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This paper deals with a simple tool for the calcula-
tion of the linear and non-linear behaviour of hinge-
less rotor blades with uneven blade properties. The
calculation is based on the Galerkin Method which
is used for solution of the non-linear differential
equations given by Hodges and Dowell [1] and aims
at the fan diagram or rotor design, respectively.

After a physical interpretation of the coupled differ-
ential equations, the basis of the calculation tool is
described. The calculation is divided into two steps:
In step one the linear system of differential equa-
tions is solved by a numerical solver based on the
Integration Matrix Method [2],[3],[4],[5]. The result-
ing static and dynamic deflections of the “linear“
rotor blade are the inputs for the second part, in
which the non-linear differential equations is then
solved by the Galerkin Method.
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A : surface of the cross-section (blade) [m²]

e : mass centroid offset from elastic axis [m]

EA’ : elongation stiffness per unit [N]

EIy’ : bending stiffness per unit (flap) [Nm²]

EIz’ : bending stiffness per unit (lead-lag) [Nm²]

FQL : shear force (lead-lag) [Nm]

FQF : shear force (flap) [Nm]

GJ : torsional stiffness per unit [Nm²]

H : torsional moment [Nm]

Iy’ : cross-section moment of inertia (F) [m4]

Iz’ : cross-section moment of inertia (LL) [m4]

Iβ’ : inertia mass per unit (flap) [kg m²]

Iγ’ : inertia mass per unit (lead-lag) [kg m²]

Iθ’ : inertia mass per unit (torsion) [kg m²]

Kφu : coupling stiffness per unit (tension-torsion)

m’ : mass per unit length [kg/m]

MbL : bending moment (lead-lag) [Nm]

MbF : bending moment (flap) [Nm]

P : tension force [N]

R : rotor blade radius [m]

u : elongation [m]

v : bending deformation (lead-lag) [m]

w : bending deformation (flap) [m]

x,y,z : coordinate system axes (rotor)

x’,y’,z’ : coordinate system axes (blade)

β : slope (flap)  [-]

γ : slope (lead-lag) [-]

φ : torsional deflection [rad]

θ : blade twist angle (fix) [rad]

ω : frequency [1/sec]

Ω : revolution per minute [rpm]
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Present helicopter research mainly focuses on the
improvement of the aerodynamic efficiency and on
the reduction of vibrations and acoustic emissions.
A direct approach is aiming at the physical sources
of these problems. This can be reached by adaptive
structural technology.

In general, helicopter vibrations and noise exist in all
flight cases mainly due to the unsteady working
conditions of the blade. This results from interac-
tions between the highly non-stationary aerody-
namics induced by the rotating rotor blades and
special aerodynamic phenomena like the stall effect
at the retreating blade and the transonic effect at
the advancing blade. All these vibrations are of a
highly dynamic nature [6]. The Blade Vortex Inter-
action (BVI) phenomenon in descend flight is ex-
tremely penalising as far as external noise is con-
cerned
The comprehension of this relationship between the
aerodynamic sources and the resulting vibrations
and noise is the basis for optimally designed control
concepts. Special emphasis is placed on the opti-
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misation of the standard blade control and active
control of the blade deflection as the primary tools.

All aerodynamic effects react very sensitive to small
variations of angle of attack and inflow velocity.
Therefore, the main idea of the measures, which
aims at the reduction of vibrations and acoustic
emission, is to dynamically change the blade pitch
(twist) or the rotor blade characteristics. Different
means are considered for this, e.g. adaptive blade
twist, deformable airfoil sections or additional trailing
edge flaps.

