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A general boundary integral formulation for the transonic aerodynamic and aeroacoustic 
analyses of lifting bodies in arbitrary motion is presented. Emphasis is given here on the 
analysis of the contribution of the wake and of the non-linear field terms appearing in the 
boundary integral representation for the velocity potential. 

Numerical results obtained from the formulation outlined include both aerodynamics and 
aeroacoustics of helicopter rotors in hover and forward flight in subsonic flows. They are 
compared with both existing numerical results and experimental data. Transonic results are 
presented for steady flows around both fixed-wing and hovering rotors 

1. INTRODUCTION 

The scope of this work is to give an overview on recent developments on the aerodynamic 
and aeroacoustic analyses of lifting bodies in arbitrary motion, using a boundary integral 
formulation in terms of th·e velocity potential. The solution for the velocity potential is 
given in terms of a direct boundary integral representation extended over the body and wake 
surfaces. In the case of transonic flows a field integral over the portion of the fluid field where 
non-linear terms are not negligible is also included (e.g., blade tips for helicopter rotors). 

Historical r,eview is beyond the scope of the present work; interested reader is addressed 
to Morino[l], and Gennaretti, lemma, Luceri, and Morino[2]. 

Here, we adopt a unified a'2rodynamic/aeroacoustic approach valid for bodies in arbitrary 
rigid motion first introduced in l\·!orino, Gennaretti, Petrocchi [3], and Gennaretti [4]. The 
extension of the method to the transonic analysis is based on the full-potential formulation 
presented in Morino and lemma [5], and lemma [6], which is an extension to the full-potential 
model of the TSP formulation of Tseng and Morino [7]. The methodologies of Morino, 
Gennaretti, Petro.cchi [3] and lemma [6] are combined in order to produce what we believe 
to be the first direct boundary-integral formulation for transonic flows in forward flight, with 
field sources limited to non-linear terms. 

This paper is divided in five Sections. In the next Section the differential formulation 
for full-potential flows is presented, whereas in Section 3 we derive the boundary integral 
formulation for a lifting body in transonic arbitrary motion, with particular emphasis on 
wake and field contributions. Numerical results on aerodynamics of fixed-wings, as well as 
aerodynamics and aeroacoustics of hovering and advancing helicopter rotors will be shown 
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in Section 4. Concluding remarks are presented in Section 5. The theoretical formulation 
has been jointly developed by Gennaretti, lemma and Morino. Gennaretti and lemma were 
responsible for the development of the numerical algorithm, for forward flight and transonic 
flows, respectively. 

2. FULL-POTENTIAL FLOW FORMULATION 

An initially isentropic, initially irrotational flow of an inviscid, non-conducting fluid remains 
isentropic and irrotational at all times. Under these assumptions the velocity field may be 
expressed in terms of a scalar potential ¢ such that v = V ¢, where v is the flnid velocity. 
Then, the equations governing the problem are the continuity equation p + V · (pv) = 0, the 
Bernoulli theorem ¢> + v2 12 + h = h00 (where p is the air density and h is the enthalpy), 
and the isentropic law for ideal gases hi p-r-l = constant. Combining the above equations, 
considering that h = 1 pf('r- 1) p, and moving aU the non-linear terms to the right hand 
side of the equation, one obtains, in a frame of reference fixed with the undisturbed flow (air 
frame of reference), the following form for the non-linear equation of the velocity potential 

(1) 

where a~ = 1 Pool Pco is the speed of sound in the undisturbed flow, whereas CJ denotes all 
the non-linear terms. The full-potential conservative form for CJ is given by (see [8]): 

[( 
p ) 1 8 ( p 1 8¢) - 8b CJ='V· 1-- v¢ -- -+-

2
-- =v·b+-

Poo 8t Poo a00 8t 8t 
(2) 

where p is obtained from the Bernoulli theorem 

p [ 1 . v2 ] o~l 
-= 1--(¢+-) 
Pco hoo 2 

(3) 

