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Abstract 

 
The system identification is a powerful tool for high fidelity flight dynamics modeling of flying vehicles. The 
research in this area at Nanjing University of Aeronautics and Astronautics during the past decade is 
presented. Four different kinds of identification methods both in time domain and frequency domain are 
discussed. The time domain technique is used to identify low order models with 6 degrees of freedom, and 
the frequency domain method is developed to identify high order models with 9 degrees of freedom. The 
conventional statistic identification technique and modern deterministic identification methods are developed 
for different purpose. The applications of these methods to both manned helicopters and unmanned air 
vehicles are introduced, and the linear flight dynamics models of helicopters as well as tilt-rotor aircraft are 
identified successfully.  

 

Nomenclature 

y  model output vector 
x  model input vector 
θ  vector of parameters to be identified 

ε  bounded noise vector 
P  covariance matrix of x 

σ  noise bound vector 
H  Hessian matrix 

t  time variable 

λ  weighting coefficient in Optimal Bounding 
Ellipsoid algorithm 

X  state variable vector of helicopter flight 
dynamics model 

U  control input vector of helicopter flight 
dynamics model 

Y   output vector of helicopter flight dynamics 
model 

A  stability matrix of helicopter flight 
dynamics model  

B  control matrix of helicopter flight 
dynamics model 

C  nonlinear terms of helicopter flight 
dynamics model 

D     observation matrix of helicopter flight 
dynamics model 

X, Y, Z    forces along x, y, z coordinate at center of 

gravity of helicopters 

L, M, N   roll, pitch, yaw moment at center of gravity 
of helicopters 

u, v, w    linear velocities of helicopter in body axis 

p, q, r     angular rates of helicopter in body axis 

δlon      longitudinal stick input 

δlat       lateral stick input 

δcol      collective stick input 

δped      pedal input 
 

β0,β1c,β1s  coning angle, longitudinal flapping angle 
and lateral flapping angle of a rotor 

N        the numbers of sampling data 

Ω        the rotation speed of a rotor 

1. INTRODUCTION 

The rotorcraft flight dynamics modeling is a very 
complex problem, and this is because the 
aerodynamic phenomenon of a rotorcraft is very 
complicated, the rotorcraft is unstable and it is 
coupled heavily. The conventional theoretical 
modeling technique usually makes a lot of 
assumptions to build the mathematic model of a 
rotorcraft by applying basic physical laws. However, 
these assumptions and approximations decrease the 
accuracy of the model. In order to solve this 
problem, the system identification technique has 
been applied to rotorcraft flight dynamics modeling 
since 1960s, and it has been proven that this kind of 
modeling technique can increase the accuracy as 
well as confidence of the flight dynamics model 
considerably 

[1-3]
. 

During the past 10 years, in order to provide high 
fidelity flight dynamics model for flying quality design 
and flight control system design of different types of 
rotorcraft, a series of research in system 
identification have been taken out at the Nanjing 
University of Aeronautics and Astronautics (NUAA). 
Basically, there are 4 different identification methods 
developed in the research, e.g. multi-step 
identification 

[4]
, fast frequency domain identification 

[5-6]
, subspace identification 

[7-8]
, and set-membership 

identification 
[9-10]

. This paper gives an overview of 
these identification methods as well as the 
applications to both manned helicopters and UAVs.  



41
st
 European Rotorcraft Forum 2015 

2. MULTI-STEP IDENTIFICATION 

The time domain identification is a direct and easy-
to-implement method for rotorcraft flight dynamics 
modeling. In NUAA, the time domain identification is 
used to identify the rotorcraft linear flight dynamics 
model with the degrees of freedom ranges from 
three to six. Generally, the multi-step method, the 
subspace method and the set-membership method 
are all belong to time domain identification. In this 
section, only the multi-step method will be introduced 
and the latter two methods will be discussed in later 
sections. 

