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The question is, therefore, whether it is possible to develop the necessary 
control variable profiles from the command inputs by utilizing the 
knowledge of the control behaviour of the plant. This control procedure 
would relieve the load on the inner feedback loops, since, from the control 
theory approach, control could also take place without return difference. 
Figure 1 shows the general structure of the control system. This paper 
descr1bes the design of the dynamic feedforward open-loop control system as 
the essential element of the manoeuvre demand system. However, since the 
model behaviour and the real system behaviour usually differ, and since the 
plant is subject to external disturbances, it is not generally possible to 
omit the inner control loops. 

2. Feedforward open-loop control system 

As with the well known observer structure, a model of the plant again 
forms an essential element of the overall feedforward control structure. As 
shown in Figure 2, the model SM=(AM, BM, CM) and the plant S=(A, B, C) are 
driven with the same control vector uM. It the model SM and the plant S 
match, i.e. 

both the two corresponding outputs y and y and the associated system 
states xM and x are identical. In otWer words, the state vector of the 
plant is simulated in the feedforward open-loop control system. 

From the theoretical point of view, this means that the feedforward 
control system can be designed independently of the inner control loops of 
the plant, as expressed in Figure 2 by the use of the two controller 
matrices RA and R7 • Any desired eigendynamics can be set for the plant with 
the aid of the inner control loops without having to change anything in the 
feedforward control system in comparison with the uncontrolled plant. 
Command response and eigendynamics can be designed independently of each 
other. 

The objective of the feedforward open-loop control system is to 
establish the simplest possible relationship between the command vector w 
and the output vector yM of the model. By far the most important 
requirement is that the outputs can be decoupled and controlled 
independently of each other. In other words, when a command variable is 
changed, only the associated output should respond, whereas the remaining 
controlled outputs should not change. Falb/Wolovich/1/ examined the 
question whether such decoupling is fundamentally possible for a linear 
system as per Eq. (1* with state vector feedback as per Figure 2. If a 
decoupling solution G , F is to be obtained for the system SM = (AM, BM, 
CM), the following condition must be fulfilled: 
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1 

F9r t~e manoeuvre demand system a special solution for the decoupling 
pair G , F is chosen. The output vector yM is to be related to the input 
vector w as follows. 
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Eq. (6) describes a so-called integrator decoupled system. 

The special relationship of Eq. (6) implies that the pair G*, F* must 
be of the form 
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Assuming the ideal case, i.e. the dynamic responses of the model SM = 
(AM, BM, C ) and the plant S = (A, B, C) match, the overall dynamic system 
benaviuur ~f the plant cascaded with the dynamic feedforward open-loop 
control system is described by Eq. (9). 

(9) d.+l 
y _1 = w. 

1 1 
i=l, 2, ... , m 

Consequently, the dynamic feedforward open-loop control system with 
the input wj and the output uM represents a special form of the inverse of 
the model or the plant, which can be referred to as the di-integral right 
inverse of the systemS = (A , B , C ), If this right inverse is used as 
feedforward control sys~em, t~ereMis ~ direct proportional relationship 

d. +1 
between the highest derivative yi 1 of the controlled output variable and 

the input wj. The system cannot possibly respond more quickly, since the 
control veccor u is activated as soon as the command variable w. is 
changed. The command model stimulated in a manoeuvre demand system by1 the 
pilot input vector w , must be designed in such a way that the (d.+l)th 
derivatives of the 8utput variables to be controlled are generatJd as 
continuous signals. These, in turn, drive the feedforward open-loop control 
system, from which the control vector uM is computed as input to the real 
system S. 

An important indication of the dynamics which can be selected for the 
command model can be obtained from the eigenvalues of the characteristic 
equation of the feedforward open-loop control system 

(10) 

Equation (10) essentially has 

( 11) 
m 
[ 

i=l 
d s n s 

poles in the origin of the Gauss-plane. In the case of d < n, the 
remaining poles may lie outside the origin. If the system ~ has poles 
within the right half plane, these poles must be compensated Mfor in the 
command model by corresponding numerator zeros. Otherwise the control 
variables would run up against its bounds, despite a restricted and 
initially apparently safe command function. 

