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This paper presents some comparisons between theory and experiment for the lifting force on the blade of 

a model of helicopter in forward flight. It is shown that the accuracy of the results obtained by the lifting line 

method decreases for high advance ratio flights, especially at the blade tip. The coupling of 3·0 and skewed flow 

effects, added to unsteady aerodynamics which occurs there, is studied on a simplified model. 

ResuMe 

APPLICATION DU CONCEPT DE LIGNE PORTANTE 

AUX CALCULS D'HeLJCOPTERES 

Dans cet article, on presente des comparaisons entre Ia th€orie et !'experience pour Ia portance d'une pale de 

maquette d'helicoptf:re en val avanc;ant. La precision des resultats diminue lorsque le rapport d'avancement aug­

mente, en particulier pour l'extr€mite !ibre de Ia pale. L'interaction des effets tridimensionnels et instationnaires, 

ajoutee aux consequences d'une attaque oblique qui se produit en cet endroit, est etudi€e sur un modele simplifi€. 

INTRODUCTION 

Even with the advent of fast computers, calculation time is still a severe limitation in helicopter aerodynamics. 

On this field the acceleration potential theory associated with the lifting line concept has proved to be a successful 

method. Nevertheless, simplifications and computer time saving cannot be introduced without any drawbacks. This 

paper is a contribution to the study of unsteady aerodynamics on the helicopter blade, especially at the tip of the 

advancing blade where three-dimensional and skewed flow effects are added 
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I. USE OF THE ACCELERATION POTENTIAL THEORY IN LIFTING SURFACE CALCULATION 

1. General assumptions and equations 

A compressible non viscous fluid is at rest while a body is moving at velocity V(tJ through it. This body 

induces small perturbations in the fluid, and its acceleration may be derived from a potential o/· By neglecting 

the second order terms, the potential \f(P,C) at a point P and time t is governed by the following equation 

(conservation of mass) 

Ill 
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d.. is the velocity of sound into the fluid. 

The momentum equation gives a relation between the pressure and the potential \f' : 
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f C1J is the pressure of the unperturbed fluid, 

~is the density of the fluid at infinity. 

The potential 'f must satisfy some boundary conditions, such as zero at infinity, and also fulfil non separa­

tion conditions on the surface of the body. Due to the linearisation, a velocity potential may be obtained by 

integration over the time variable : t 

131 lf ( P, t) = J 'f' ( P1 ~) cL?; 
-"' 

Derivations of the velocity potential Cf ( P,l;) with respect to the space variables are used to satisfy the 

non-separation condition. 

2. Application to lifting surface computations 

In all the following, thickness effects are neglected. 

This simplification allows the use of the particular solution given by the doublet potential which is particu­

larly suited for lifting surface problems. Thus if a lifting surface /:f'(fig. 1) has a surface distribution of doublet 

of strength 9 (f:;
1 
t) and axis normal to (P, then the pressure jump 

{51 

P+ 

P-

across '::f is related to 'j ( 11,
1 
t) by the formula : 

rp.,.m> -rrR,) z {4) 

f'"' 
The potential induced in the open space by a moving doublet has 

been determined for a compressible fluid in [1}. The acceleration potential 

tp( ~ t) created at the point P and time t by a doublet 

Fig, 1 - Lifting surface .9'. 
placed at point P0 and time (;" is : 

--ty (P, t) = 4tc:) nrt:D ~ z _,. 
d7i - 4Jr }Dl a IC0 

9~J (D.fo)(n:. o) 
- 4-'rl a.'- I D J3 /(,03 

+ 
9 

(rs) [( ,_~ _ /V.,J'" ) (ri;,.D) .,. (V:D.. a.IDI) (V:, n:-) ] 
-4-llo.~ IDJ3.1z;o3 
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where (fig. 2 ) 
j) = ~P'--0 "::(1;"-:-)'p~ d. J. - [--~- V:fJ1 an -c...- a.ID/ 

9 tC) is the doublet intensity at time ~ 

1s/ ('~) is the derivative with respect to the time variable 
dz; 

Yr~ is the velocity of the doublet at time ~ ..... 
0 (~ is the acceleration of the doublet at time &' -no~) is the direction of the doublet axis at time z; 

(; is determined by the relation 

161 o: t-ID/ 
a. 

