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SUMMARY

This paper presents some comparisons between theory and experiment for the lifting force on the blade of
a model of helicopter in forward flight. It is shown that the accuracy of the results obtained by the lifting line
method decreases for high advance ratio flights, especially at the blade tip. The coupting of 3-D and skewed flow
effects, added to unsteady aerodynamics which occurs there,is studied on a simplified model.

APPLICATION DU CONCEPT DE LIGNE PORTANTE
AUX CALCULS D'HELICOPTERES

RESUME

Dans cet articte, on présente des comparaisons entre la théerie et |'expérience pour la portance d'une paie de
maquette d'hélicoptére en vol avancant. La précision des résultats diminue lorsque le rapport d'avancement aug-
mente, en particulier pour 'extrémité libre de la pale. L'interaction des effets tridimensionnels et instationnaires,
ajoutée aux conséquences d’'une attaque oblique qui se produit en cet endroit, est étudide sur un modéle simplifig,

INTRODUCTION

Even with the advent of fast computers, calculation time is still a severe limitation in helicopter aerodynamics.
On this field the acceleration potential theory associated with the lifting line concept has proved to be a successful
method. Nevertheless, simplifications and computer time saving cannot be introduced without any drawbacks, This
paper is a contribution to the study of unsteady aerodynamics on the helicopter blade, especially at the tip of the
advancing blade where three-dimensional and skewed flow effects are added



I, USE OF THE ACCELERATION POTENTIAL THEORY IN LIFTING SURFACE CALCULATION

1. General assumptions and equations

A compressible non viscous fluid is at rest while a bady is moving at velocity V(t) through it. This body
induces small perturbations in the fluid, and its acceleration may be derived from a potential\i}. By neglecting
the second order terms, the potential \F(P, t‘) at a point [® and time bt is governed by the following eguation
(conservation of mass} :
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. . is the velocity of sound into the fuid.
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The momentum equation gives a relation between the pressure and the potential l{l :

(2 W o= = [P p]
e

fw is the pressure of the unperturbed fluid,
Gois the density of the fluid at infinity.

The potentiai L}/ must satisfy some boundary conditions, such as zero at infinity, and also fuifili non separa-
tion conditions on the surface of the body. Due to the linearisation, a velocity potential may be obtained by

integration over the time variable :t
(3) lf(P,t):j L}’(F’,Z)GLE
Zoo

Derivations of the velocity potentiai (lo(p' t) with respect to the space variables are used to satisfy the
non-separation condition.

2. Application ta lifting surface computations

Irn atl the following, thickness effects are neglected.

This simplification allows the use of the particular solution given by the doublet potential which is particu-
tarly suited for lifting surface problems. Thus if a lifting surface ‘Sa(fig. 1) has a surface distribution of doublet
of strength (“3, C) and axis normal 1o &9, then the pressure jump

across bO is related to ci ( 1%} L') by the formula : ‘
xo @ g(Rt) = [£7(R)-p(R)]
! /
P+ (ooo
(‘)0 The potential induced in the open space by a moving doublet has
p-

been determined for a compressible fluid in [1]. The acceleration potential
lP(F:, C) created at the point P and time £ by a doublet
ptaced at point P, and time G is :

Fig. 1 — Lifting surface 7.
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where (fig. 2 ) V
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g (%) is the doublet intensity at time ¢
c}’_g(g) is the derivative with respect to the time variable

I3
ng is the velocity of the doublet at time T
e ad
b’f&j is the acceleration of the doublet at time &
ol . . . .
7, {Z) is the direction of the doublet axis at time &
2," is determined by the relation :

i6) T= t -~ IDI

[#5
Formula {5} satisfies equation(1)and is used for lifting surface

) . i
. computation with a doublet axis normal to the wake (V,, NOYERY
Fig. 2 - Moving doublet, '
this is a consequence of the usual linearisation assumption
where the lifting surface is projected over the wake surface. The non separation condition is replaced by a relation
giving the value of the projection of the fluid velocity onto the local normal to the wake. At any point P the
fluid acceleration is obtained by a summation over the whole lifting surface {equation{1} is linear) with the appro-

priate doublet intensity. According to (3) the velocity potential is -
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This formula may also be used in the equivalent form

