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by 

Fabio NANNONI , Alessandro STABELLINI 
PRELIMINARY DESIGN ENGINEERS 

COSTRUZIONI AERONAUTICHE G. AGUSTA 
CASCINA COSTA, SAMARATE, VARESE, ITALY 

ABSTRACT 

The fast increase of static and torsional loads at the 
root of the blade is, sometimes, the first limit that a 
helicopter meets in forward flight at high speed. 

A good design cannot leave out of account, hence, an 
analysis of this phenomenon that is very important in 
rotating controls development and, above all, in 
performances and handling qualities estimation of the whole 
aircraft. 

In this paper will be presented the AGUSTA methodology 
for the estimation of these loads in the preliminary design 
phase. 

1. INTRODUCTION 

The evaluation of the torsional loads at the root of 
the blade of an helicopter in forward flight is, surely, a 
very difficult task. 

This problem can be resolved, naturally, using 
sophisticated and very complex computer codes but, today, 
AGUSTA has a methodology that can allow a good estimation of 
these loads in the preliminary phase of the design when the 
necessity of making parametric studies and the small 
quantity of data available makes very difficult, or even 
impossible, the use of particularly complex methods. 

For these reasons the AGUSTA' s "PRELIMINARY DESIGN 
DEPARTMENT" has thought and developed an algorithm that, 

·also with all the necessary approximations and reductions of 
the phisical and dynamic problems present in the analysis, 
was endowed with a good flexibility of use and with all of 
those characteristics that are considered essential for a 
good calculation of the torsional loads at the root of the 
blade (a good inflow model, unsteady aerodynamic). 

We have to underline that the program was created 
paying attention to its cost/effectiveness ratio and it is 
well applicable to ·conventional configurations of hubs like 
full articulated ones or, better, with elastomeric bearings. 
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LIST OF SYMBOLS 

-V = speed vector in the used frame 

~O = collective pitch 

&90 = longitudinal cyclic pitch 

t}00 = longitudinal cyclic pitch 

a 0 = coning angle 

a 1 = longitudinal flapping angle 

b 1 = lateral flapping angle 

w = rotor angular speed 

t = time 

f = azimuth angle 

p = flapping angle 

j = air density 

nB = number of blades 

)P = inflow angle 

~ = attack angle 

CL = lift coefficient 

CD = drag coefficient 

CM = moment coefficient 

c(r) = local chord 

c 0 = static lead-lag angle 

c 1 =part in cosf of lead-lag angle 

dl = part in sin r of lead-lag angle 

r = local radial station 

R = rotor radius 

vf = local flapping velocity 

vi = local induced velocity 
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• 

S(r) = local twist 

T = thrust 

H = H-force of the rotor 

Y = Y-force of the rotor 

Q = torque 

M = pitch moment at blade root due to any action 

e = hinges offset (% R) 

xCG = radial position of blade center of gravity (% R) 

J = moment of inertia 

~L = blade mass 

K = damper characteristic 

~R = lagging hinge stiffness 

NA = lagging aerodynamic moment 

lead-lag angle 

mass for unity of lenght of blade 

g = acceleration of gravity 

m = distance between aerodynamic center and pitch axes 
of the blade element (chordwise) 

n = distance between aerodynamic center and center of 
gravity of the blade element (chordwise) 

FD = force due to damper 

bD = damper arm 
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SUBSCRIPTS AND OTHER SYMBOLS 

NF = NO-FEATHER system 

SH = SHAFT system 

BL = BLADE system 

FL = flapping motion 

DR = lagging motion 

i = blade element indicator 

• = d I dt 

•• = d2 I dt2 
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2. SIMPLIFIED MATHEMATICAL MODEL 

NFCTLL program, here presented, is a "BLADE ELEMENT 
CODE"; this kind of algorithm was choosen for its particular 
flexibility and for its good capability of estimation of 
aerodynamic and dynamic loads. 