Formula (5) satisfies equation(1)and is used for lifting surface 

F1g. 2 - Moving doublet. 
computation with a doublet axis normal to the wake { v.; i?;)= 0 

this is a consequence of the usual linearisation assumption 

where the lifting surface is projected over the wake surface. The non separation condition is replaced by a relation 

giving the value of the projection of the fluid velocity onto the local normal to the wake. At any point P the 

fluid acceleration is obtained by a summation over the whole lifting surface (equation(1) is linear) with the appro­

priate doublet intensity. According to (3) the velocity potential i" · 

171 <p( P, 1:.) : 

This formula may also be used in the equivalent form 

181 

where 

- Cf(CJ (D.l;)(r>; .D)+ (a'"-V:2
) (n:D)]JrJ."G 

t,""rr o.~ I D j3 n: 

Relation (8) can be derived from (7) using integration by parts or may be obtained directly as in [2J. 

Due to the limitations on computer time, equations (7) or (8) involving a surface integral are simplified everytime 

the lifting surface can be approximated by a lifting line. This is the case for a helicopter blade in the calculations 

presented in this paper. When a single line approximates the blade, it is placed on the 25% chord position. Equa· 

tion 181 then becomes : 
R, 

(Pi:)- 1 F(rc,?:,)[ii';.D] drc 
i.f 1 

- 4-/r (:\» a./ D f7t
0 
(0,) 

Ro 

+ 
191 

The lifting line is described by the parameter 't taking values between Ro and R 1 

R."' rc ;;,. R., 

F(rc,'6} is the lifting force per unit length and is related to the doublet intensity by the relation of the 

same kind as (4) 
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110) crrrc,-c) = 

3. Research of a formulation suitable for problems in aeroelasticity 

In a great number of practical problems, such as the computation of aerodynamic forces on a helicopter 

blade, the lifting surface movement depends on the aerodynamic forces, which in turn are determined by the lif· 

ting surface displacements through the non separation condition. One must solve two sets of simultaneous equations. 

The first set expresses the mechanical behaviour of the blade (elasticity equation), the second set is derived from 

equation {9). For a complete problem, the computation time may become quite large and is likely to be carried 

out on a limited number of selected blade movements or for a limited number of different lift distributions. 

Making use of the linear character of the problem,one should be able to obtain the solution satisfying some 

particular conditions. In this paper, in addition to the single lifting line approximation, the lift force is decomposed 

on a polynomial basis along the blade span combined with a Fourier series development for the time variable. The 

problem is thus restricted to established periodical forces and blade movements. 

(11) 

F(~t,t)" 
0 [.. z. L. {tr.! 
. " < ~=1 

., 
+ L. 

,; :::I 

where 
- 21t- R.,_ 1?0 

7- R.,-Ro 

In expression (11) the factor V1-?'- makes F(~, t) zero at both ends of the blade. 

The Lt..' (It) are Lagrange polynomials. The .CL , X ~J and Yij are the coefficients of the decomposition 

of Fez.~ t) The ~ ~ 1 X Ld , '/~.·d are to be determined by substituting ( 11) in equation (9) ; the velocity 

potential may be determined at every point in space.For the helicopter problem, the blade wake (fig. 3} may be 

lifting line 

S2 

_,... 
n 
_lociJI 

collocation 
line 

feathering ax1s 

Ftg. 3 - Helicopler blade wake. 