The differential formulation for potential flows is completed by the boundary conditions. 
The body surface SB is assumed to be impermeable. This yields (v- vB) · n = 0, where VB 
represents the velocity of a body surface point and n is the unit normal to such a surface. 
Furthermore, in the air frame of reference we have v = 0 at infinity. In terms of the velocity 
potential, we obtain 8¢il8n =VB· n for x E SB, where SB represents the body surface, and 
¢ = 0 at infinilY· In addition, we need a boundary condition on the wake (see [8] for further 
details). The wake is a surface of discontinuity for the velocity potential. From principles 
of conservation of mass and momentum one obtains both that the wake surface Sw cannot 
be crossed by fluid particles (v · n = vw · n, where vw is the velocity of points on Sw) 
and that pressure is continuous across it. Again, in terms of the velocity potential, the first 
condition yields (see [8]) 6 (8¢/8n) = 0 whereas the second one, using Bernoulli's theorem, 
yields Dw (6¢)1 Dt = 0 where Dw I Dt = 8 I 8t + vw · v, with vw representing the velocity 
of a point xw of the wake (i.e., the average of the velocity on the two sides of the wake). 
This condition states that 6¢ is constant in time following a wake point and equal to the 
value it had when xw left the trailing edge. This value is obtained from 6¢ on the body, in 
correspondence of the trailing edge (trailing-edge condition). 

3. BOUNDARY INTEGRAL FORMULATION 

In this section we will present the boundary integral formulation for the solution of the 
non-linear wave equation. Since the emphasis of the present work is on the applications of 
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the method, we will not enter into mathematical. details. This are extensively addressed in 
[2]. 

Consider two disjoint closed rigid surfaces S1 and S2 surrounding, respectively, the volume 
1)1 occupied by the body and the volume V2 occupied by a thin fluid region containing 
the wake surface (assumed to be undeformed, see later). It can be shown that the integral 
representation for the wave equation, Eq. 1, has the form 

( 4) 

where (e, r) is an event in the space connected with the undisturbed air, E is a domain 
function E(e,r) (defined as E = 1 in V, where V denotes the fluid region, and E = 0 
otherwise); and I; is the integral contribution of the i-th surface, which can be written in the 
general form 

·I;( e., r.) H [8¢ Go- /JGo] dS 
Jfs; 8ii 8ii t=t·. -B 

+ H [G 8¢(8() 2vx·n)J dS 
Jfs; 0Bt 8fi + a&, t=t.-B 

+ + /-{, [¢Go~ [vx. n(l- Vx. vB)J] dS 
a co lfsi vt t:::::t. -B 

(5) 

where 8j8ii = 8j8n- Vx · n Vx · \7 ja&,, and Vx represents the velocity of a point x of the 
body space with respect to the air space (written in the body space). 

Equation 4, with I; expressed by Eq, 5 is the boundary integral representation for the 
solution to Eq. 1 with the initial conditions and infinity boundary conditions defined above. 
If e. tends to the boundary, Eq. 4 yields a compatibility condition that must be satisfied by 
the solution of the problem. In our case 8¢/ 8n is known from the boundary conditions of 
impermeability of the body surface, and therefore such compatibility condition is an integral 
equation for ¢ on the boundary. Once ¢ on the surface is known, ¢ and hence v may be 
evaluated anywhere in the field. Then, the pressure (and hence, the acoustic noise) may be 
computed using the Bernoulli theorem. 

3.1 Body contribution 

First, we consider the body contribution. For the case of interest in the present paper, i.e., 
a helicopter rotor in forward flight, it is a straightforward application of Eq. 5 with 

(6) 

where v 0 is the air-space vector of the velocity of the point x = 0 and w JS the angular 
velocity of the rotor, both with respect to the air frame of reference. 

