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Abstract. A novel technique for accelerometer-based estimation of blade flapping and out-of-plane bending is 
proposed. The estimators are analog filters, designed in the frequency domain by means of inverse modelling 
concepts, and taking into account the issues of robustness and modal spillover. A byproduct of the proposed 
technique is a general rationale for the proper location of accelerometers along the blade. Preliminary results 
from linear simulations are also presented. 

I. INTRODUCTION 

In recent years the application of modern optimal control has been investigated (see e.g., [1]-[3]) as a mean to 
improve the dynamic characteristics of helicopter main rotors. Such control techniques require the availability 
of measurements or estimates of the state variables of the system to be controlled. Since direct measurement is 
unlikely to be possible, it is normally necessary to resort to estimation techniques. 

The classical solution to the estimation problem for linear and finite-dimensional systems is given by the 
Kalman filter; unfortunately its application to the rotor is a critical issue. Indeed, the rotor is a time-varying, 
infinite-dimensional system, so that even the estimation of a subset of its state variables would be unpractical 
and the estimates would be heavily biased by the .presence in the measured signals of components due to 
(unmodelled) higher order dynamics. 

A few years ago a novel technique for accelerometer-based rotor state estimation, called kinematic observer or 
McKillip filter was proposed (see [5] and [6]). It relied on Kalman filter time-domain concepts, requiring the 
use of two accelerometers per mode. 

In this paper, the state estimation problem is tackled by a frequency-domain approach; the estimation of blade 
flapping and bending can then be performed by means of simple filters, the design of which is extremely easy. 
Moreover, only one accelerometer per mode suffices. The designed filters have shown good performance during 
testing on a simulation program. 

II. PROBLEM STATEMENT 

Consider as sensor a blade-mounted accelerometer, with a sensitive axis normal to the surface of the blade. 
In this paper, in analogy with [5] and [6], we neglect the couplings with in-plane and torsional dynamics. 
Thus, the output of the sensor located at x = x is given by: 

a(x,t) = "C t) -n' 'C t) R z x, +x z x, 
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where z(x,t) is the out-of-plane bending of the blade. As usual, it can be expressed as an expansion on the. 

basis of the normal bending modes: 

The sensor output can be therefore expressed as: 

(1) 

The problem can then be stated as follows: to reconstruct the first K q,(t)'s from K measurements of the 

a(x,t) type. 
By making reference, e.g., to the problem of estimating flapping and first bending (K ~ 2), the solution to this 
problem proposed in [5] calls for the availability of two sensors per mode, so that by inverting the system: 

I a, l I x, -e xQ' 17( x,) x11J'(x1 )Q' J3l 
I I I 

1 .. I 
la'l=lx,-e x,n' 1J(x,) x21J'(x, )Q2 

/31 
la,J x,-e x,n' ry(x,) X 31J'(x3 )Q2 

:.2 J 
la4 lx.-e X Q' ry(x.) X 41J'(x4 )Q' q, 4 

the four unknown variables can be estimated from the four acceleration measurements. 

Since for this particular problem modal spillover effects are the main source of inaccuracy, any possibility to 
perform the estimate with just one acceleremoter per mode should be seen as a major improvement, since it 
would allow to double the number of modes taken into account, given the total number of accelerometers. 
To pursue this goal, a frequency domain estimation technique is proposed in the subsequent section. 

III. FREQUENCY -DOMAJN APPROACH 

Ill. a The frequency-domain estimation filter 
Taking the Laplace transform of eq. (I) one can obtain the following expression for the output of the i-th 
sensor: 

where 

and 

a,(x,s) 

R 
I l],(x;)[s' +n,,,]q,(s) = _LD,,,(s)q,(s) 

k k 

'( ) Q. = x,1J x, Q' 

'·' ry(x,) 

(2) 

(3) 

The parameters defined in eq. (3) will be referred to as the characteristic parameters of the accelerometers. 
By separating the terms related to the first K bending modes from the remaining ones, eq. (2) takes the form: 

(4.a) 
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where 

c, (s) ~ !,D, 1 (s)q1 (s) 
I=K+l , 

(4.b) 

represents the spillover term. 

Then, in principle, if one had have K (linearly independent) accelerometers, one would have the possibility of 
estimating the first K bending modes by direct inversion of the transfer function matrix relating the first K 
bending modes to the K accelerometer outputs. This amounts to inverting the MIMO relationship obtained 
from eqs. (4) for;~ 1,2 ... ,K with the spillover terms neglected. 

Obviously, this is not feasable since the D,,, (s) present two zeros on the imaginary axis, so that the filter 

obtained by this direct inversion procedure would not be stable: indeed, it is easily checked that the poles of the 
MIMO relationship above are symmetrical with respect to the imaginary axis. 