bi<Jde normal 

considered to be generated by the feathering axis rotating and translating through space. The blade surface is pro· 

jected on the wake and the single lifting line occupies the 25% chord position. As for the classical wing problem, 

the non separation condition is satisfied on a line situated at the 75% chord position. In fact, due to the limited 
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number of Lagrange polynomials, the non separation condition is expressed only at n span wise positions- Jt . 
< 

such that L i. ('t.:) =: 1. The velocity potential is computed for two points on the normal of the blade and the 

velocity is obtained by finite difference. The non separation condition is expressed at some (2m + 1) instants 

t-d- to furnish the whole set of aerodynamic equations. When the blade movement is known, this set of equa· 

tions is sufficient to determine the lift force coefficients. In case of an unknown blade movement, the blade must 

be modeflsed by a set of mechanical equations [ 4] 

II. APPLICATION TO A HELICOPTER ROTOR IN ADVANCING FLIGHT 

A helicopter rotor model has been built by the Societe Aerospatiale (SN lAS) and extensive tests were carried 

out in Modane during July 1970. The model is a three-bladed, falp-and-!ag articulated rotor with fairly stiff blades. 

The blades are instrumented with pressure transducers in four sections at spanwise positions it I R = 0.52 ; 0. 71 ; 

0.855 ; 0.952. Blade movements were recorded during the experiments and can be used as input parameters if 

necessary. Two comparisons between theory and experiment are presented, the first for an advance ratio off= 0.3 

and the second f = 0.44 

1. Comparison between theory and experiment for an advance ratio of Ji-= 0.30 

There was no stall in the presented flight case, so the linear theory is valid. Two computations have been 

done. First of all, the recorded blade movement is used as an input and the aerodynamic forces are compared 

with the experiment. Then the blade which is assumed to be rigid is characterised by its various inertia properties 

(moments of inertia, position of the center of mass etc .... ) and the set of mechanical equations is introduced. 

Again the aerodynamic forces are compared with the experiment. 

Results for both cases are presented in figures 4 a, b, c, d in a non dimensional form : 

J Af!t) 
Pm(t) = R 

chord 0 

Po is the static pressure in the wind tunnel 

Pm •) r!R. 0.520 

01 

.--- .... __ 

0 180 Jso 

Pm ..... 

Ql 
. ,--
' " ·/ 

11) r!R. 0.710 

0 I 0 360 
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c) r!R, 0.855 

8Zimuthal position (o) 

180 

experiment 

calculated blade movement 

imposed blade movement 

0.1 

0 

360 

Pm 

' . ' . ' 
. ' . ' . ' . 

. -:- ... ·-
d) rl R, 0.952 

1 0 360 

Fig. 4 (a, b, c, d) - Time history of the lifting force. Comparison between theory and expenment at advance ratio !.l = 0.30 

Though both results agree rather well with the experiment, some curious phase sh1fts seem to appear and 

discrepancies can be large for the advancing blade at azimuthal angles between 90° and 180°. This phenomenon is 

easily seen in figure 5 where the experimental blade movement is taken as an input in the calculations. Agreement 

is good except for the first cosine term where the predicted level is too low. The origin of this discrepancy may 

be a systematic error in the prediction of unsteady forces by a single lifting line or a swept flow effect. These 

two points will be examined on the next paragraphs. 

01 flappmg axts A0 
lead lag axts A 

''1 I \Miuoo< / \ R. 

04+--+---~~-------L~-05 I 

experiment 

--o--- imposed blade movement 

--1.1 •• calculated blade movement 

A
1
" cosine part of rank i 

8
1 

:a sine part of rank i 

001 

0 

0.5 A2~ oJ. 
· -oo1j 

I 82 
OS I 

R 

1 R 

0 .!___, .. ·.;1-~ f 0 -~ 
0011A _ 0.01183 ..,-;:::;:;::,;~ 0 

0~ 1 OS 1 

001 jA ~ _ 0011l 8 
0 ~=-~~-4~ 0 2. .... ~ ..... ,..,~~~=:::3>~ ... ,"'-~ 

OS 1 0.5 1 

Fig. 5 - Harmonic analysis of the lifting force : J.L = 0.3 ; a0 =- 16° 
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2. Comparison at an advance ration )'- = 0.44 

Results are given 1n figures 6 a, b, c, d. The blade movement has been computed. Some important discre­

pancies are now occurring, particularly for the advancing blade azimuthal region. 