The program can evaluate, knowing the control angles at 
75% of radius and the components of flight speed with 
respect to the "SHAFT AXES", the forces, the moments, the 
flapping and lagging motions of a rotor anyhow placed in the 
space. 

2.1 FRAMES OF REFERENCE SELECTION 

The calculation of flapping motion and forces is 
conducted in iterative way. To make this process more 
stable and quick, all the evaluations are perfomed in the 
"NO-FEATHER" system respect to which the cyclic variations 
of pitch are zero. 

Then we are able to write the transformation matrix 
that allows to pass from the "SHAFT" system to the 
"NO-FEATHER" frame. 

c90 0 - 590 

[ A ] = .tl& 5 90C90SOO ~coo A&c\osoo 

~ S90COO - ~&C90500 t:.& c9ocoo 

Where: 

1\ Jl . 2 0. * . 2 Q.. uf7 = - s~n v 90 s~n v 00 

~90 = Longitudinal cyclic pitch 

8-oo = Lateral cyclic pitch 

590 = sin & 90 

c9o = cos & 90 

8 oo = sin 9' 00 

coo = cos e- 00 
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For example: 

- -l) 

VSH is the vector of the three components of flight speed 

referred to "SHAFT AXIS" provided, as we have said, as 
INPUTS 

Another very important frame system is the "BLADE" one; 
at this system are referred the aerodynamic forces created 
by the rotor. 

If f NF is the flapping angle in the "NO-FEATHER" 

system we can write, in the classical way: 

2) 

where: 

<f = uJ t = AZIMUTH angle 

now we are able to calculate the components of speed in the 
"BLADE" system (refer to FIG. 1). 

VYBL 

3 ) 

where: 

+ wr 

= (VYNFsin r + VXNFcos r ) cos j3NF + 

sin 

= components of speed in the NF 
system evaluated with 1) 

8-62 



r =local position along·the blade 

ViNF = induced velocity 

= speed induced by flapping motion 

Naturally in equations 3) ~ NF , viNF and Vf are 

unknown and we must calculate them iteratively because each 
of these parameters affects the others and the forces 
created by the rotor. 

When the above variables are calculated it becomes 
possible to write the elementary contribution of each blade 
element to the three forces and to the flapping and lagging 
moments about flap and drag hinges. 

Indicating with: 

= number of blades 

2 2 
V YBL + V ZBL 

cJ... {r, 'f )BL ";}d.. (r, f )NF =angle of attack 

fj-
NF = geometric pitch in the "NF" system 

(collective pitch) 

= .( NF - f7- NF = 

c(r) = local chord 

S(r) = local twist 

we hav~with a little approximation: 

local angle of 
inflow 

4) o( (r, r )NF = e-0 + Atn[V(r, r. lzBL I V(r, r )XBL] + 

[S(r) - S{0.75R)J 
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where the control angles are referred to the blade station 
placed at the 75% of the radius. 

Calculated d.. (r, f )BL' and known in tabular form the 

aerodynamic characteristics of the airfoils distributed 

along the blade: CL(r, f, mach) , CD(r, f, mach) , 

CM(r, f, mach) it can be evaluated: 

5) dTNF = 

cos p NFdr 

6) dHNF = 

= 0.5nBJ v
2

(r, <f )TBLc(r)[(CDcos fNF- CLsinfNF) 

7) dYNF = 

sin p NFsin 'f 

8) dQNF 
2 = 0.5nB~ V (r, r )TBLc(r)r 

[CD cos p NFcos J NF - CLcos f NFsin J NF]dr = 

= dQP - dQI 

9) dMFL 0.5 f 2 = V (r, r )TBLc(r)r 

[CLcos 1 NF + CDsin f NF]dr 
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where: 

TNF = thrust in the NF system 

HNF = H-force (in the X direction of NF 
system) 

YNF = Y-force (in the Y direction of NF 
system) 

QI = induced torque 

Qp = profile torque 

QNF = total torque in NF system 

MFL = moment about flapping hinge 

A double integration in r and f' (average process) 

permits the calculation of the total forces and torque in 
the NF system. 