A simple remedy consists in resorting to a filter which is a stable approximant of the direct inverse of the 
MIMO relationship. Of course this introduces further causes of approximation in the estimate of the bending 
modes, which add to the modal spillover effect. 
However, we will show that, since most of the modal response of the blade occurs at integer multiples of the 
rotation frequency Q, it is possible to design a filter which achieves a satisfactory trade-off between stability 
and accuracy, thus providing a good solution for the estimation problem. 

Ill. b The spillover effect 
To put on solid grounds the above procedure, it is essential to envisage the effect of the neglected spillover 
terms. These terms are associated with the modes K+l,K+2, ..... In practice, we will of course confine to a 
finite number of spillover modes, from k+ I to -say- N, whith N large enough. 
Defining then the following vectors and polynomial matrices: 

Dx(s) ~~ D,:,(s) 

lDx,,(s) 

eqs. ( 4) can be put into the matrix form: 

Remark 1 

_I Dx.t.K•' (s) 
D.,(s)-1 ... 

l Dx,N,K•t (s) 

l DK•t,K~N(s) I 

DK•N K•N(s)j 

(5) 

Obviously, det Dx(s) is a polynomial with even powers only. Therefore, the poles of the truncated system are 

either located on the imaginary axis or are given by pairs symmetric with respect to the imaginary axis.O 

Remark 2 
The poles of the truncated matrix depend upon the sensor locations, i.e. upon vector X~ [ x, ... xx ], since 

such locations determine the parameters !J,,, through eq. (3). For instance, if one considers the case of two 

accelerometers per blade, simple computations show that the poles of DK (s) are always located on the 

imaginary axis except when the two sensors are located on a particular portion of blade, in which case all poles 
have a non-zero real part. 0 

From eq. (5), it is apparent that the estimate is given by: 
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Thus the bias in the estimation of the modal coefficient is: 

(6) 

Eq. (6) shows what the effect of modal spillover on the estimates would be; according to Remark 2 the 
characteristics of the polynomial matrices Dx(s) and D,(s), and therefore those of the modal spillover 

transfer function matrix, are heavily dependent upon the locations of the K accelerometers. This dependence is 
investigated in the forthcoming subsection. 

lll.c Sensor location problem 
As seen above, there is a direct relationship between modal spillover and sensor location: as a matter of fact, if 
X is such that the elements of the transfer function matrix given in eq. (7) are large, then the effect of higher 
order modes on Qx will be significantly amplified, therefore introducing a large bias in the estimates. 

Interestingly enough, the same expression of the bias applies as well to other approaches, such as the direct 
FIT approach proposed in [6], or notch filtering methods (see e.g., [7]). Therefore, an analysis of the bias 
given by eq. (6) is important whatever estimation method is used to assess the spillover effect. 

To try to keep such effect within acceptable bounds, we study the problem of the accelerometer location so as to 
maximize accuracy in estimation (namely minimize i2xl· 
We will illustrate a wise location procedure in the simple case K ~ 1: 

Example. Suppose to resort to the simplest possible approximation, i.e. let K ~ 1: 

a .. 
-=(x-e)f3+x0.2f3 · 
R 

Then, under periodic, steady-state conditions, consider the Fourier expansion of acceleration a and flapping 
angle~. so as to obtain the complex harmonics a"ofthe acceleration: 

~ =0.
2
[x-(x-e)n

2 ]f3"· 

In particular the first harmonic is given by: 

In Table 1, two cases are considered. The first one refers to an accelerometer located ncar the tip of the blade 
(90% radius), while the second one refers to a sensor close to the flapping hinge (10% radius). 
The first harmonic of flapping has been computed in both cases via a direct FIT technique; a straightforward 
comparison of the estimates and the true value shows that the tip accelerometer is subject to a very heavy 
spillover effect. 

First harmonic flapping Est. from root accelerometer Est. from tip accelerometer 

0.6951-0.02339i 0.6904+0.0379i 0.6717-2.3106! 

Table I. Blade flapping estimation under spillover conditions. 
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The significant error on first harmonic flapping which is present when using measurements from the tip 
accelerometer is due to spillover from the higher order bending modes. 0 

ln view of such considerations, sensor locations should be cosidered as main design variables in the described 
optimisation procedure. 