This phenomenon will be studied in paragraph IV for a simplified case. 

•) r/R. 0.520 

Pm 
01 b) r!R. 0710 

Pm /-, 
/ ' c) r!R. 0855 

I \ 

0.1 \ I \ 
I \ 

I ' 
I \ 

\ 

I ' ' -\ I ---\ I ' I azimuthal position (0
) 

4 160 200 240 280 320 360 

Pm 
d) r/R 0952 

01 

experiment 

calculated blade movement \ 

\ 

' ,_ 160 200 240 280 320 360 

Fig. 6 (a, b, c, d) - Time history of the rifting force. Comparison between theory and experiment at advance ratio }J = 0.44 
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Ill. UNSTEADY EFFECT ON THE LIFTING LINE APPROXIMATION 

The effect of umteady motion is particularly simple to study in two· dimensional incompressible flow. Results 

can be compared with Theodorsen's theory for the flat plate [6]. 

1. Downwash computation 

I M 
+b 1' -b 

' 
+.!!._ -b 

2 2 

Fig. 7 - 2-0 moving doublet. 

on the profile is periodical and takes the form : 

is given at time C = 0 by : 

(12) 

A 2-0 doublet is moving with a constant velocity V through an 

incompressible fluid (fig. 7). This doublet is supposed to schematise 

a profile. At instant /; = 0, the positions of the profile is 

At the same instant l:. = 0, the position of the doublet is ~ = + t 
and the downwash velocity is c.omputed at point M ('X.~ e I ~::--f) 

The parameter € is small and will eventually be zero. The lifting force 
·mq F ( t) = Fo e /) '!T The potential at the point H 

Taking U.:-
vr; 
b 

and introducing the reduced frequency J. = $T( I h the relation ( 12) becomes : 
y 

(13) 

where 

The downwash is obtained by derivation with respect to e. Then E is made to be zero, which gives : 

(14) 

The integral ( 14) is singular for U.. = 1, but may be integrated using integral sine and cosine functions ; one obtains : 

(15) 

where J.y 
J d..v 
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2. Non separation condition and results 

The profile is oscillating with amplitude <X and frequency .f-- around a center of rotation at ordinate ;;= ~ 
A vertical translation with amplitude ~ and frequency ~ is added to the preceding movement. The velocity 

at point M and instant t is given by : 

By combination of ( 15) and i 16), the complex number ~ may be obtained, giving amplitude and phase of the 

lifting force. 

Two cases are examined 

1) a pure oscillatory movement around 

2) a pure· vertical translation. 

ll = .b.. 
0 2.' 

In figures 8 and 9, results are compared with the exact Theodorsen's theory for a flat plate. Phase angles are 

given with respect to the profile movement. 

-Q5 

Imaginary 
part 

-n" 

1.4 
1.3 

1.2 

11 

7 - Theodorsen 
0.9 

s1ngte lilting) 
line result 

0.8 

05 

reill port 
1 

Fig. 8 - Oscillatory mOtion around y"' b/2. 

Lifting force is given by its real and imaginary parts 

which are to be multiplied by 2 :rrpbV 2a. 

Curves are graduated in reduced frequencies k .. 2 trfb/V. 

For both cases, at reduced frequency ~ = 0, lifting 

05\ Imaginary 
I part 

..---r3
"-... single lifting line 

result 
2 

real art 
15 05 1 

Theodorsen 

Fig. 9 - Vertical translation. 

Lifting force is giyen by its real and imaginary parts 

which are to be multiplied by 2 1rpV2 h. 