In [8] it has been shown that adaptive blade twist
based on torsion-tension-coupling is a usable con-
cept for adaptive rotor blades. In general, torsion-
tension-coupling is an anisotropic behaviour which
appears in structural components. It can be realised
by orientated stiffness. In this concept anisotropic
material behaviour caused by helical winding is
illustrated in figure 1. The principle of this actuator
concept is presently being developed at the DLR.
[5], [7], [8]

����	�������������	�����	������

For practical realisation, cylindrical actuators like
piezoelectric elongators (piezo-stacks) integrated in
the rotor blade structure will be used. The actuator
is a discrete mass which changed the uneven blade
properties and the dynamic behaviour of the hinge-
less rotor dramatically. Therefore, to realise a effi-
cient adaptive rotor system, a calculation of the
����������	 and a final rotor design is necessary.
Based on the present rotor blade, the rotor design
aims at the mathematical assessment of the ideal
uneven stiffness and mass distribution for the active
blade.

This paper deals with a simple tool for such calcula-
tions of linear and non-linear behaviour of hingeless
rotor blades with uneven blade properties.
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The following calculations are based on the 
���
������ ���������� ��� ������� ���� ��� �������� ������
���� �������� ��� ������� 
��������	� ������ �����
given by Hodges/Dowell [1]. In these equations the
aerodynamic forces, precone angle and the area
centroid offset from elastic axis are equal to zero.
The independent variables are the spanwise coor-
dinate r and time. Dots denote the time differentia-
tion and primes the spatial differentiation.
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0 = − P’ + m’ 
..
u − Ω² m' r − 2Ω m' 

.
v (1)

�($'��$*�$��&�

0 = {P v'}' + {BL1 v'' + BFL w''}'' + m' 
..
v − m' e sinθ 

..
φ

  − {Ω² m' r e (sinθ φ − cosθ) − 2Ω m' e cosθ 
.
v}' 

  − Ω² m' v + 2Ω m' 
.
u − 2Ω m' e (

.
v' cosθ + 

.
w' sinθ) (2)

�/$3�$�&�
0 = {P w'}' + {BF1 w'' + BFL v''}'' + m' 

..
w + m' e cosθ 

..
φ

   + {Ω² m' r e (cosθ φ + sinθ) − 2Ω m' e sinθ 
.
v}' (3)

�256,21�$�&�

0 = {KA² (θ' + φ') P − GJ φ' + Kφu u’}' − Iθ' 
..
θ

   + Ω² Kmd² (cos2θ φ + cosθ sinθ) 

   + (EIz’−EIy’) cosθ sinθ (v''² − w''²) 

   + (EIz’−EIy’) cos2θ v'' w'' − m' e (cosθ 
..
w − sinθ 

..
v)

   + Ω² m' r e (cosθ w' − sinθ v') + Ω² m' e sinθ v (4)

where

P = EA 



u' + 

w'²
2  + 

v'²
2  + KA² θ' φ'  + Kφu φ’ (5)

With the identities

BF1= [EIy’ + (EIz’ − EIy’) sin²θ]

BL1= [EIz’ − (EIz’ − EIy’) sin²θ]

BFL= (EIz’ − EIy’) sin2θ

KA = 
Iy’ + Iz’

A

Kmd = Iβ’ − Iγ’

Equation (5) describes the internal tension forces in
the blade due to the elastic deformation. The exter-
nal tension forces can derived from equation (1).

P = ⌡⌠
r

R

m’(x) 
..
u(x) dx − Ω²⌡⌠

r

R

m'(x) r dx − 2Ω⌡⌠
r

R

m'(x) 
.
v(x) dx
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Inserted in equation (2) and (3), the physical inter-
pretation of the components  {P w’}’ and {P v’}’ be-
comes clear. They describe the flap and lead-lag
shear force distribution due to the inertial, centrifu-
gal and coriolis forces. In this the most significant
component is given by the centrifugal force, wherein
the effective lead-lag and flapwise bending stiffness
dramatically increase with the rotation speed Ω.
In table 1  the physical interpretations for all compo-
nents of the differential equation system are listed.