Remark3 
The spillover effect is fundamental in order to judge whether an estimation technique can be successfully 
applied to the rotor. For instance, we have also investigated the possibility of resorting to discrete-time inverse 
modelling techniques (deconvolution techniques, sec e.g., [8]). 
However, in order for this technique be applicable, one has to avoid poles on the imaginary axis. Otherwise, the 
impulse response would not decay, so that deconvolution techniques would fail. As seen in Remark 1, this can 
be achieved by suitably locating the accelerometers. Unfortunately it turns out that such a positiorting is 
unpracticable from the spillover viewpoint. 0 

IV DESIGN OF THE FLAPPING ESTIMATOR 

Up to this point, we have always dealt with ideal filters, with poles on the imaginary axis. In the analysis we 
have therefore considered only the suitable periodic solution of the equations, to avoid raising stability issues. 

We now present a simple procedure to work out a stable filter for the estimation 
of blade flapping (q, = {3) in the simple case K=l. 
With our approach, only one accelerometric measurement is then necessary. 
Taking N=2, eqs. (4) read: 

~ = (x1 - e)~+ x10.2{3+ 1]2 (x1)ij2 + x,l]; (x1 )0.2q2 = D, (s)/3+ D.,(s)q2 

Eq. (5) then gives: 

Having two poles on the imaginary axis, this filter is in fact unreliable. In order to guarantee stability, a suitable 
stable approximant to D1 (s) will be designed. To this purpose, let's consider the family of polynomials 

Obviously 

When the ideal polynomial is replaced by the approximate one, an additional error term is intrdueed; the error 
in the estimation is now constituted by two terms, one (j3,(s)) due to the spillover effect and one (j3,.,(s)) due 

to the approximation in the above polynomial: 

jJ(s) = ft(s)- {3(s) = j3,., (s) + j3 .,(s) 

where 
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- D, (s,O)- D, (s,a) 
/3,., (s) = D, (s, a) {3(s) 

_ D.,(s) 
/3, (s) = D, (s, a) {3(s) 

Therefore, focusing on the filter approximation effect only, the quantities: 

- jD,. (njO, a)j-jD," (njO,O)j 
f3,.,(a,n) = jD,.(njO,a)j (7) 

represent the percentile estimation errors at integer multiples of the rotation frequency n. Obviously, eq. (7) is 
large in proximity of the square root of the characteristic parameter 111 of the accelerometer. 

In general, the problem of making a fair estimate requires that both J3.,(s) and J3.,(s)are kept as small as 

possible. Fortunately, these two effects do not present interactions, and one can face the problem of minimizing 
J3.,(s) by suitably locating the sensors, whereas the tuning knob to reduce J3,.,(s)is parameter a. 
As for the sensor location, we have seen the basic ideas in the preceding section. 

For the selection of the value of a, we have to find a compromise between the degree of stability of the filter 

and the magnitude of errors J3.,(s,n). This may be stated as the following optimization problem: 

!max( a) 

~.,(a,n-1)< E 

f3,.,(a,n) < E 

where n is such that (n -1)11 < n, <nO. Obviously, thia corresponds to imposing a bound, E, to the worst 

approximation errors, which are those associated with the multiples of n closest to the characteristic frequency 
n, of the accelerometer. 
Once E is fixed, the optimal value of a, i.e., the one ensuring the best possible degree of stability within the 
prescribed specification for precision, can be easily evaluated, either analytically (as in this simple case) or 
numerically. 

V. ESTlMA TlON OF HIGHER ORDER MODES 

If more than one sensor is available, then the additional information can be used in order to refine estimates for 
blade flapping. Indeed, once N is fixed, the number of spillover terms in (4.b) can be reduced. Moreover, one 
can also estimate higher order modal deflections. 

Consider, e.g., K~2, i.e., the problem for the estimation of flapping and first bending starting from the 
measurements of two accelerometers. The two sensor outputs are given by: 

a1(x1,1) 

R 

a, (x, ,I) 

R 

(x,- e)~(t) + x,0'/3(1) + 1J(x1)ij(t) + x11J'(x1)0
2q(t) 

(x,- e)~(t) + x2112{3(1) + 1J(x2)ij(t) + x, 1J'(x,)02q(t) 

so in the frequency-domain one gets: 

74-6 



R J3l (x,-e)(s2 +!.111
2

) ra,(x,,s) l l a2 (~,s) =D,(stJ=[(x2 -e)(s2 +!.1,·,,') 

The filter is then given by: 

F, (s, a)= D2a _, (s, a) 

7]'(x,)(s
2 +~,')IJ3J 

7]'(x2)(s2 +!.1, 2
2

) q 

(8) 

where D 2a(s,a)is a stable approximation of D 2 (s). Again, one comes across an optimisation problem with 

parameter a and the senscr locations as optimization tools. 