. 3, -
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where f--G,,: /D(Pa '5“)/
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a
Relation (8) can be derived from (7) using integration by parts or may be obtained directly as in |2].
Due to the limitations on computer time, equations {7) or (8} involving a surface integral are simplified everytime
the lifting surface can De approximated by & lifting iine. This is the case for a helicopter blade in the calcutations
presented in this paper. When a single line approximates the blade, it is placed on the 25 % chord position. Equa-

R, 3,

tion (8} then becomes :
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The iifting line is described by the parameter /T taking values between Ra and R;
R.& & R,

F(rzlz) is the tifting force per unit length and is related to the doublet intensity by the relation of the
same kind as (4) .
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3. Research of a formulation suitable for problems in aercelasticity

In a great number of practical probiems, such as the computation of aerodynamic forces on a helicopter
blade, the lifting surface movement depends on the aerocdynamic forces, which in turn are determined by the lif-
ting surface displacements through the non separation ¢ondition. One must solve two sets of simultaneous equations.
The first set expresses the mechanical behaviour of the blade {elasticity equation), the second set is derived from
equation {9). For a complete problem, the computation time may become quite farge and is likely to be carried
out on a limited number of selected blade movements or for a limited number of different lift distributions.
Making use of the linear character of the problem,one shouid be able to obtain the solution satisfying some
particular conditions. In this paper, in addition to the single lifting line approximation, the lift force is decomposed
on a polynomial basis along the blade span combined with a Fourier series development for the time variable, The

problem is thus restricted to established periodical forces and btade movements.
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In expression {11) the factor V1. makes F('z, f.') zero at both ends of the blade.
The Lz.' ()Z) are lLagrange polynomials. The ZL . X‘:J and )"-J are the coefficients of the decomposition
of F(f:)!.‘) . The 2’; ; Xcd' , \/"d are to be determined by substituting (11} in equation (9); the velocity

potentiai may be determined at every point in space.For the helicopter problem, the blade wake (fig. 3} may be

___local

lifting line blade normal

collocation
line

feathering axis

Fig. 3 — Helicopter blade wake,

considered to be generated by the feathering axis rotating and translating through space. The blade surface is pro-
jected on the wake and the single lifting line occupies the 25 % chord position. As for the classical wing problem,
the non separation condition is satisfied on a line situated at the 75 % chord position. {n fact, due to the limited
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number of Lagrange polynomials, the non separation condition is expressed only atn spanwise positiong T
such that LL.('I,;) = 1. The velocity potentiai is computed for two points on the normal of the blade and the
velocity is obtained by finite difference. The non separation condition is expressed at some (2 m + 1) instants
t} to furnish the whole set of aercdynamic equations. When the blade movement is known, this set of equa-
tions is sufficient to determine the !ift force coefficients. In case of an unknown blade movement, the blade must

be modelised by a set of mechanicaf equations (4]

li. APPLICATION TO A HELICGPTER ROTOR IN ADVANCING FLIGHT

A helicopter rotor model has been built by the Société Aérospatiale {SNIAS) and extensive tests were carried
out in Modane during July 1970. The model is a three-bladed, falp-and-lag articulated rotor with fairly stiff blades.
The blades are instrumented with pressure transducers in foursections at spanwise positions T/R =052 ; 0.71 ;
0.855 ; 0.952. Blade movements were recorded during the experiments and can be used as input parameters if
necessary. 1wo comparisons between theory and experiment are presented, the first for an advance ratio of/d: 0.3
and the second /4. =0.44

1. Comparison between theory and experiment for an advance ratio of /u.= 0.30

There was no stall in the presented flight case, so the linear theory is valid. Two computations have been
done. First of all, the recorded biade movement is used as an input and the aerodynamic forcés are compared
with the experiment. Then the biade which is assumed to be rigid is characterised by its variocus inertia properties
(moments of inertia, position of the center of mass eic.... ) and the set of mechanical equations is intreduced.