Inertial forces
(U, LL, F, T) m’ 

..
u ; m’ 

..
v ; m’ 

..
w ; Iθ’ 

..
φ

Centrifugal forces (U) Ω² m' r

Shear force due to centrifu-
gal forces on the with v
deflected blade (LL)

Ω² m' v

Coriolis forces
(U, LL)

2Ω m' 
.
v ; 2Ω m' 

.
u

Stiffness forces -
unsymmetrical bending
(LL, F)

{BL1 v'' + BFL w''}''

{BF1 w'' + BFL v''}''

Stiffness forces -
tension-torsion-coupling
(U, T)

{EA u' + Kφu φ'}'

{GJ φ' + Kφu u'}'

Bending and torsional mo-
ments due to different ten-
sion forces e.g. centrifugal,
coriolis and inertial force
(LL, F, T)

{P v'}'

{P w'}'

{KA² (θ' + φ') P}'

Shear force and torsional
moment distribution
(LL, F, T)
Bending-torsion-coupling
due to inertial forces!

− m' e sinθ 
..
φ 

m' e cosθ 
..
φ

− m' e (cosθ 
..
w − sinθ 

..
v)

Bending and torsional mo-
ments due to the centrifugal
forces (LL, F, T)
Bending-torsion-coupling
due to centrifugal forces!

− {Ω² m' r e (sinθ φ − cosθ)}'

{Ω² m' r e (cosθ φ + sinθ)}'

Ω² m' r e (cosθ w' − sinθ v')

Bending moments due to
the coriolis forces
(F, LL)

{2Ω m' e cosθ 
.
v}'

− {2Ω m' e sinθ 
.
v}'

Bending curvature induced
torsional moment
(T)

(EIz’−EIy’) cosθ sinθ v''²

−(EIz’−EIy’) cosθ sinθ w''²

+ (EIz’−EIy’) cos2θ v'' w'' 

Propeller moment
(T)

Ω² Kmd² cos2θ φ

+ Ω² Kmd² cosθ sinθ) 

����	������!'(���������	���	��������)����'	�������
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The non-linear components (underlined) of the dif-
ferential equation system are the curvature induced
torsion and parts of the bending and torsional mo-
ments caused by tension forces. Especially the
bending moments due to the coriolis forces and the
inertial force are non-linear components in the lead
lag and flap motion equations.

+��,$/(5.,1�-(7+2'�)25��,1($5�$1'�.21��,1($5
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The above mentioned non-linear differential equa-
tions can be solved by the Galerkin Method.

In the following representations of displacements:

Elongation: u(r) =∑
i=1

n

 (Uoi + ∆Ui) ui(r)

Lead-Lag: v(r) =∑
i=1

n

 (Voi + ∆Vi) vi(r)

Flap: w(r) =∑
i=1

n

 (Woi + ∆Wi) wi(r)

Torsion: φ(r) =∑
i=1

n

 (Φoi + ∆Φi) ti(r)

the shape functions ui(r), vi(r), wi(r) and ti(r), which
describe the possibilities of rotor blade deforma-
tions, have to be chosen with a mechanical pre-
knowledge of the results. Especially the geometric
and dynamical boundary conditions must be fulfilled
by these functions. The number and quality of these
functions correlate directly with the precision of re-
sults and determine the degrees of freedom which
can be calculated. Uoi, Voi, Woi and Φoi are the
„weighting factors“ of the shape functions for the
static and ∆Ui, ∆Vi, ∆Wi and ∆Φi for the dynamic
blade deformation.

With these representations of displacements, the
complicated two-dimensional problem can be con-
verted into a non-linear equation system to evaluate
the static deformations of the rotor blades and to
solve classic eigenvalue problem to get the modal
parameters (eigenvalues, modeshapes and damp-
ing) of such deformed rotor blades.