2.2 FLAPPING MOTION 

The calculation of flapping motion use the classical 
linearized differential equation: 

.. 
10) fNF + W2(1 +c) FNF = MFL I JFL 

where: 

€ = ~LexCGR2 I JFL 

e = offset of flapping hinge in percent of R 

= blade center of gravfty offset in percent of 
R 

= flapping moment of inertia 

= blade mass 

flapping angle in NF system 
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This equation can be resolved imposing that eq. 2) is a 
solution of eq. 10) in twenty different azimuthal locations. 
At these azimuthal locations it can be evaluated MFL (eq.9) 
by simple integration in r. 

The solution of a system of twenty equations in three 
unknown (aONF , alNF , blNF) allows the estimation of the 

three flapping coefficients. 
The found flapping coefficients can be written in the 

"SHAFT" system by the simple and well known equations: 

aOSH = aONF 

11) alSH = alNF + e-90 

blSH = blNF - tr DO 

In writing these equations we have espressed 
control pitch angle in the "SHAFT" system using 
relation: 

12) 

2.3 LAGGING MOTION 

the 
the 

As already seen for the flapping motion the lagging 
motion can be evaluated using the classical differential 
equation: 

•• • 2 13) 1 + (K I JDR) ~ + ( w CDR + RDR I JDR)1 = 

• 
= NA I JDR + 2 ffw 

with: 

= offset of lagging hinge in percent of R 

= lagging moment of inertia 

\ =lagging angle= co - clcos r 
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K = damping characteristic of an eventual damper 

~R = eventual stiffness of drag hinge 

NA = aerodynamic moment about drag hinge 
• 

2 pfw = dynamic coupling between FLAPPING and 
LAGGING motions due to the forces of 
CORIOLIS 

In 1 calculation we have supposed that the intrinsic 

damping·due to aerodynamic forces cart be neglected and that 
the characteristic of the damper could be thought linear. 

If: 

c(r)rdr 

the eq. 13) can be resolved with the same procedure 
underlined for flapping motion. 

3. THE INDUCED VELOCITY 

For performances estimation we can leave out of account 
the induced velocity distribution on the rotor disk (uniform 
down-wash) ; the same thing cannot be done if we want to 
investigate about rotor dynamic or torsional loads at the 
blade root. 

The PGM HFCT'I.L was endowed with ~!!ANGLER and SQUIRE 
inflow model that, after accurate analysis, seems to be the 
most useful presently available. 

MANGLER and SQUIRE inflow ditribution is a very complex 
function of azimuth angle and local radial position r; it 
depends, moreover, on the disk angle of attack. 

4. CALCULATION OF THE TORSIONAL MOMENTS AT THE BLADE ROOT 

According to the methodology above described at each 
blade element are applied all the loads that give 
contribution to the moments around the blade pitch axes. 

These loads, integrated along the radius, give, for a 
fixed blade azimuth angle, the total value of the torsional 
moment at the blade root. 
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4.1 IDENTIFICATION OF THE APPLIED LOADS 

The loads on each blade element can be distinguished as 
follows: 

- AERODYNAMIC LOADS 
- INERTIAL LOADS 
- LOADS DUE TO BLADE WEIGHT 
- LOADS DUE TO THE LEAD-LAG DAMPER 

Once determined, according to the method described in 
chapters 2 and 3, the blade motion and the local angle of 
attack, it is possible to evaluate the aerodynamic and 
inertial loads. the loads due to the weight are determined 
by the mass distribution along the blade span. 

The calculations do not need, now, an iterative process 
and so are performed in the "SHAFT REFERENCE SYSTEM". 

The reference point for the blade element moments (>0 
nose up) is the local pitch axis position (XPi in Fig.3). 