Again the aesrodynamic forces are compared with the experiment.

Results for both cases are presented in figures 4 a, b, ¢, d in a non dimensional form
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F& is the static pressure in the wind tunnel .
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Fig. 4 (a, b, ¢, d] ~ Time history of the lifting force. Comparison between theory and experiment at advance ratio 4= 0.30

Though both results agree rather well with the experiment, some curious phase shifts seem to appear and

discrepancies can be large for the advancing biade at azimuthal angles between 9G° and 180°. This phenomenon is
easily seen in figure & where the experimental blade movement is taken as an input in the calculations. Agreement

is good except for the first cosine term where the predicted level is too low. The origin of this discrepancy may

be a systematic error in the prediction of unsteady forces by a single lifting line or a swept flow effect. These

wo points wili be examined on the next paragraphs.
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2 Comparison at an advance ration /LL = .44

Results are given in figures 6 a, b, ¢, d. The blade movement has been computed. Some important discre-
pancies are now occurring,particularty for the advancing blade azimuthal region.

This phenomenon wili be studied in paragraph |V for a simptified case.
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HI. UNSTEADY EFFECT ON THE LIFTING LINE APPROXIMATION

The effect of unsteady motion is particularty simple to study in two dimensional incompressible flow. Results
can be compared with Theodorsen's theory for the flat plate [6i.

1. Downwash computation

i A 2-D doublet is moving with a constant velocity V through an
incompressible fluid (fig. 7). This doublet is supposed to schematise
M a profile. At instant E =0, the positions of the profile is :
+b i*& =&
: |
+ 0 -b At the same instant £ = 0, the position of the doublet is 3:4-'%
2 2

and the downwash velocity is computed at point M (f:c = & ; g: -% )

Fig. 7 — 2-0 moving doublet. . \ s
9 § dau The parameter € is smali and will eventually be zero. The lifting force

ALY
on the profile is periodical and takes the form : F_(t) = f'_o eb’ The potential at the point M
is given at time t = 0 by :
0 2MET
4
fo € &dt
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(12) a.f?(ﬁ,t:D):

Taking | = = -!E— and introducing the reduced frequency ‘£= —ﬁé— the relation {12} becomes :
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The downwash is obtained by derivation with respect to £ . Then &€ is made to be zero, which gives :

where

)
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The integral (14} is singular for & = 1, but may be integrated using integral sine and cosine functions ; one obtains :
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2. Non separation condition and results

The profile is oscillating with amplitude CA and frequency # around a center of rotation at ordinate 3,25
A vertical translation with amplitude /‘pl and frequency g is added to the preceding movement. The velocity
at point M and instant £ s given by :

_ i ar + b 0(1 -°<V
ae or(rE) = i FlHh+(% 5

By combination of (15} and {16), the complex number F:,
lifting force.

may be obtained, giving amplitude and phase of the

Twa cases are examined :
1) a pure oscillatory movement around lé= .b.
2} a pure- vertical translation.

In figures 8 and 9, results are compared with the exact Theodorsen's theory for a flat plate. Phase angles are
given with respect to the profile movement.

/maginary
part
057 /maginsry
1 part
- Theodorsen . . .
. Single lifting line
4 resuft
single lifting. 0.8 2
! esuit
fine r g real part
a5 a6z 15 05 1
5
real part
a2 "%F
-as a5 or>w~q02
ao8 | 004
006
%
3
_nRJ Fig. 9 - Vertical transiation.
Fig. 8 —~ Oscillatory motion around vy = b/2. Lifting force is given by its real and imaginary parts
Lifting force is given Dby its real and imaginary parts which are to be muttipiied by 2 np\lzh.
which are to be multiplied by 2 nprza. Curves are graduated in reduced frequencies X = 2 nfb/V.

Curves are graduated in reduced frequencies k= 2 nfb/V.