After introducing the description for the displace-
ments in the Ritz-Galerkin energy equations

Elongation: 0 =⌡⌠
0

R

 um(r) U(u, v, w, t) dr (6)

Lead-Lag: 0 =⌡⌠
0

R

 vm(r) LL(u, v, w, t) dr (7)

Flap: 0 =⌡⌠
0

R

 wm(r) F(u, v, w, t) dr (8)

Torsion: 0 =⌡⌠
0

R

 tm(r) T(u, v, w, t) dr (9)

with

U, LL, F, T: Differential equations for elongation (U), lead-
lag, flap and torsion

u, v, w, t: Description for the displacements
m = 0, ..., n
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a system of a non-linear equations is derived to
evaluate the static deformations and homogeneous
differential equation system and to obtain the modal
parameters.

Based on the above mentioned procedure a flexible
calculation tool suitable for the Personal Computer
was developed, shown in figure 2. In order to evalu-
ate the influence of the shape functions and non-
linear components in the differential equations, the
input database and the calculation flow must be
controllable for the user.

Input: START.mat
Static Deformation

Input: BASIC51.mat
Database of the Rotor Blade

Shape Functions 

Generation of the Linear
Stiffness Matrix

Generation of a Vector with
the external Loads

Generation of the Non Linear
Components of the Stiffness, 

Damping &. Mass Matrix

Solving the Non Linear
Eigenvalue Problem

Graphical Representation:

Results

Storage in FORM.mat:

Modal Parameter 

Generation of the Linear
Damping &. Mass Matrix

KeyL

Generation of the Non 
Linear Equation System 

KeyU

Graphical Representation:

Results

Solving the Linear
Eigenvalue Problem

KeySt

Storage in START.mat:

Static Deformation 

Solving the Non Linear 
Equation System 

End

KeyL=1

KeyL=0

KeySt=1

KeySt=0

KeyU=0

KeyU=1

52725'<1��P
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The final goal is to build a ��	�� tool for the calcu-
lation of hingeless rotor blades with uneven blade
properties. This tool aims at the fan diagram or rotor
design, respectively.

There are two possibilities for simplification:

1st - The reduction of the system complexity e.g. to
solve only the equation system with linear behav-
iour.

2nd - The reduction of the number of shape func-
tions, e.g. due to more suitable shape functions.
These shape functions may be derived from the
linear motion equations and calculated by a numeri-
cal tool described in the next chapter.

To evaluate the efficiency of these two possibilities,
first the above mentioned ������ calculation tool
based on the Galerkin Method is needed. Within
this tool a solution of the linear or non-linear motion
equations is possible for a various number of shape
functions.
Secondly, a ��	�� numerical tool is required to
solve the linear motion equations. The results of this
calculations i.e. the normalized mode shapes and
static deformations are the input for the Galerkin
Method. In the following such a ��	�� numerical
tool will be described.

2��3<%5,'��7$7(�4(&725�-(7+2'�)25��,1($5
/2725�0/$'(�
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For the Hybrid State Vector Method or Integration-
matrix Method the linear blade motion equations (1)
- (4) are cast in a state vector form.

#/21*$7,21�

P’ = m’ 
..
u − Ω² m' r − 2Ω m' 

.
v (10)

u' = U11 P + U12 H (11)

�($'��$*�

MbL' = − FQL − Ω² ⌡⌠
r

R

 m' x dx γ + 2Ω m' e cosθ 
.
v

            − Ω² m' r e (sinθ  φ − cosθ) (12)

FQL' = m' 
..
v − m' e sinθ 

..
φ + Ω² m' r (sinθ φ − cosθ)

  + 2Ω m' 
.
u − Ω² m' v − 2Ω m' e (

.
γ cosθ + 

.
β sinθ) (13)

v' = γ (14)

γ' = Kv MbL − Kvw MbF (15)

�/$3�

MbF' = − FQF + Ω² ⌡⌠
r

R

 m' x dx β − 2Ω m' e sinθ 
.
v

             + Ω² m' r e (cosθ φ + sinθ) (16)

FQF' = m' 
..
w + m' e cosθ 

..
φ  (17)

w' = − β (18)

β' = Kw MbF − Kvw MbL (19)