3. Manoeuvre demand system for the Bo 105 helicopter 

Figure 3 shows how the control system of a helicopter has developed 
into a tui I fly-by-wire system without mechanical connection between 
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joystick and control variables. Only FBW technology, including the use of a 
digital computer, makes it possible to implement complex control algorithms 
as they were presented in Chapter 2. The control theory considerations 
presented in Chapter 2 are now to be implemented in a manoeuvre demand 
system for the Bo 105 helicopter (Figure 4). 

The associated control concept foresees the pilot commanding decoupled 
reactions of the helicopter by means of the four traditional control 
elements. The collective pitch lever deflection o

0
p corresponds to 

a vertical acceleration command, the longitudinal stick deflection oxp to 

a pitch rate command, the lateral stick deflection oyp to a roll rate 

command and the pedal ozp to a yaw rate command. 

On a helicopter, all degress of freedom are coupled dynamically via 
the aerodynamics of the rotor to a far greater extent than on a fixed-wing 
aircraft. longitudinal and lateral motion cannot be separated so easily, 
meaning that control theory results obtained with the aid of such 
simplifications must be considered much more critically. It is, therefore, 
an obvious step to base control investigations on the complete system of 
motion equations. 

The n-dimensional state vector (n = 8) 

(12) XM = I vx, vy' vz' p, q, r, <1>, 8 I T 

and the m-dimensional control variable vector (m = 4) 

( 13) 

are defined in accordance with Eq. (1), 
where 

6 = collective actuator position 
0 

6 = lateral cyclic actuator position y 

5 = longitudinal cyclic actuator position 
X 

6 = pedal actuator position. z 

In accordance with the selected assignments of control deflections and 
the output variables intended to respond in decoupled fashion, the output 
matrix eM has the following form: 

54-5 



vz 00100000 

(14) p = ¢ 00010000 

YM = q = 0 = 00001000 XM 

r 00000100 

A check is first made whether the helicopter motion can be decoupled 
in the sense of the control concept expressed in Eq. (4). Since the 
helicopter can also be flown in decoupled fashion with 1:1 control, the 
check according to Eq. (4) must, of course, confirm this fact. All values 
of d., i = 1, .•• , m add up to zero. This result can also be immediately 
demo~strated physically: the quickest helicopter reaction to step inputs in 
the control variables as defined in Eq. (13) is vertical acceleration 
respectively rotary accelerations about the three axes can be generated. 

According to Eq. (10), the characteristic equation for the feedforward 
open-loop control system of the Bo 105 helicopter has not only poles in the 
origin, but also two stable eigenvalues on the real axis, as shown by 
numerical calculations. The stable eigenvalues indicate that the command 
models in Figure 2 may be pure lag elements. 

Since, for purely anthropotechnical reasons, the pilot cannot be 
expected to command rotary accelerations about the three axes proportional 
to his command inputs, first-order systems are used as command models in 
these three input channels, as shown for the example of the pitch rate 
input in Figure 5. The pitch rate command 0 * = li o.f the pi lot is 
quasi-differentiated by the lag element to gen~rate tft~ Be-signal, which 
drives the dynamic feedforward open-loop control system as w3-signal. 

As long as the capacity of the control variables is not 
plant can follow this Be-signal and thereby the 8c-, 
Figure 5 in decoupled fasnion. 

exceeded, the 
Be-signals of 

Figure 6 shows the simulation results for the 0- and H- commands. 
The control variables demand required is computed 6y the cfeedforward 
control system, meaning that the helicopter follows the command inputs in 
decoupled fashion and without return differences. The inner loops only 
become active if the model SM does not match the plant, or if the 
helicopter is exposed to external disturbances. 