1.5 

Curves are graduated in reduced frequencies k c 2 rrfb/V, 

line results are the same as Theodorsen's results. In fact, 

the relative position of the lifting point and the collocation point are chosen for such an agreement. With increasing 

frequency, some discrepancies occur, but agreement is very good up to ~ = 0.2. ln the Theodorsen's theory the 

lifting force keeps increasing with frequency. This is not the case in lifting point computation where the force 

tends toward zero. For a compressible flow the behaviour of the lifting force is preserved, as shown in figure 10. 

A possibility to improve the results is to increase the number of lifting lines;the improvement with five lifting 

lines is quite substantial, but results are still far from the exact ones given by the lifting surface theory {fig. 10). 

To have an idea of the reduced frequencies encountered on a helicopter blade, they have been computed for 

the SA349 {Gazelle) SNIAS helicopter. The lifting surface of the blade is rectangular ; the spanwise position 

is such that 1.523 .;; rc .;; 5.073 m ; the chord is 0.35 m. 
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08 
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2 

175 

lifting surface 
theory M=Q5 

. ' one liftmg !me ', 03 006 
-0,1-----····l': 02 . 

02' 

Fig. 10 -Oscillating motion around y"' b/2 

Lifting force is given by its real and imaginary parts 

v.flich are to ba multiplied by 2 trpbV 2a/~ 
Curves are graduated in reduced frequencies k"' 2 1rfb/V. 

Mach number M = 0.5 

the reduced frequencies computed at various spanwise locations It for the rotation frequency are 

.Jt = 0.046 at >r; = 0.75 A 1 

~ = 0.069 at Jt = 0.5 R1 

i< = 0,114 at It = RO 

with RO = 1.523 and A1 = 5.073 m. 

For a helicopter, as shown here, the reduced frequencies are quite low and the lifting line approximation is 

not a I imitation . 

IV. THREE-DIMENSIONAL EFFECT ON THE ADVANCING HELICOPTER BLADE 

I 

~ 
Vn 

bj:z 

lifting line 

II 
" " " " "· 

' 
I' ,. 
,: ,, 

ii 

b bj~ 

collocation 
point 

Fig, 11 - Rectangular blade of infinite length in swept flow. 

For a rectangular blade of infinite length in a 

skewed incompressible flow (fig. 11), the unsteady 

downwash is still given by formula ( 15) as in normal 

attack, except for the replacement of v«) by v n 1 

the projection of V00 on a normal to the blade axis. 

Thus the behaviour of an actual helicopter blade in 

forward flight needs only to be studied in the tip 

region where three-dimensional and skewed flow effects 

are added. A simpler problem will be examined, the 

rectangular wing in skewed flow, which presents the 

same aerodynamic character as the actual advancing 

blade. 

1. Rectangular wing in swept flow 

Some simplifications are to be made. The wing 

is schematised by lifting lines with equal spacing 

chordwise. Furthermore on a lifting line the force is 

given by a step function. The position of the collocation 

points must !Je carefully chosen to avoid the effects of 

the abrupt variation of force on the lifting lines. These 
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Fig. 12a ~ Approximation of a rectangular wing by an array of parallelograms, 

whose spanwise dimension can be arbitrarily chosen, except in the two shaded areas. 

h - Isolated parallelogram. 

b ,lifting segment 
/;_,ith constant force 

c -

I 
I 

I 

0 ),' 

""crfilo,'catJOn po1nt 

I 
I 

considerations lead to the blade schematisatlon of figure 12a, where the wing is cut into elements. The planform 

of these elements (fig. 12bl is a parallelogram, two sides being parallel to the velocity Vrt~. The other two 

opposite sides are parallel to the wing span axis. Each of these elements is provided with a lifting segment and a 

collocation point. The lifting force is constant on the element and the lifting segment is fixed at the usual 25% 

chordwise position. The collocation point is at the 75% chordwise position and in the middle of the element 

spanwise. The elements are all of the same dimension chordwise, but their size can be different in the spanwise 

sense. Some elements (see fig. 12a) at both wing ends have their spanwise dimension given by the following formula 

d. - £_ t3' ~ 
(171 N 
where d. is the spanwise dimension, 

c is the rectangular wing chord, 

N is the number of elements chordwise, 

~ is the angle between the wind velocity and the wing span axis. 