�256,21�

H' = − Iθ' 
..
φ + Ω² Kmd² (cos2θ φ + cosθ sinθ) + KA² θ' P

   − e m' (cosθ 
..
w − sinθ 

..
v) + Ω² m' r e (cosθ β − sinθ γ)

   + Ω² m' e sinθ v (20)
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φ’ = U12 P + U22 H (21)

with

ey = [EIy’ cos²θ + EIz’ sin²θ]

ez = [EIz’ cos²θ + EIy’ sin²θ]

eyz = (EIz’ − EIy’) sinθ cosθ

Kv = 
ey

ey ez − eyz²

Kw = 
ez

ey ez − eyz²

Kvw = 
eyz

ey ez − eyz²

U11 = 
GJ

EA GJ − Kφu²

U22 = 
EA

EA GJ − Kφu²
 

U12 = 
Kφu²

EA GJ − Kφu²
 

This set of 12 first order differential equations may
be discretized in space by defining the blade local
properties as elements of diagonal matrices of di-
mension N.

After normalisation, discretisation and integration
described in Appendix A and considering the
boundary conditions:

u(0) = 0  ; P(R) = 0  ;

v(0) = 0  ; FQL(R) = 0  ;

γ(0) = 0  ; MbL(R) = 0  ;

w(0) = 0  ; FQF(R) = 0  ;

β(0) = 0  ; MbF(R) = 0  ;

φ(0) = 0  and H(R) = 0

the following only time-varying differential equation
system can be obtained:

P = − R �o m' 
..
u + 2Ω R �o m' 

.
v + Ω² R �o m' r 

u = R � U11 P + R � U12 H

MbL = R �o FQL − R �o T γ − 2Ω R �o m' e cosθ 
.
v

            + Ω² R �o m' r e (sinθ φ − cosθ)

FQL = − R �o m' 
..
v − Ω² R �o m' r (sinθ φ − cosθ)

+ R �o m' e sinθ 
..
φ − 2Ω R �o m' 

.
u + Ω² R �o m' v 

+ 2Ω R �o m' e (
.
γ cosθ + 

.
β sinθ)

v = R � γ

γ = R � Kv MbL − R � Kvw MbF 

MbF = − R �o FQF − R �o T β + 2Ω R �o m' e sinθ 
.
v

             − Ω² R �o m' r e (cosθ φ + sinθ)

FQF = − R �o m' 
..
w − R �o m' e cosθ 

..
φ

w = − R � β

β =  − R � Kw MbF − R � Kvw MbL 

H = −R �o Iθ' 
..
φ + Ω²R �o Kmd² (cos2θ φ + cosθsinθ) 

   + R �o KA² θ' P − R �o m' e(cosθ 
..
w − sinθ 

..
v) 

   + Ω² R �o m' r e (cosθ β − sinθ γ)

+ Ω² R �o m' e sinθ v

φ = R � U12 P + R � U22 H 

where �o and � defined by

�o= (�1−�)�

Τ = Ω² R �o m' r  .

In frequency domain this time-varying differential
equation system becomes a linear equation system.
The programme wherein these equations can be
solved is shown in figure 3.

The fan-diagram, static deformations and mode
shapes of the rotor system can be calculated by this
tool. The advantage is a closed numerical solution
of the linear motion equations.
Based on these opportunities the evaluation of the
influence of the shape functions and non-linear
components in the differential equations is possible.

To show the conformity of this calculation tool with
analytical solutions in two special cases, computa-
tions based on a non-rotating, uncoupled beam with
even properties and a constant shear force distribu-
tion were made. The analytical solutions were cal-
culated with

w(x) = 
10 ��

24 EIy’
 ( )6 

x²
�  − 4 

x²
�  + 

x4

��  (Flap)

v(x) = 
100 ��

 24 EIz’
 ( )6 

x²
�  − 4 

x²
�  + 

x4

��    (Lead-Lag)

wherein

EIy’ = 250 [Nm²] , EIz’ = 5200 [Nm²] , � = 0,76 m [m] .