The conventional time domain identification method 
usually requires model structure identification before 
final parameter identification. However, the structure 
identification procedure is quite time consuming in 
time domain. In order to solve this problem, a multi-
step identification method which does not require 
model structure identification is developed in NUAA 
to increase the identification efficiency. 

2.1. Identification Model 

The multi-step identification method is used to 
identify the following 6 degrees of freedom rigid body 
flight dynamics model in time domain. 

(1)         x Ax Bu C  

in which, 

[ , , , , , ]Tu v w p q r      x , represents the state 

vector of the rotorcraft. 

[ , , , ]T

long lat col ped       u , represents the 

control input vector. 
A is the stability derivative matrix, B is the control 
derivative matrix, and C is the nonlinear terms of 
gravity and inertial forces. 

The Eq. (1) is a semi-linear equation, and it has 
been proven that this kind of flight dynamics model 
will increase the numeric stability in time domain 
identification. This is because, in time domain, it 
always need integrate Eq. (1) to obtain state vector. 
However, the small error in the single integration 
step will be cumulated, and it may lead to a failure of 
the identification caused by large integration error. 
So the exclusion of 3 Euler angle equations (which 
do not have any parameters to be identified) and 
keep the nonlinearity of gravity as well as inertial 
forces will help decreasing the integration error and 
increasing the numeric stability of the identification. 

2.2. Identification Algorithm 

The procedure of multi-step identification can be 
divided into several steps. In the first step, single 
channel dynamics models as shown in Eq. (2) ~ Eq. 
(5) are used. There are only the most sensitive 

parameters such as pitch and roll damping etc. in 
these equations, so the ill-conditioned problem of 
information matrix will be avoided in identifying such 
models. 
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(5) 0r ped pedr N r N r        

The least square method is applied to Eq. (2) ~ Eq. 
(5) to obtain the estimation of all derivatives. Then in 
the second step, a more powerful estimator e.g. 
maximum likelihood method is used as shown in Eq. 
(6) ~ Eq. (8) to refine the identification results 
obtained in step 1.  
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The sensitivity function of prediction error in Eq. (7) 
and Eq. (8) can be obtained by solving Eq. (9). 

(9)  

i i i i

d

dt    

    
   

    

x x A B
A x u  

The main derivatives in each channel will have a 
good estimation that close to the true value after 
step 2. So in the third step, weak coupled models as 
shown in Eq. (10) and Eq. (11) will be used to 
identify more parameters and refine the values of 
main derivatives. 
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Fig. 1 Flowchart for Multi-step Identification Method 

The maximum likelihood algorithm is used to identify 
the above models, and two groups of flight test data 
with different excitation input are used for each 
model in this step. Finally, in the fourth step, the full 
coupled model as shown in Eq. (1) is used, and 
since the main derivatives in the model have almost 
converged already, the sensitivity matrix will not be 
ill-conditioned. So a maximum likelihood algorithm 
can be used directly to identify the final model.  

In summary, the multi-step identification method can 
be illustrated in Fig. 1. Where, “LS” is short for Least 
Square and “ML” represents Maximum Likelihood. 

3. FAST FREQUENCY DOMAIN 

IDENTIFICATION 

The rotorcraft is a typical high order system, for 
some applications such as simulation model 

validation, high bandwidth flight control system 
design etc., a high order model is required. In the 
past few years, in order to provide high fidelity flight 
dynamics model for flying quality analysis and flight 
control system design of helicopters, the NUAA 
worked together with the China helicopter industry to 
carry out some research on the identification of flight 
dynamics model with rotor degrees of freedom. 
Because there are much more parameters to be 
identified in a high model relative to a rigid body 
model, the time domain identification becomes very 
inefficient. On the other hand, the time domain 
method always gives higher weightings to low 
frequency derivatives during identification, which 
lead to poor estimation of high frequency parameters 
such as rotor derivatives etc. In order to solve these 
problems, a frequency domain identification method 
has been developed. In this section, some details of 
the developed method including the high order 
identification model, the frequency domain 
identification strategy as well as the acceleration 
algorithm will be discussed. 