As shown by formula (17) the elements at the wing ends can be very thin when angle ~ is small 

mathematical difficulties discussed in the following section. 

this leads to 

2. Calculation of the downwash induced by a lifting segment in a skewed incompressible flow 

One isolated element, schematised by its lifting segment as in figure 12b, is considered. The segment induces, 

at any point 

system ( -::x; 

coordinates of 

P of the wing plane, a downswash velocity which is calculated here. A rectangular coordinate 

~ I or I '( , (I is used for the definition of the wing plane (fig. 121. At time \; = 0, the 

both extremities of the lifting segment are : 

and 
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The two components of the velocity Voo are v'X. 
at the distance C over the point P(x1 <cJ) 

and V y. The potentia! in an incompressible flow is calculated 

ancl IS given by 

(18) 

where the value of the force per unit length on the lifting segment is 

to the variable 7 , ( 18) becomes : 

. By integration with respect 

119) 

where 

Now, deriving with respect to 

(20) 

where 

e and making c :::; 0, the downwash is given by 

(;,0 

( Fei"r;[ JG(x,~,?-i 1 (;) _)G (-x,~·?•,z;)] d.t L 'Je ;)c e=o 

Relation (20) is a Fourier Transform, and one is tempted to use a Fast Fourier Transform algorithm when numerical 

results are needed. Nevertheless this is not possible because of the singular part of ( :> G )/{#C). The function 

I (1';) ::if_ c _ Y'd ('; is zero for some value of the time ('; . This singularity has already been encoun· 

tered in the 2·0 case {eq. 14) and the Fourier Transform of [ :1 ]2. may be given using the integrals 
y<r;) 

sine and cosine functions. One may then remove the singular part and now use the F FT algorithm. In fact the 

results will be good if the new function is smooth enough. This is the case except when the term 

]) (I!:) = [ ("' -?- v,.z;)2. + ( if -C- v:t {; l" ]YZ is very small. D (l>) cannot 

be zero because the collocation points P are by definition taken out of the paths of the lifting segment extre· 

mities. Nevertheless they may be small for some values of "G when the spanwise length of the element is small ; 

this occurs for a small angle ~ . Then it is necessary to subtract some other function to remove the remaining 

· quasi-singular part. This function must have a good behaviour at infinity, on easily computable Fourier Transform, 

and match the desired function when D (~) is small. Such a function exists and is not unique ; in this paper 

the following one has been chosen : 

, 
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where : )(C'C) = and ex : 

the Fourier transform of \-\("C) can be expressed with the complex integral exponential functions (see 

Annex A). 

The· downswash of relation (20) will be calculated in the following way : 

taking : 

where 

the relation ( 20) becomes : 

1221 

where X ,(a") = 'l:- ?•- Vz '"C 

and ~"ex"')= ... ~ ,f x"" /" 0 

~"'ex") =-1 J x*<O 

In this formula the first integral is numerically computed by means of the FFT algorithm ; the other two integrals 

are expressed with the integrals sine cosine and exponential functions. 

3. Presentation of some results 

The downswash of formula (22) i_s used to express the non separation condition at the collocation points of 

the wing. Some computations have been done in the case of a wing with a constant incidence. First of all, for the 

wing of figure 12a the forces on each lifting segment have been obtained for a stationary case {reduced frequency 

~ ;;::; 0). The results are given in figure 13. One of the wing ends behaves like a leading edge, and thus the forces 

are increasing in this region. This fact is easily noticeable on the· lifting line close to the wing trailing edge, the 

forces being small there. 

For an angle {3 = 1° the elements at both extremities of the wing are very thin, and could have been neglected. 

They are almost degenerated, but with the introduction of the Fourier Transform of H(t') the results remain 

good (see fig. 14). The lift is still increasing at the leading tip, but the lifting segments are very short and the 

contributions to the overall force can be almost neglected. The lifting force decreases at both ends almost as with 

a wing velocity normal to the wing. 