The courses of deformation and the deformations at
the beam tip are equal in both cases. Therefore, the
results of FORM2.m are defined as the reference
case for the following calculation.
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Input: BASIC52.mat
Database of the Rotor Blade 

Generation of the 
Linear Equation System 

Generation of the Linear
Damping &. Mass Matrix

KeyS

Solving the linear
Eigenvalue Problem

Generation of a Vector with
the external Loads

Solving the Linear 
Equation System 

Storage in FORM1.mat:

Static Deformation 
KeyD

Graphical Representation:

Results

End

Graphical Representation:

Results

Storage in FORM3.mat:

Modal Parameter 

Storage in FORM2.mat:

 Modeshapes 

Generation of the Integration 
Matrix and Database Preparation

Generation of the Linear
Stiffness Matrix

KeyD=1

KeyS=1

KeyS=0

KeyD=0

)RUP��P

KeyD: Modal Parameter
KeyS: Static Deformation

����	� ����������������)��'	�������������������
����	��'	����	����(��	���(��'	����	�������
�����5��	�'���

6���(16,7,9,7<�2)�/(68/76

In figure 4 the normalised static deformations, the
1st and 2nd mode shapes for different rotational
velocities and bending motions calculated by
FORM2.m are shown. The course of the deforma-
tion depends on the different uneven blade proper-
ties for flapwise and lead-lag bending as well as the
changing type of loads. The different blade proper-
ties cause, and the course of deformations,
whereas the changed types of loads influence.

���//��  ��Ω

���//��  ��� �Ω �UDG�V

VWDWLF�GHIRUPDWLRQ�
�  ��� �Ω �UDG�V

���//��  � �Ω �UDG�V

���//��  ��� �Ω �UDG�V

���)��  ��Ω

���)��  ��� �Ω �UDG�V

VWDWLF�GHIRUPDWLRQ
�  ����UDG�V�Ω

���)��  � �Ω �UDG�V

���)��  ��� �Ω �UDG�V

Flap

Lead-Lag

����	�+���'	��������7	����������	)��������8��'	����
�����������	��'��	��)�����))	�	��������
��������	������	�������	�������������
$�	�	������	�����	���	�&�

The idea of the Galerkin-Method is to rebuild these
different courses of deformation by a superposition
of many weighted independent shape functions. It
seems to be logical that the number of required
shape functions decreases, if they are similar to the
real deformation functions of the rotor blade.
To assess the influence of the chosen shape func-
tions and the non-linear components of the differen-
tial equation four calculations were made:

• ROTORDYN1.m - linear, shape functions given in
[10] for even blade properties - $�&

• FORM2.m - linear - $�&

• ROTORDYN1.m - linear, shape functions from
FORM 2.m - $ �&

• ROTORDYN1.m - non-linear, shape functions from
FORM 2.m - $ �&

The database for these calculations is given by a
pretwisted model rotor blade with uneven blade
properties. The smoothed blade properties are
shown in appendix B.
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With FORM2.m shape functions similar to the real
deformation functions of the rotor blade were cal-
culated. For the calculations with ROTORDYN1.m
(Galerkin Method) eight shape functions for each
type of motion (U, LL, F and T), i.e. a set of  32
shape functions is directly derived from [10] for rotor
blades with even blade properties (figure 5) and
used for calculation (1).

����	�2���'��	�)�����������	���(�[10]�)���	�	�
����	�����	���	����$�&

A second of 32 shape functions was chosen for
calculations (3a) and (3b). This second set was
based on the first set; only 10 shape functions, i.e.
the

• first for the elongation,
• first and second for the torsion,
• first, second and third for the lead-lag,
• first, second, third and forth for the flap

are exchanged by the ones calculated with
FORM2.m. In figure 6 the shape functions for each
motion are shown.

����	�6���'��	�)����������$ �&�����$ �&

The calculations include the blade tip deformations
for the maximal rotational velocity, the eigenvalues
and the fan diagrams.