3.1. High Order Identification Model 

In order to build a high order flight dynamics model 
of a rotorcraft, the rotor dynamics model is required. 
In our research, the rotor dynamics model only 
contains the flapping degrees of freedom, and the 
lagging of a blade is neglected. Generally, there are 
two different rotor flapping dynamics models used. 
The first one is established based on a simplified 
theoretical flapping model and it is used to identify 
the flight dynamics model of model-scaled rotorcraft. 
This kind of high order model is simple and will be 
introduced in the next section. The second one is 
developed to identify a manned helicopter. This 
flapping model is established without using any 
theoretical models, and it is fully parameterized 
which is quite suitable for identification purpose. 

Assuming the rotorcraft is in stable flight, which is 
always true during the flight test for identification 
purpose. Then a steady flapping is existed, the 
relationship between the rotor flapping angle and the 
single blade flapping angle can be expressed as Eq. 
(12) ~ Eq. (14). 
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Take the first and second order time derivatives to 
both sides of Eq. (12) ~ Eq. (14), then after some 
mathematical manipulation, the rotor flapping 
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equation can be obtained as shown in Eq. (15). 
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The Eq. (15) can be linearized, and a state space 
form rotor flapping dynamics model is obtained as 
shown in Eq. (16). 

(16) f β A β F  

in which, 

0 1 1 0 1 1, , , , ,
T

c s c s             β  is the rotor 

flapping state vector 

0 1 10,0,0, , ,
T

c s
rot rot rotM M M    

 
F  is a vector 

contains rotor flapping moments, 

2

2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 2

0 0 0 2 0

f

 
 
 
 
 
 
   
 
   

A  

Combined the above rotor flapping dynamics model 
with rigid body model, a fully parameterized high 
order linear flight dynamics model is obtain as shown 
in Eq. (17) 

(17) x = Ax + Bu  

in which, 

0 1 1 0 1 1[ , , , , , , , , , , , , ]Tc s c su v w p q r                      x

, and , , ,
T

long lat col ped         u . The A and B 

matrix now have a dimension of 14×14 and 14×9 

respectively. 

3.2. Identification Method 

The basic identification algorithm can be illustrated in 
Fig. 2 below.  

 

Fig. 2 Fast Frequency Domain Identification 

The flight test data is transformed to frequency 
domain by a FFT algorithm with Hanning window. 
Then an initial value estimation algorithm based on 
frequency domain least square method, a model 
structure identification procedure and a rapid 
frequency domain output error method are applied to 
Eq. (17) to obtain the identification result. 

 Initial Value Estimation 

The aim of this procedure is to get a rough 
estimation of all parameters to be identified in Eq. 
(17). A frequency domain least square algorithm is 
used to finish this job. In order to do this, the Eq. (17) 
is transformed into frequency domain and rewrite as 
Eq. (18). Then the identification can be implemented 
using Eq. (19). 

(18) ( ) ( ) Y X θ  

(19) 1( )T Tθ X X X Y  

 Model Structure Identification 

The model structure identification is done by using 
both Cramer-Rao bound and Insensitivity function. 
The formulas of these two criteria are shown in Eq. 
(20) and Eq. (21) respectively. The calculation of 
Cramer-Rao bound and Insensitivity function are 
based on Bode sensitivity function which will be 
talked about later. The main approach of model 
structure identification is to eliminate all parameters 
that have either large value of Cramer-Rao bound or 
Insensitivity function. The eliminated parameters will 
be fixed to constant values during the final 
parameter identification. There will be three possible 
values for these eliminated parameters, e.g. zero, 
prior value or initial value estimation result. A 
comprehensive analysis based on theoretical model 
is used to determine the value selection of these 
parameters. 
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(20) 1( ) ( ) , ( 1,2, )iiIS i i H  