Fig. 13 - Rectangular wing in skewed flow. {3 = 30°. 

Stationary case. 

The geometric incidence is constant along the wing span. 

The lifting segments location is given in figure 12a. 
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Fig. 14- Rectangular wing in skewed flow, {3"' 1°. 

Stationary case. 

Figure 15 showns results obtained for the wing at (3 = 30° and a oscillating movement around an axis at the 

25% chord position. The reduced frequency of the movement is .f<. ;:: 0.04, The real part (fig. 15a) looks like 

the ones obtained for 1<..;:: 0 (fig. 13). For the imaginary part (fig. 15b) the first lifting line presents negative 

values of the lift which are usual at such low reduced frequencies. These negative values are smaller at the leading 

wing tip, making the phase angle between the force and the wing oscillating movement to vary along the wing 

span. 

a 

Fig. 15- Rectangular wing in skewed flow, il'" 30°. Reduced frequency k"' 0.04 

a) real part, 

b) imaginary part. Scale multiplied by 10, 

To make them easier to understand, the lifting lines have been represented on separate drawings. 

l 



V. CONCLUSION 

The acceleration potential theory applied to numerical computation with a l1fting line method has proved to 

be very successful in helicopter computations. The approximation of the helicopter blade with a single lifting line 

is not a limitation for the prediction of unsteady effects at the low reduced frequencies considered. Nevertheless, 

3-0 effects at the tip of the advancing blade are a limitation for the validity of the method. For a simpler case, 

the rectangular wing in a skewed flow, an approx'1mate theory has been developed and some ·Interesting effects 

shown to occur. The leading tip of the wing behaves as a kind of leading edge and the phase angle between the 

lifting force and the wing movement varies along the blade span. 

IA·ll 

ANNEX A 

FOURIER TRANSFORM OF H (C:) 

The constants A, B , C , 0 are introduced; they are given by the formulas : 

~ ,t<-
A- v?:- +o( ~'& 

B = -~ v.,Jx:. 7) --2 0( v 'a t ~-c) 

C = (-:t-?)-1. +o( {13.c/' 

D~= 4-AC-B<. 
4- p,-1. 

the Fourier transform of H ("t") can be writen on the following form 

jo . .,, 
.J(y) -1 e~ d 'G = A r~+ .!?_r· D~ _.., ~A 

with the new variable X=-v[~+~] Jc,l becomes 

.,.oo .))B [ ~ j -~X -(J- -.!'"" 
e d"' <:: dx J .YD+i'); 

IA-21 
}(.,:>) 

e .ZA + 
= vO-J-x 2AD -9S _,8 

.2A 2A 
the formula (A-2) may be integrated in the complex plane making Z ::- tj + J 'l: 

l 
, J"c9) is given by : 
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d..i.. 

The paths of integration Yf; and ~ are given in figure 16. 

Fig. 16 - Paths of integra(iOn of J{v), 

Two different cases must be considered depending if ~intersects the axis of negative abscissa or not. 

j ""-"---t_ dJ: 
E.Jl),. ~ 

.t 
Taking 

t is a complex number 

and with c1 (.:C)= e~ [1(~) 
in case 1 when B <0 the path ~does not cross the axis of -:>:< 0 and JC») is given by 

A.]()))"' ...:::1_ [ i C1 (->'D-j.-vB) -JC1 (YD-~'>'B)] with B <0 
<lAD a .<,R .2A A 

in case 2 when ..§. > 0 the path <c'~ crosses the axis of negative abscissa. With the limit values of E 1 (Z) 
A given by 

£ 1 (-'))D -jO) =+{if" 

£ 1 ( .vD rJ·o) = -iif" 

the value of J(Y) is given by : 

J"l ~ 2~0 [·c.(-vD-j~~) ,JNe(sD-J;!) -JC,("'-J;:)] 

the funct'1on C, ( ,(.) is tabulated in many computers {see [9]). 
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