The blade tip deformations for the maximal rota-
tional velocity calculated with the different tools are
shown in table 2.

$�& $�& $ �&
VWDWLF ����UDG�V ����UDG�V ����UDG�V

X�5� 1,8 mm 3,2 mm 3,3 mm
Y�5� 19,6 mm −9,5 mm −8,3 mm
Z�5� −1,4 mm 0,6 mm 0,6 mm
φ�5� 0,18° 0,2° 0,57°

����	����������������	������	)���������)����'	���5����
������������	�����(��������	�����'��'	���)�
)	�	���������$�	�	������	�����	���	�&�

A comparison of these results shows the influence
of the shape functions and of the non-linear compo-
nents in the differential equation. Especially the
latter essentially influence the static torsional and
lead-lag deflection. With the 32 shape functions
derived from [10] (1) it is not possible to calculate
the blade tip deflections with sufficient precision as
compared to (2). Even changes of sign (v, w) occur.
The calculated eigenvalues, listed in table 3, show
the same behaviour.

$�& $�& $ �& $ �&
��UDG�V ��UDG�V ��UDG�V ��UDG�V

4,5 Hz 2,7 Hz  3,0 Hz 3 Hz
17,6 Hz 11,1 Hz  12 Hz 12 Hz
27,3 Hz  16 Hz 17 Hz 17,1 Hz
71,5 Hz 41,8 Hz 43,8 Hz 44,4 Hz
93,2 Hz 69,1 Hz 69,3 Hz 72,0 Hz

118,3 Hz  69,9 Hz 75,9 Hz 75,8 Hz

$�& $�& $ �& $ �&
����UDG�V ����UDG�V ����UDG�V ����UDG�V

27,2 Hz 15,2 Hz 15,9 Hz 15,9 Hz
28,5 Hz 20,3 Hz 19,8 Hz 19,8 Hz
68,4 Hz 49,2 Hz 51,0 Hz 51,1 Hz
95,5 Hz 72,1 Hz 72,1 Hz 74,7 Hz
122,6 Hz 81,1 Hz 85,5 Hz 85,9 Hz
132,6 Hz 86,8 Hz 90,6 Hz 90,6 Hz

����	� ���#��	����	��)�����))	�	���������������	�����
��	���������	�����'��'	���))	�	��������
$�	�	������	�����	���	�&�

$�& ROTORDYN1.m (linear, shape functions derived from
[10] for even blade properties)

$�& FORM2.m (linear)
$ �& ROTORDYN1.m (linear, shape functions derived from

FORM 2.m)
$ �& ROTORDYN1.m (non-linear, shape functions derived

from FORM 2.m)

In comparison to the results of FORM2.m (2) it is not
possible to calculate the eigenvalues with the shape
functions derived from [10] with sufficient precision.
The calculations with modified shape functions
(3a),(3b) shows better results. Better still there are
differences between the higher eigenvalues in com-
parison to the results of FORM2.m. To improve
these results, the number of exchanged shape
function must be increased.

In figure 7, 8 and 10 the fan diagrams calculated
with the different tools are shown. The differences in
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value and course of the higher eigenvalues is visible
too.

���)
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���)

���//

���)

���)

���//

���7

����	�:���������������������	�����'�/2725'<1�����
$ �&

���)

���//
���)

���)

���//

���7

����	�;���������������������	�����'�/2725'<1�����
$ �&

9��
21&/86,216�$1'�<87/22.

The results can be improved by using of shape
functions similar to the real deformation functions of
the rotor blade. The number of these precalculated
shape functions define the number of eigenvalues,
which computed correctly.  Therefore, to evaluate
the higher eigenvalues, e.g. for flap and lead-lag,
the number of exchanged shape functions needs to
be increased.

It was shown that the real deformation functions
depend on the blade properties and the load distri-
bution. These load distributions change with the
rotational speed, so that for further calculations,
especially to get a fan diagram, the shape functions
could be changed with the rotational speed. This
seems quiet complicated, but the increase of the
number of shape functions consumes more com-
putation time per calculation cycle than the precal-
culations of new shape functions.