The eigendynamics of the Bo 105 helicopter are largely determined by 
an unstable complex conjugate root pair. An example of the effects of this 
instablility is shown in Figure 7. The trimmed helicopter could only be 
left to its own devices for about 150 s. Then the pilot inputs are required 
in order to return the dangerous build-up of the state variables to the 
normal flight range. As shown in Figure 8, this unstable root pair can be 
shifted into a stable range merely by means of two relatively simple inner 
loops, namely by feedback of the pitch angle and pitch rate to the 
longitudinal cyclic. The gains are chosen to be as weak as possible, in 
order to minimize the control activities. Similar considerations lead to 
feedback loops for the remaining three control variables; these are also 
relatively simple, and their final gains can easily be determined in flight 
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tests. The command response remains largely unaffected by these inner 
control loops, whereas the response to disturbances is considerably 
improved due to the changed eigendynamics. 

4. Flight tests 

The DFVLR uses the Bo 105-53 helicopter, equipped with a simplex 
fly-by-wire system as an experimental aircraft for testing the control 
algorithm developed in the preceding Chapters. The measuring equipment is 
based on the strap-down platform LTR 81 from Messrs. Litef, an air data 
computer for altitude rate and air speed and a Doppler speed sensor. The 
test data are transmitted to the ground via a PCM telemetry link and 
recorded in digital form. With the current configuration, the experimenter 
has 79 data channels at his disposal. 

All flight tests were intentionally performed only with a linear model 
of the helicopter dynamics as per Eq. (1); the inner control loops operated 
with constant, relatively weak gains. Satisfactory results were 
nevertheless obtained, since the dynamic feedforward open-loop control 
system tended at least to compute the necessary control input profiles due 
to the command inputs, meaning that the inner control loops were certainly 
relieved of a considerable load. 

5. Flight test results 

Figure 9: 

Figure 10: 

Vertical acceleration command. 
The pilot commands a vertical acceleration via the 
collective lever. This signal drives the feedforward 
open-loop control system, this in turn computing the 
control vector u , the state vector x and the output 
vector y • The f~ur actuator movement~ are essentially 
determin~d by the feedforward control system, although the 
high-frequency components result from the inner control 
loops and improve the eigendynamics of the originally 
unstable plant. The vertical acceleration command has 
hardly no effect on the roll and pitch angles; although not 
controlled, the air speed changes only slightly. 

Pitch rate command. 
The pilot commands the pitch rate via a longitudinal stick 
movement. As already shown in Figure 5, the pilot command 
is differentiated and passed to the feedforward open-loop 
control system as input. The model SM = (AM, B , C ) 
obviously provides only an incomplete description ~f t~e 
pitch/roll coupling of the plant, meaning that the lateral 
motion is activated too strongly despite the feedforward 
control system. So the inner loops have to return the roll 
angle to zero during this flight phase; the feedforward 
control of the lateral cyclic in particular is 
unsatisfactory. The output variables for longitudinal 
motion, on the other hand, are decoupled relatively well, 
the commanded descent being hardly affected at all during 
the air speed changes between 30 m/s and 55 m/s. 
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Figure 11: Roll rate command. 

6. Conclusions 

In order to fly a coordinated turn, the pilot must set the 
desired roll attitude via a pulselike deflection of the 
lateral cyclic stick. At the same time, a control command 
for the yaw rate is computed in accordance with the roll 
attitude and air speed and passed to the feedforward control 
system. The altitude rate and air speed change only 
insignificantly during turning. A heading-hold function is 
active in horizontal flight. In this case, a roll rate 
command is computed from the course return difference and 
superimposed on the pilot's command. This process causes the 
higher-frequency roll rate commands in the first trace of 
Figure 11 during phases where the roll angle command of the 
pilot is equal to zero. 

Increasing efforts have been made in recent years to transfer the 
status of FBW technology in fixed-wing aircraft to the helicopter sector. 
However, in the entire world, there are only few test aircraft equipped 
with an FBW system. The Bo 105-S3 helicopter enables the DFVLR to play a 
creative role and make important contributions towards developments in this 
future-oriented sector. 

The concept of a manoeuvre demand system for helicopters presented in 
this paper and tested in flight can be seen as a first step towards 
practical helicopter control systems. Control engineering investigations in 
the entire flight envelope, from hovering and transition to high-speed 
forward flight must now follow. The dynamic feedforward open-loop control 
system as an element of a helicopter flight control system can play a major 
role in this respect, where non linear modelling of the plant will no doubt 
be necessary. 
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