For both cases, at reduced frequency /& = 0, tifting line resuits are the same as Theodorsen's results. tn fact,
the relative position of the lifting point and the collocation point are chosen for such an agreement. With increasing
frequency, some discrepancies cccur, but agreement is very good up to 1{ = 0.2. 1n the Theodorsen's theory the
lifting force keeps increasing with frequency. This is not the case in lifting point computation where the force
tends toward zero. For a compressibte flow the behaviour of the lifting force is preserved, as shown in figure 10,

A possibility to improve the results is to increase the number of lifting lines:the improvement with five lifting
lines is quite substantial, but results are still far from the exact ones given by the lifting surface theory {fig. 10).

To have an idea of the reduced frequencies encountered on a helicopter blade, they have been computed for
the SA349 (Gazelle) SNIAS helicopter. The tifting surface of the biade is rectangular ; the spanwise position
is such that 1.623 < J€ < 5.073 m ; the chord is 0.36 m,
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Fig. 10 — Oscillating motion around y = /2

Lifting force is given by its real and imaginary parts
which are to be multiplied by 2 rrpr2a."\/1 v
Curves are graduated in reduced frequencies k= 2 nfb/V.

Mach number M = 0.5

the reduced frequencies computed at various spanwise locations JT for the rotation frequency are :
=(0.046 at X = 0.75 R1

0.069 at T

k =o011aat 1
with RO = 1.523 and Rt = 5.073 m.

i
i

RO

0.5 Rt

For a helicopter, as shown here, the reduced frequencies are quite low and the lifting line approximation is

not a limitation .

IV. THREE-DIMENSIONAL EFFECT ON THE ADVANCING HELICOPTER BLADE

Bal b bk

Vn Bl

fifting line -~ cotlocation

point

1
leading edge ’; f

1 I

Fig. 11 ~ Rectangular blade of infinita jangth in swept flow.

For a rectangular blade of infinite length in a
skewed incompressible flow (fig. 11), the unsteady
downwash is still given by formula (15} as in normal
attack, except for the replacement of Ve by V,-,,
the projection of Vegon a normal to the biade axis.
Thus the behaviour of an actual helicopter blade in
forward fiight needs only to be studied in the tip
region where three-dimensional and skewed flow effects
are added. A simpler problem will be examined, the
rectangular wing in skewed flow, which presents the
same aerodynamic character as the actual advancing
blade.

1. Rectangular wing in swept flow

Some simplifications are to be made. The wing
is schematised by lifting lines with equal spacing
chordwise. Furthermore on a lifting line the force is
given by a step function. The position of the collocation
points must be carefully chosen to avoid the effects of
the abrupt variation of force on the lifting Yines. These
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considerations lead to the blade schematisation of figure 12a, where the wing is cut into ¢lements. The planform
of these elements {fig. 12b} is a parallelogram, two sides being parallel to the velocity Vw- The other two
opposite sides are paraliel to the wing span axis. Each of these elements is provided with a lifting segment and a
collocation peint. The lifting force is constant on the element and the lifting segment is fixed at the usual 25%
chordwise position. The coliocation point is at the 75% chordwise position and in the middle of the element
spanwise, The elements are all of the same dimension chordwise, but their size can be different in the spanwise
sense. Some etements (see fig. 12a} at both wing ends have their spanwise dimension given by the following formula :

(17) d:ﬁ— 3 ¢

where ol is the spanwise dimension,
C i the rectanguiar wing chord,
N is the number of eiernents chordwise,

@) is the angle between the wind velocity and the wing span axis.

As shown by formula {17} the elements at the wing ends can be very thin when angle (& is small ; this leads to
mathematical difficulties discussed in the following section.

2. Calculation of the downwash induced by a lifting segment in a skewed incompressible flow

One isolated element, schematised by its 1ifting segment as in figure 12b, is considered. The segment induces,
at any point F of the wing plane, a downswash velocity which is caiculated here. A rectanguiar coordinate
system { o¢ é‘:(‘ Yoor { 1? . € ) is used for the definition of the wing plane (fig. 12). At time £t =0, the
coordinates of both extremities of the lifting segment are :