(21) 1( ) ( ) , ( 1,2, )iii i CR H  

 Rapid Frequency Domain Output Error Method 

The final parameter identification is implemented by 
a frequency domain output error method. In 
frequency domain, the state vector x in Eq. (17) has 
an analytical solution as shown in Eq. (22), and this 
solution can be rewrite in Bode plot form as shown in 
Eq. (23). Where the Re[●] and Im[●] represent the 
real and imaginary part of a complex variable. 
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The cost function for final parameter identification 
based on Eq. (23) is shown as Eq. (24). Where k is a 
weighting coefficient which used to ensure the 
amplitude and phase of frequency responses have 
the same weightings during identification. R is error 
covariance matrix. N is the numbers of frequency 
data used for identification. 
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The Bode sensitivity function is derived based on Eq. 
(22) and Eq. (23), then combined with Eq. (24), the 
sensitivity of cost function and the element of 
Hessian matrix H is obtained as Eq. (25) and Eq. 
(26) respectively.  
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Take Eq. (25) and Eq. (26) into Eq. (6), the final 
estimation of remaining parameters in Eq. (17) is 
obtained. 

In order to increase the identification efficiency of a 
high order flight dynamics model, an acceleration 

algorithm is developed based on the fact that the 
convergent speed of each parameter to be identified 
is different. The Fig. 3 shows the basic procedure of 
the accelerated frequency domain output error 
method. 
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Fig. 3 Acceleration Strategy for Frequency Domain 
Output Error Method 

4. SUBSPACE IDENTIFICATION 

The conventional identification methods have some 
instinctive deficiencies. The detailed statistical 
information of measurement noise, model prediction 
error etc. is required in these estimators. However, it 
is usually difficult to obtain the above information 
when identifying a rotorcraft. Therefore, the accuracy 
and especially the robustness of the conventional 
identification methods are decreased. In order to 
solve these problems, new techniques are 
developed based on modern identification theory. 
One is the subspace identification method and the 
other is the set-membership identification which will 
be discussed in the next section. 

4.1. Identification Model 

The subspace identification method is used to 
identify model scaled rotorcraft for flight control 
system design. Both rigid body model and high order 
model are identified. When identifying the high order 
model for the model scaled rotorcraft, a simplified 
rotor flapping model as shown in Eq. (27) is used. 
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in which, 

16 /    is the rotor time constant. 

In order to apply subspace identification, the discrete 
flight dynamics model is required, so the differential 
state space equation is discretized to difference 
state space equation as shown in Eq. (28). 
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in which, v(t) is the measurement noise vector. 

4.2. Identification Algorithm 

Assuming Eq. (28) is observable and controllable, 
and then the following relationship is existed. 
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r t t t t r   U u u u , 

(32)  ( ) ( ) ( 1) ( 1)
T

r t t t t r   V v v v , 

(33) 
1

T
r

r

   O C CA CA , 

(34) 

2 3

r

r r 

 
 
 
 
 
 

D 0 0

CB D 0
S

CA B CA B D

 

If the sample time is T and takes all measurement 
data into Eq. (29), then Eq. (35) is obtained. 

(35) r r  Y O X S U V  

in which, 

(36)  (1) (2) ( )r r r TY Y Y Y , 

(37)  (1) (2) ( )TX x x x , 

(38)  (1) (2) ( )r r r TU U U U , 

(39)  (1) (2) ( )r r r TV V V V  

Let u  to be the orthogonal projection of matrix U 

which has the form: 

(40) 
1( )H H

u

  I U UU U  

Multiplies the both sides of Eq. (35) by Eq. (40), and 
the Eq. (41) is obtained. 