Finally, it was shown that the differences between
the solution from the linear and non-linear equations
allow us, to use the much simpler linear tools for the
preliminary rotor design. Only for final calculations
tools based on non-linear equations should be
used.

:���/()(5(1&(6
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;����33(1',;�����INTEGRATING MATRIX

The description based on [9]. A better description of
the method may be found in [2], [3] and [4].

The boldfaced letters denotes vectors or matrices.

The function f(x) is a dimensionless function defined
in the interval 0,1 and discretized in N grid point i.e.
in N-1 subintervals. (Figure A.1)

����	����

Assuming that f(x) can be approximated by a n-th
degree polynomial in the i-th subinterval an integra-
tion of f(x) over such a subinterval would appear as:

⌡⌠
xi

xi+1

 f(x) dx  ≈ ∑
k=j

k=j+n

 Wik ⋅ fk (n≤N+1 and i=1,..,N-1)

where Wik are weighting numbers that are inde-
pendent of the value of the function. The integer j is
the starting point of a general sequence of con-
secutive n+1 grid points at which the function is
approximated by the n-th degree polynomial
(1≤j≤N−n). Defining the vector:

) = [ ]f1, f2, f3, ... ,fN 
T
N×1

the integrals of all subintervals can be expressed in
a matrix notation:

� = =Q ⋅ ) = 











0, ⌡⌠
x1

x2

f(x) dx, ... , ⌡⌠
xN-1

xN

f(x) dx  

T

N×1

where the n denotes the degree of the ap-
proximating polynomial. =n is a N×N weight-
ing matrix.  A sequence of integrals would be
represented by:

F�=��Q�⋅ )=��⋅ )=










0, ⌡⌠
x1

x2

f(x) dx , ... , ⌡⌠
x1

xN

f(x) dx  

T

N×1
where the � is a lower triangular summing matrix
and L the integrating matrix �. the integrating matrix
is then defined as a linear operator with the prop-
erty:

) = ��⋅ )> + f(0)[ ]�  N×1

where the boundary condition vector remains to be
evaluated. Two boundary-condition matrix opera-
tors:

0 1

1 0 0 0 0 1

1 0 0 0 0 1
    and   

1 0 0 0 0 1

   
   
   = =
   
   
   

� �
� �

� � � � � � � �
� �

� �

provide a series of properties that are useful in the
solution of two-point boundary value problems:

0?⋅ ) = )(0) = )1   and   0�⋅ ) = )(1) = )N  .

#5����	�

Given a differential equation:

e.g.   Q'(x) =  − m' 
��
w(x) + FL'(x) 

1.) Normalisation of the differential equation:

e.g.   Q'(r) = 
dQ
dr  = 

1
R ⋅ 

dQ
dx  = 

1
R ⋅ Q'(x)   with   x = 

r
R

2.)  Truncation:

e.g.   Q'(r) = − R m' 
��
w(r) + R FL'(r) 

  →    @' = - R �'�⋅ 
��
� + R �L'

3.) Integration due to multiplication with the inte-
grating matrix L:

e.g.   @ = − ��⋅ R �'�⋅ 
��
� + ��⋅ R �L' + 1Q

4.) The constant of integration kQ can be calculate
by solving the boundary value problem.

⇒   In frequency domain ones get a linear equation
system!
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�?����33(1',;�0���UNEVEN BLADE PROPERTIES

The referenced uneven blade properties, used for
the above mentioned calculations, are shown in the
following figures.

����	�0����-�����	��������))�	��)����	��������5���

����	�0����#�������������))�	����	������

����	�0� ��-�����	������

����	�0�+��0	���������))�	����	������$)���&�

����	�0�2��0	���������))�	����	������$�	������&�

����	�0�6���������������))�	����	������

����	�0�9����	�����������	������$�������&�

����	�0�:��!�	������
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