3.2 Wake contribution 

For the sake of clarity, Jet us limit the discussion to the case of a single wake (even if 
multiple wake configurations may be similarly treated). In addition, we assume that the 
motion of the wake surface with respect to the air frame of reference is negligible.l In this 
case, it is possible to obtain the contribution of the wake by evaluating that from surface S 2 

1This is typica.liy true for airplanes in maneuvering and helicopter rotors in forward flight. If this is not true, 
the formulation may be extended using the formulation for surfaces that move in arbitrary (not rigid-body) 
motion (see [4)). 
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tending to the wake surface (i.e., by taking the limit of Iz for the thickness of 1)2 tend.ing to 
zero). The final form of the wake contribution is 

(7) 

where 1 +Me = 1 +(a· VTE)/( a00 (!) > 0, and 1 +Me is known as the Doppler factor. In the 
previous equation, .\ and a identify a system of curvilinear coordinates over the surface of the 
wake. In particular, .\represents the arclength along the trailing edge, and a identifies the 
trailing edge location at a certain time. The last integral is evaluated for a= e>o, i.e., along 
the line iw which separates the influencing portion of the wake Sw from the non-influencing 
one. 

3.3 Field contribution 

Finally, in the case of transonic flow configuration the contribution from the field term 
in Eq. 4 cannot be neglected. In order to evaluate such contribution, let us note that the 
non-linear term (J becomes relevant only in a limited fluid region V~ around the body surface. 
In the case of interest here, such region is that at the tip of the rotor blades. Hence, for the 
sake of simplicity, it is worth to evaluate the field-term contribution in the body frame of 
reference, where V~ is fixed. In thls case, the non-linear term contribution is expressed as 

(8) 

where (J = V. b + f.!b/f.!t with b = b- bvx (note that here the time derivative is evaluated in 
the body frame of reference, whereas in Eq. 2 was understood in the air frame of reference). 

4. NUMERICAL APPLICATIONS 

The formulation presente'd has been applied to the aerodynamic and aeroacoustic analysis 
of rotors in several flight conditions. In particular, validation in the subsonic regime has 
been performed for both hoYer and forward flight conditions, whereas in the transonic range 
the analysis has been limited, thus for, to hovering rotors. For the sake of completeness, 
we include here also some results obtained recently concerning two- and three-dimensional 
transonic analysis of bodies in uniform translation. The validation of the present formulation 
for transonic rotors in forward flight is now under way for the limited case of non-lifting 
rotors. 

4.1 Subsonic hovering rotors 

For the subsonic hovering rotor analysis, we have considered a configuration studied in [9] at 
the DNW for the experimental program within the HELINOJSE project. In that experimental 
program, the rotor tested was a 40%-geometrically and dynamically scaled model of a four
bladed, hingless B0-105 main rotor. The rotor had a diameter of 4m with a root cut-out of 
0.35m and a chord lenght of 0.121m. The blades had a -8° of linear twist, with a modified 
NACA 23012 profile, and a coning angle of 2.5°. The nominal rotor operational speed was 
1040rprn. For the hovering configuration the tip Mach number was ]V[Tfp = 0.645. \Ve have 
considered two observer locations for the evaluation of the acoustic signal: the first is at 
the distance of 4.826m from the rotor hub, the second one is at a distance of 4m from the 
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rotor hub, both placed 2.3m below the rotor disk. (microphone 11 and microphone 6 in [9], 
respectively). Figures 1 and 2 depict, for the two observer locations, the comparison of the 
measured acoustic signal with the two acoustic signatures obtained by using two different 
wake geometries (the first named 'Landgrebe' is based on the wake model determined in 
[10], and is much closer to the actual shape of a hovering rotor wake than the second one, 
an helicoidal-shaped wake). Observing these figures it is possible to note the capability of 
the formulation to capture with good approximation the noise disturbance generated by the 
rotor, as well as the importance of the wake geometry adopted in the potential formulation. 
Indeed, in the case of hovering rotors, the wake generated remains in the vicinity of the rotor, 
therefore having a strong effect on the aerodynamic field around the blades. 