’X.:.?o }%:C and ’I‘:?4,'3,:C
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The two components of the velocity Voo are \/ and \/(% The potential in an incompressible flow is calculated

at the distance & over the point P(’J: 13) ancl 15 given by
=0
G &'93 74
(18) (10 P£:0) = Fe dt £dy - 7
4—71“ o 2 e V4T g‘l Z
S 3 (’1-?"\/&5) *(3 c-VyT )+
» G
where the vaiue of the force per unit iength on the lifting segment is F- e . By integration with respect
to the variable ? , {18) becomes :
-0
(19) &'9'6
@ (Pt) = __Z;freﬂ Fe [ G(x,4,94,7) -G(fx,g,?a,c)l oG
a2
-F e ?..V ¢

where G(z,4,9,0) =
h ’1'-3? (gcvjﬁg%[ C) (j—c‘/;ﬂ;) EJ

Now, deriving with respect to € and making & = 0, the downwash is given by :

7=0
‘»&
('P;E '-".__'j__ F é7 (?—(';-x) ! JE :)G x, o;z 4G
o (Rl | Fe {rge) - 22 (=g )M
- (’r—?—\/a:G)
where _:_)__G_ (’I, f ,C) = :
B T W PRRVORS | [MRT PR

Relation {20} is a Fourier Transform, and one is tempted to use a Fast Fourier Transform algorithm when numerical
results are needed. MNevertheless this is not possible because of the singular part of (QG/IPE ). The function

)’(3) = g_c - \/3 G is zero for same value of the time & . This singularity has already been encoun-
. tered in the 2-D case (eq. 14) and the Fourier Transform of [—7—?5?)—]9_ may be given using the integrals

sine and cosine functions. One may then remove the singular part and now use the FFT aigorithm. In fact the
results wili be good if the new functlon nssmoothenough This is the case except when the term
D)= {(’J: ?-V 5 (g-c ‘/33) ]V2 is very small. D(%) cannot
be zero because the collocation points P are by definition taken out of the paths of the lifting segment extre-
mities. Nevertheless they may be small for some values of G when the spanwise length of the element is small ;
this occurs for a small angie (% . Then it is necessary to subtract some other function to remove the remaining
" quasi-singular part. This function must have a good behaviour at infinity, on easily computable Fourier Transform,
and match the desired function when [ (C) is small. Such a function exists and is not unique ; in this paper
the following one has been chosen
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(21) H(C) = 025 ) where : X('C) = ’JI.--?-\‘/'.\;z and etz A

X ()% 7/ (T) |2
the Fourier transform of H(t) can be expressed with the complex integral exponentiai functions (see
Annex Al

The downswash of relation (20} will be calculated in the following way :

taking :

'R
2G4 (x,4,n,38) = - X(® .+ Sqn| XA o 03
TR ? Yiey [ X&)+ Y [k %m[ ?l Y& Xy

where X+( ) = X- —-...\./_?'-.(c.. )
? ? \/g (é and 3%“()(*)=+_{ .F x"';-o
S%VI CX*) L | LF’ X*-<0

the refation {20) becomes ;

(22
Gs0

| 26, Fefas
P ¢ ‘.:."—'i-— _..,.,,,,_...(’x, i 4,3- "’DG ((x, 1 Yo, Z)}

5:0

e
g jre [ (€100) = syr0iga) | 47

-2

-0

. ¥ *
et [ rrd SplXp)  Se(X) [y
4T ) 2 X4(E) +& Y {xy Xy e Y )

where X (&) = 2-9,-V2T  and X, (T)z ax-0o-V2l

In this formula the first integral is numerically computed by means of the FFT algorithm ; the other two integrais

are expressed with the integrais sine cosine and exponential functions.

3. Presentation of some resuits

The downswash of formula {22} is used to express the non separation condition at the coilocation points of
the wing. Some computations have been done in the case of a wing with a constant incicence, First of all, for the
wing of figure 12a the forces on each lifting segment have been obtained for a stationary case {reduced frequency

= 0}. The results are given in figure 13. One of the wing ends behaves like a leading edge, and thus the forces
are increasing in this region. This fact is easily noticeable on the-lifting line close to the wing traiting edge, the
forces being small there.