4.2 AERODYNAMIC LOADS 

Referring to Fig. 3 it will be: 

16) 

17) 2 2 
= J v .c .eM. 6.. r./2 

1. 1. 1. 1. 

where: 

q (r, r ) = local angle of attack 

The aerodynamic forces are applied to the local 
aerodynamic center of the section (CAi in Fig.3). 
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4. 3 LOADS DUE TO THE WEIGHT 

Referring again to Fig. 3 it will be: 

18) 6.r. g(m. + n. )cos 8'l. 
]_ ]_ ]_ 

where: 

e-: = 
]_ 

local blade pitch (including twist 
contribution) 

g = acceleration of gravity 

( = o· ]_ 
mass for unit of lenght of the ith 
blade element 

4. 4 INERTIAL LOADS • 

The following moments (acting on each blade element) 
due to the blade motions have been considered: 

- MOMENT due to the blade pitch change: MI 

- MOMENT due to the blade flapping acceleration: MACFi 

- MOMENT due to the blade lagging acceleration: MACDi 

- MOMENT given by the coupling between flapping angle 
and centrifugal force: MCFi 

- MOMENT given by the coupling between lead-lag angle 
and centrifugal force: MCDi 

- MOMENT due to TENNIS RACKET EFFECT: MTREi 

. 
- MOMENT due to the Coriolis forces : MCORi 

All the forces giving the moments above mentioned are 
applied to the centre of gravity of each blade element (CGi 
in Fig. 3 l . 
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4.4.1 MOMENT DUE TO THE CYCLIC BLADE PITCH CHANGE 

If: 

e-i ( f ) = 8' 0 + e-oocos r + e-90sin r + 

will be: 

19) 

where: 

- I p 

•• 

IP = pitch moment of inertia of the blade 

MI( r ) does not depend on the position along the span 

and will be evaluated only as a function of the blade 
azimuth. 

4.4.2 MOMENT DUE TO THE BLADE FLAPPING ACCELERATION 

Is: 

•• 
20) 

4. 4. 3 MOMENT DUE TO THE BLADE LAGGING ACCELERATION 

Is: 

•• 
21) MACDi ( r ) = r. (m. + n. )sin &-. 

l l l l 
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4.4.4 MOMENT GIVEN BY THE COUPLING BETWEEN FLAPPING ANGLE 
AND CENTRIFUGAL FORCE 

Fig. 4 shows the origin of this coupling: 

Fig. 4 

22) FCVi ( f = ~i {j r i w 2
(e + rices p )sin~ 

23) MCFi ( fl = FCVi(mi + ni)cos e-. 
~ 

4.4.5 MOMENT GIVEN BY THE COUPLING BETWEEN LAGGING ANGLE 
AND CENTRifUGAL FORCE 

Fig. 5 shows the origin of this coupling: 

Fig. 5 

~i /J.ri w 2
risinh1_ 
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4.4.6 TENNIS RACKET EFFECT 

The tennis racket effect has been evaluated in a simple 
way under the hypothesis that the chord distribution of each 
blade element mass can be represented by two masses placed 
at fixed distance from the centre of gravity. 

The modelling used to calculate the T.R.E. is shown in 
Fig. 6. 

+~=====-=---~---------
j 

Fig. 6 

26) MTREi ( r ) = 

4.4.7 MOMENT DUE TO THE CORIOLIS FORCE 

This effect is due to the coupling ar~s~ng from 
flapping velocity and rotor angular speed (fig. 7): 

Fig. 7 

• 
27) 

28 ) aCOR =2 W 1\ VFOi =2.W VFOi 

29) 00coRi ( r ) = - 2 ~ i fl r. W VF·o· (m. + n. )sin 6-. 
~ ~ ~ ~ ~ 
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5. LOADS DUE TO THE LEAD-LAG DAMPER 

Starting from 
attachement points 
motion, is possible 
(Fig. 8) 

30) 

the damper geometry and its blade 
and having determined the lead-lag 

to evaluate the loads at the blade root 

XP 

Fig. 8 

This formulation is approximate, but from a practical 
point of wiew, its accuracy has been demonstrated to be 
acceptable. 