VI. SIMULATION RESULTS 

The testing have been performed on a simulatin model of a five-bladed, articulated rotor. 
The simulation program, develeped in a SIMULINK context, enables one to model both rigid and flexible 
blades. In the latter case, the out-of-plane bending dynamics of the blade is described by its first four modes; the 
mathematical model is analogous to the classical one described in [9] . 
The state estimation problem has been considered with K ~ 1 and K =2. In the first case, only the flapping is 
estimated; in the second one the first bending mode is estimated too. 
In any case N=4 has been taken and we have also performed a comparison with the performances achievable 
with a kinematic observer, proposed in [5]. 
For each test, two plots are proposed: the first one shows compariscns between time histories of simulated 
(dashed lines) and estimated (sclid lines) flapping; in the second the same compariscn is performed in the 
frequency domain for the steady state periodic regime of the same forward flight condition . 
. The simulated model has been given non-zero initial conditions in order to put into focus the bandwidth 
characteristics of the estimators. 
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Fig. 1. Kinematic observer, rigid blade with two sensors. 
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Fig. 2. Inverse model, rigid blade with one senscr. 
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Fig. 3. Kinematic observer, flexible blade with two sensors . 
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Fig. 4. Inverse model, flexible blade with one sensor (K~J). 
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Fig. 5. Inverse model, flexible blade with two sensors (K~2). 
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It appears quite clearly that in absence of any uncertainty (rigid blade case) the Kalman filter viewpoint taken 
in [5) ensures very good performances; such conditions however are not realistic, given that true acceleration 
measurements always retain the effect of higher order, unmodelled bending modes. 

VII. APPLICATION: IDENTIFICATION OF FLAPPING DYNAMICS 

The described estimators have been applied to the problem of identifYing a suitable dynamic model of blade 
flapping dynamics from noisy accelerometer measurements. We assume to have two accelerometers per blade 
(K~2), located according to the rationale described in the previous sections. 
The simulated identification experiments, concerning a hovering rotor, was performed as follows: 

- a multiharmonic periodic perturbation is superimposed to the pitch pilot command. 
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the steady state accelerometer measurements are recordered, low-pass filtered to prevent aliasing, and 
then resampled at a lower rate (175Hz). 

The identification data are constituted by the sequences of pitch angle and acceleration measurement 
bidimensional vector, sampled at 175Hz. 
The identification procedure consisted of a first filtering phase of the accelerometric data, by means of our 
inversion based estimator with K~2; in other words, the accelerometric data were filtered through system (7). 
In this way, one obtains in particular the sequence of the (estimated) flapping angle behaviour. 

Such estimates have been used as fictitious output measurements for the identification of discrete-time models 
of the type:. 

A(q)y(t) = B(q)u(t) +e(l) (9) 

or: 

y(t) = B(q) u(t) + C(q) e(l) 
F(q) D(q) 

(10) 

where A(q), B(q), C(q), D(q), F(q) are polynomials in the delay operator q, y(t) is the estimated flapping angle, 
u(t) is the pitch angle and e(t) is a white noise introduced to model disturbances and model inaccuracies. 
Models (9) and (10) are usually referred to as ARX and Box-Jenkins models, respectively, see e.g., [II] for 
more detail. 

Three different experimental conditions have been considered, which are characterized by different levels of 
noise affecting the accelerometrs. Precisely, we have considered the case of noisefree measurement first; then, 
the case of a Signal to Noise Ratio (SNR) of 20 dB and I 0 dB are dealt with. These three experimental 
conditions will be referred to as A, B, C. 

Note: given a signal s(t) and a noise n(t), the signal-to-noise ratio is defined as 

SNR = IOLog[E[I.si'] I E[lnl']] 

where E [) is the expected value in the stochastic case, or the corresponding sampled version in the 
deterministic case (see e.g., [12]). 0 

Depending on the specific experimental conditions, different models were tuned. 
Whenever an ARX model was identified, A(q) polynomials of order four and B(q) polynomials of order two 
were considered, and the parameters were estimated by the classical Least Squares algorithm. 
In the case of Box-Jenkins models , order four for polynomials F(q) and D(q) and order two for polynomials 
B(q) and C(q) were found to be a good choice; estimation was then performed with Maximum Likelihood 
techniques. 
The results of the identification of ARX models in the three experimental conditions are reported in Table 2. 
The a, 'sand the b, 's are the coefficients ofpolynomialsA(q) and B(q). 

a, a2 a, a. b, b2 FPE Cov[r>-Yl 

Exp.A -3.3153 4.1216 -2.2837 0.4780 0.0078 -0.0072 2.19e-10 4.16e-5 
Exp.B -3.2496 3.9204 -2.0750 0.4048 0.0086 -0.0080 1.32e-8 6.83e-5 
Exp.C -3.0129 3.2027 -1.3385 0.1497 0.0115 -0.0107 l.lOe-7 l.lOe-3 

Table 2. Identification of ARX models. 