4.2 Subsonic advancing rotors 

Also for the case of rotors in forward flight, we have analysed a test case studied in [9] and 
a test case studied in [11]. 

The test case studied in [9] is that of a B0-105 rotor in ascent flight, with an effective 
tip path plane angle cxypp = -14.63°, advance ratio fl = 0.148, hovering tip Mach number 
MriP = 0.645, and feathering motion. In Fig. 3 we show the comparison between the 
measured acoustic signal and the computed one, for an observer placed 2.3m below the 
rotor disk, at a distance of 3.36m from the rotor hub (microphone 1 in [9]). The agreement 
between the two results is satisfactory, even with a numerical analysis performed using a 
simple wake geometry (obtained as the surface swept by the blade trailing edges during 
their motions). Such a result is not surprising, since for rotors in forward flight the wake 
rapidly moves away from the blade, and only a limited portion of its surface strongly affects 
the blade aerodynamics. Hence, even the simple wake geometry used in this case simulates 
with satisfactory approximation the aerodynamic effects induced by the actual one. This is 
confirmed by the comparison of the pressure distribution predicted by the present method 
with the experimental results of [9]. This is presented in Figs. 4 to 11 for several locations 
along the blade. Specifically, Figs. 4, 5, 6 and 7 correspond to the blade section at r/ R = 0.75 
for four different values of the azimuthal angle (0°, 90°, 120°, 270°, respectively), whereas 
Figs. 8, 9, 10 and 11 are _related to the section at r j R = 0.97 (for the same azimuthal 
positions). 

Then, we consider the forward flight case studied in [11]. It consists of the articulated 
UH-lH rotor with an angle of attack of the rotor shaft cxp = -8°, advance ratio fl = 0.124, 
and both flapping and feathering motions. Figure 12 depicts the comparison between the 
acoustic-pressure time history computed in [11] and that obtained by the present formulation. 
The two numerical results appear to be in a good agreement, confirming the capability of the 
presented formulation to capture the aerodynamicjaeroacoustic solution for rotors in forward 
flight. 

4.3 Transonics 

l'ext, we present some results concerning transonic flows. For the sake of completeness, 
validations for steady two-dimensional supercri tical flows are presented first, in order to em
phasize the good level of accuracy reached with respect to other CFD methods. Figure 13 
presents the pressure distribution on a circular cylinder at Moo = 0.5. In this flow config
uration a strong shock wave occurs (the local Mach number approaches 3 in the supersonic 
region). Thus, we are beyond the applicability of the potential model, since the vorticity gen
erated by the discontinuity is not negligible. The test case is important to verify the behavior 
of the method in presence of strong shocks. The comparison of the integral solution for two 
different mesh sizes with the finite volume solution, obtained by Salas [12] using a Jameson 
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scheme[13}, shows a satisfactory agreement in terms of shock position and resolution. Fur
thermore, the iterative process for the evaluation of the non-linear terms converges very fast, 
despite the presence of a strong discontinuity, as can be seen in Fig. 14. The same level of 
accuracy is verified in Fig. 15, where the flow about a NACA 0012 airfoil at Moo= 0.82 and 
a = 0° is analyzed. The pressure distribution is compared with full-potential finite-volume 
results obtained using a Jameson scheme [13}. The result obtained by· BEM with a C-type 
grid using 70 x 20 volume elements is in good agreement with the finite-volume one, even if 
a low number of elements is employed. The use of a C-type grid, rather than the more crude 
H geometry, introduce a major improvement in terms of the stability of the iterative process 
(see [2}). This is confirmed in three-dimensional analysis. In fact, the C-type grid allows 
the analysis of those wing geometries for which the H-type mesh fails. Figure 16 shows the 
pressure distribution for swept, tapered wing (A= 10°, tap. ratio= 1.7) at Moo= 0.85. The 
pressure coefficient presents a regular behaviour in the span wise direction, even if the number 
of the sections used is small, with a good reproduction of the tip effect. The convergence of 
the iterative process is fast and monotone, as it may be seen in Fig. 17. In Fig. 18 the wing 
has a sweep angle A = 25° with a taper ratio of 2.5. The Mach number is Moo = 0.85. The 
effect of the sweep angle is well captured by the method. The convergence behavior is good, 
as shown by Fig. 19. Note that, for such a configuration, the convergence was not insured 
when the H-type grid was used. 

