Non linear inviscid time marching 7 Mode inviscid harmonaldnce

2 Mode viscous harmonic balance

Figure 12: Comparison of the Surface pressure on the bladeise lifting rotor.
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Figure 13: Harmonic balance and time marching results ®ttH60 rotor in forward flight.
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(a) Zero degrees Azimuth (b) 90 degrees Azimuth

(c) 270 degrees Azimuth

Figure 14: Harmonic balance and time marching results ®ItH60 rotor in forward flight. The colour contours are thesgtee
from the time marching simulation, the red lines correspionthe 2-Mode solution, and the black lines to the 4-Modetgmiu
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Figure 15: Harmonic balance and time marching results ®ktH60 rotor in forward flight. The comparisons of the surfage

are shown for thé7.5% R station.
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Figure 16: Comparison of the Mach squared scaled loads batthe experimental data, the CFD Timing marching solutiah a
the 4 mode Harmonic balance solution for the UH60 rotor imveod flight at two different span-wise stations.
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