From the analysis of the Final Prediction Error (FPE) and of the error covariance, it appears that the ARX 
models provide satisfactory approximations to the actual flapping response in experiments A and B; in other 
words, in those conditions, the effect of using the estimated flapping instead of the true flapping in the 
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identification does not affect the model quality in a substantial manner. This is quite remarkable for the case of 
Model B, which has been obtained under difficult "experimental" conditions. 
Only in the experimental conditions C, the ARX modelling is not satisfactory: this is not surprising, since in 
this (worst) case the SNR has been given an extremely (and possibly unrealistically) small value. 

However it is worth noticing that under noisy measurement conditions ARX models are not the most 
appropriate structure for the kind of l/0 relations we are trying to describe; this happens because, due to the 
filtering applied to the actual accelerometer measurements, the residuals in the signals used in the identification 
are not white anymore, but have different spectral characteristics. 

For all these reasons, the Box-Jenkins model structure of eq. (10) has been considered appropriate for the low 
SNR case, in that it allows for independent modelling of the l/0 relationship and of the residual's dynamics. 
In Table 3, the results of the identification of a Box-Jenkins model in experimental conditions C are 
summarized. Obviously, thef, 'sand the b·s are the coefficients ofpolynontials F(q) and B(q). 

J, J, FPE Cov[Ji-y] 

Exp. C -2.9929 3.4255 -1.8111 0.3817 0.0064 .0.0024 7.99e-8 1.11e-5 

Table 3. Identification of Box-Jenkins models. 

The Final Prediction Error and the error covariance are, respectively, one and two orders of magnitude smaller 
than those for Exp. C with ARX modelling, and they are comparable with those obtained using noise-free 
signals and ARX modelling. 

Therefore, it appears that identification of blade flapping response to pitch perturbations can be well performed 
using estimates of rotor flapping, as this allows for very good results, even under difficult experimental 
conditions; furthermore ARX models suffice, provided that good to moderate SNR's can be ensured. 
If this is not the case, it is always possible to resort to slightly more complex Box-Jenkins models. 

Finally, notice that ARX models can be readily extended to account for the periodicity of rotor dynamics under 
forward flight conditions (PeriodicARX, or PARX, models), see [13]. In principle, one can therefore identify 
periodic models for forward flight conditions. 

VIII. ROBUSTNESS OF THE ESTIMATORS 

It is extremely important to ensure that the filters are not oversensitive to (unavoidable) uncertainty in the 
design process. Two possible sources of inaccuracy have been considered: 

inaccuracy in the assumed mode shapes; 
inaccuracy in the location of the sensors; 

In order to check for the effects of uncertainty, the identification of ARX models in the experimental condition 
A, described in the preceding section, have been repeated under the following inaccuracy assumptions: 

the filters have been re-designed using approximate expressions for the mode-shapes, obtained by Least­
Squares fitting a low order set of Duncan polynontials ([10]) to the analytical non-rotating mode-shapes. 

an error in the location of the acceleremeters is included; first, indicating with R the blade length, a location 
error of order .02R is considered. Then, the error has been reduced to .OlR. 

For simplicity, we refer to the above conditions as experimental condition A.l (sensor location error O.IR) and 
A.2 (sensor location error 0.2R), respectively. 

The results are presented in the following Table 4, in the same form as in Tables 2 and 3: 
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a, a, a, a4 b, b, FPE Cov[[)-y] 

Exr. A1 -3.5116 4.7043 -2.8666 0.6744 0.0053 -D.0050 5.21e-9 9.02e-4 
Exr. A2 -3.3631 4.2853 -2.4673 0.5458 0.0070 -D.0062 7.41e-10 1.42e-4 

Table 4. Identification of ARX models. 

A degradation in the accuracy of the identified models is apparent from such results; it should be considered, 
however, that the inaccuracies introduced in these tests are really worst-case ones (particularly for 
accelerometer placement inaccuracies). Therefore the performance of the estimators can be considered quite 
satisfactory. 

IX. CONCLUDING REMARKS 

An inversion based frequency-domain technique for the estimation of rotor state variables from the 
measurement of acceleration has been presented and discussed. This technique is easy to implement and 
requires only one accelerometer for each modal response to be estimated. It is fairly robust to spillover effects 
and modelling errors. Finally, it is suited for applications like system identification of rotor dynamics. 
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