Next, we analyze the transonic flow around a non-lifting 117 scale UH-1H hovering rotor 
with tip Mach number MriP = 0.88, that is one of the test cases considered in [14}. Figure 20 
shows the computed pressure distribution at the blade section r I R = 0.89, whereas the section 
r I R = 0.95 is presented in Fig. 21. Comparison with CFD full-potential and Euler solutions 
presented in [14} are included. The qualitative agreement is acceptable, but computed shock 
position is clearly located upwind with respect to that in the reference results. For such a 
configuration, our full-potential solution obtained·w.ith a H-type grid appears to be closer to 
the CFD Euler one rather than to the CFD full-potential one. Probably, the error is induced 
by the rude geometry field grid that has been employed with the H-type grid, to ensure 
convergence of the iteration on non-linear contributions. Therefore, the use of a C-type grid 
in the field appears to be necessary in order to be able to take advantage of a more refined 
grid geometry. 

Finally, a transonic acoustic result obtained with the present unified aerody
namiclaeroacoustic integral formulation are presented. Again, we consider the 117 scale 
UH-1H non-lifting hovering rotor with tip Mach number MriP = 0.85. Figure 22 depicts the 
acoustic pressure computed by our methodology for an in-plane observer located at a dis
tance d = 3.09R from the rotor. For the same test case, Fig. 23 shows the numerical results 
obtained by a Ffowcs Williams and Haw kings formulation based on CFD aerodynamic data 
[15}; these results may be compared with the experimental and numerical results presented 
in [16} (shown in Fig. 24). All the acoustic results are in good agreement. Observe that 
the noise components have different meanings for the formulations. Specifically, in our case, 
the acoustic signal may be decomposed into a body source contribution, and a field source 
contribution (the body doublet contribution being negligible for non-lifting cases). On the 
other hand, the acoustic solution based on the Ffowcs Williams and Hawkings equation is 
typically decomposed into a thickness and a quadrupole noise (loading noise is not present 
for non-lifting cases). The relationship between the two sets of components is not a simple 
matter to determine, and in general they are different. 
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5. CONCLUDING REMARKS 

A boundary integral formulation for the unified aerodynamic and aeroacoustic transonic 
full-potential analysis of rigid lifting bodies in arbitrary motion has been presented. 

Numerical results concerning hovering and advancing rotor configurations have been pre
sented in order to demonstrate the capability of the methodology to capture aerodynamic and 
aeroacoustic solutions. For subsonic flow rotors in hover and forward flight, the comparison 
with existing numerical results and avalaible experimental data has shown a good agreement 
both for the aerodynamic solution and the aeroacoustic one. 

For transonic flow validation we have considered 2D non-lifting airfoils as well as non-lifting 
wing and hovering rotors. The 2D investigations have shown a very good agreement with 
existing numerical results, and have also evidenced the enhancement obtained by the use of 
a C-type grid. 

The aeroacoustic solution for non-lifting hovering rotors appears to be in good agreement 
with existing numerical results (based on the solution of the Ffowcs Williams and Haw kings 
equation) and ·with experimental data. The aerodynamic solution calculated is comparable 
with existing CFD results, but further investigations is required in order to understand the 
discrepancy in the vicinity of the shock. 
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