6. UNSTEADY AERODYNAMIC 

Due to the pitching and heaving of the blade sections, 
the calculation of the aerodynamic characteristics must take 
.into account the unsteady effects. , 

For the present calculation is particularly significant 
the evaluation of the effect of unsteady aerodynamics on the 
pitching moment coefficient of airfoils. 

In the code NFCTLL has been developed a routine for the 
calculation of the unsteady aerodynamic coefficients based 
on ERICSSON theory (see Ref. 1). 
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7. COMPARISON WITH EXPERIMENTAL DATA 

The above described method has been tested comparing 
its results with the available flight test data of A129 and 
EH-101. 

The code has been, also, compared with the results of 
more sophisticated methods using the working example rotor 
ORMISTON. 

The analysis is performed under the following 
assumptions: 

- Induced velocity distribution according to Mangler 
and Squire theory. 

- Unsteady aerodynamics 

The comparison with the Al29 flight tests data is shown 
in Fig. 9-10-11 and refers to speeds of 0-60-130 Kts. 

The comparison concerning the EH-101 data is summarized 
in Fig. 12-13-14-15-16-17 and the corresponding speeds are 
100-110-120-130-140-150 Kts. 

The comparisons are developed in a qualitative way and 
the results are espressed in percentage of the maximum peak 
value measured in flight at the given condition. 

In Fig. from 18 to 24 is shown the comparison with the 
ORMISTON rotor. 

7.1 Al29 

In hover the steady value shows a good correlation, the 
wave form is very different from the measured one. This is 
due to the fact that the code NFCTLL does not take into 
·account the blade vortex interactions and the interferences 
between main rotor - tail rotor and main rotor - fuselage; 
anyway the results are in good accordance with the measured 
values. 

At 60 Kts· the program overestimates the compression 
peak; the tension peak is, on the contrary, well estimated. 
· The wave form shows a good correlation and the 
overestimation of the negative peak is considered 
accettable. 

At 130 Kts the negative peak is slightly 
underestimated, while, the positive one is well predicted; 
the wave form appears rather good. 
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7.2 EH-101 

The blade of EH-101 is not a conventional blade because 
of its planform and airfoils distribution. The comparison 
between calculations and flight test data appears, for this 
reason, very important. 

It has to be underlined that the measured data could be 
affected by some problems due to the youth of the 
helicopter. 

At 100 kts JliiFCT'LL code well estimates the compression 
load but it underestimates the measured tension load. 

At 110 Kts remains the underestimation of the tension 
load and it has to be noticed the lack of the little 
compression load present in the experimental data. 

At 120 Kts the comparison between measured and 
calculated data appears quite good. 

At 130-140-150 Kts NFCTLL program does not find the 
compression loads present in the flight test data, the 
tension loads appear, on the contrary, always estimated with 
good approximation. 

On the whole the results have to be considered 
satisfactory. 

7.3 ORMISTON ROTOR 

In Fig. from 18 to 24 is shown that the NFCTLL 
evaluation of thrust, torque, flapping and control angles is 
in accordance with the results of the others codes used for 
the comparison. 

The oscillatory torsional loads at the blade root, 
estimated with the methodology above described, are in 
agreement with. the results of others more complex and 
sophisticated computer programs. 
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8. CONCLUSIONS 

The methodology here proposed, based on simplified 
approach, gives good results and allows to evaluate the 
pitch link loads with acceptable accuracy. 

For this reason it is very useful during 
preliminary design phase where can be appreciated 
characteristics of: 

the 
its 

-low execution time (rV30 sec CPU time on a IBM 3083 
computer) 

- reduced input data 

- cost effectiveness of the code used for parametric 
studies 
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