For an angle § = 1° the elements at both extremities of the wing are very thin, and could have been neglected.
They are almost degenerated, but with the introduction of the Fourier Transform of H('C) the results remain
good {see fig. 14). The lift is still increasing at the leading tip, but the lifting segments are very short and the
contributions to the overall force can be almost neglected. The lifting force decreases at both ends aimost as with
a wing velocity normai to the wing.
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Fig. 13 — Rectangular wing in skewed flow. g = 30° 41
Stationary case. ‘

The geometric incidence is constant aiong the wing span. \ L
9 ) L . g G 50 £ig. 14 — Rectangular wing in skewed flow, § = 1°.
The lifting segmenis location is given in figure 12a. .
Stationary case.

Figure 15 showns results obtained for the wing at § = 30° and a oscillating movement around an axis at the
25 % chord position. The reduced frequency of the movement is '& = 0.04 ., The real part (fig. 153) looks like
the ones obtained for = { (fig. 13). For the imaginary part {fig. 156b) the first lifting line presents negative
values of the lift which are usuat at such low reduced frequencies. These negative values are smaller at the leading

wing tip, making the phase angle between the force and the wing oscillating movement (0 vary aiong the wing
span.

Fig. 15 =~ Rectangular wing in skewed fiow, §= 30° Reduced frequency k= 0.04
a) real part,

by} imaginary part. Scale muitiplied by 10,
To make them easier 10 understand, the lifting lines have been represented on separate drawings.
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V. CONCLUSION

The acceleration potential theory applied to numerical computation with a lifting line method has proved to
be very successful in helicopter computations. The approximation of the helicopter blade with a single lifting line
is not a limitation for the prediction of unsteady effects at the low reduced frequencies considered. Nevertheless,
3-D effects at the tip of the advancing blade are a limitation for the validity of the method. For a simpler case,
the rectangular wing in a skewed flow, an approximate theory has been developed and some interesting effects
shown to occur. The leading tip of the wing behaves as a kind of leading edge and the phase angle between the
lifting force and the wing movement varies along the blade span.

ANNEX A

FOURIER TRANSFORM of H (%)

The constants A, B, C, D are introduced ; they are given by the formulas :
Az Ve +ok V;
B - Y, (fx-?) - of V% Llé-c)
C = (q:-x?)e‘ + A (%_C)-b

Da:m_l"f;; B* D0

the Fourier transform of H(f) can be writen on the following form

y R
(A1) J») = = e :“;
o |8t Bl +D°
- 2R
with the new variable 2 = -9 |G+ % ; J(P) becomes :
<
28 e _yx +0 1
(A-2) 3—(9) - eaa'q € J 'd’.r + c dx
ZAD /58 9D+A‘J:' -95 QD-A‘).’
_-2—9— 2,3,

the formula{A-2) may be integrated in the complex plane making -Z: yi-é"x . JO’) is given by :
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2D -z Z
"¢ 7R vD ~wP -
- € .3 € € _d¥% +ie e dZ
A.3 J() = SAT 3 S 7 $ g z

G €2

The paths of integration ?, and g’ are given in figure 16.

| J ]
g, @, 82 87
8 1-¥8 case 2 B0
case 1 r<0 4 N ., A
-V +v0
“—VB
24

Fig. 16 — Paths of integration of J{v),

Two different cases must be considered depending if % intersects the axis ¢f negative abscissa or not.
«© ot

Taking E.{ (_z) = J i aa‘
Z

Eoisa complex number

and with Cf (z) = ez 51(2)

in case 1 when ,_5, <0 the path % does not cross the axis of 'x<o and J-(VJ is given by .

Ty = 3_’;_5 [3C1(-v0~&’~§_2_) ..éc,(vp-%a_gﬁ)} win B <0

in case 2 when _5_, >0 the path %3% crosses the axis of negative abscissa. With the limit values of E; (E)
given by

£y (-»D -40) = 4T
Eq (-vD +50) = 4T

the value of J (¥) is given by :

(o)
=A | (C(-»D-j»8 ) +3Me - G, (¥P-g28
I 38D | ° 4( 7 4 4( M)

the function C,('Z) is tabulated in many computers {see [9]).
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