(41) u r u u    Y O X V  

The last term of Eq. (41) will be zero if the numbers 
of data is infinite. Therefore, the influence of the 
measurement noise can be eliminated by setting a 

relative long sample time. The rO  matrix can be 

calculated by applying singular value decomposition 

to Eq. (41). Then according to the first column of rO  

matrix in Eq. (33), the C matrix can be determined 

immediately. The rest columns of rO matrix can be 

used to build a matrix equation which describes the 
relationship between A and C matrix. Therefore, the 
A matrix can be solved according to the matrix 
equation by applying a least square method. Finally, 
the B and D matrix can be solved according to Eq. 
(34). In summary, the basic procedure of subspace 
identification algorithm can be concluded as follows: 

1) Solve Eq. (28) and calculate Y, X and U matrix 
according to Eq. (30), Eq. (31) and Eq. (36) ~ Eq. 
(38); 

2) Calculate u according to Eq. (40); 

3) Solve rO by applying singular value decomposition 

to Eq. (41); 

4) Solve C matrix according to Eq. (33); 

5) Solve A matrix by applying least square method to 
Eq. (33); 

6) Solve B and D matrix by applying least square 
method to Eq. (34). 

5. SET-MEMBERSHIP IDENTIFICATION 

The subspace identification can improve the numeric 
stability of identification. However, if the model 
structure is complicated and the numbers of 
parameters to be identified are large, it will bring 
problems in matrix decomposing. Therefore, the 
subspace method is only applied to the UAVs which 
have simple model structures. In order to expand the 
application area of new techniques to all kinds of 
rotorcraft, a more powerful identification method 
based on set-membership identification theory is 
developed. 

5.1. Identification Model 

Currently, the set-membership identification method 
is only used in time domain, so the identification 
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model is chosen to be a rigid body model as Eq. (1) 
for a manned helicopter or a high order model the 
same as the one used in subspace identification for 
UAVs. 

5.2. Identification Algorithm 

The set-membership identification is used to identify 
the following linear algebraic model: 

(42) 
T y θ x ε  

where y is the m×1 output vector, x is the n×1 

regressive vector, θ is the n × m matrix of 

parameters to be identified, ε is the m×1 bounded 

noise vector. The bounded noise vector can be 
expressed as: 

(43) ε σ  

The set-membership identification does not need to 
know the detailed information of noise, the only 
knowledge required about noise is its bound. So this 
kind of identification theory does not influenced by 
unknown noise, and it is quite suitable for identifying 
the flight dynamics model of a rotorcraft that usually 
has high level of measurement noise.  

 Basic Identification Algorithm 

The identification algorithm developed in our 
research is based on Optimal Bounding Ellipsoid 
(OBE) method which is quite efficient and robust. 
Since the noise is bounded, a bounding ellipsoid 
which represents the upper limit of parameter space 
can be defined as Eq. (44) 

(44) 
2

2
1 1

: ( )
t t

T T

i i i i i i

i i

tr 
 

 
    

 
 θ y θ x σ σ , 

in which the tr(●) represents the trace of a matrix. 

The Eq. (44) can be expanded and rewritten as a 
standard ellipsoid equation: 

(45)     1 / 1
T

c c

t t t t ttr      
  

θ θ θ P θ θ  

in which, 

(46) 
1

t
c T

t t i i i

i




 θ P x y  

(47) 
1

1

t
T

t i i i

i





P x x  

(48) 1

1 1

( ) ( ) ( )
t t

T T cT c

t i i i i i i t t t

i i

tr tr tr   

 

   σ σ y y θ P θ  

The iterative form of Eq. (46) ~ Eq. (48) is: 

(49) 

1

1 1
1

1

1

1

1

( )
( )

1

c c T

t t t t t t

T

t t t t t
t t T

t t t t

T
T t t t

t t t t t T

t t t t

tr
tr








  





 











 


 



   



θ θ P x e

P x x P
P P

x P x

e e
σ σ

x P x

 

The weighting coefficient λt can be determined by 
minimizing the volume of the bounding ellipsoid, then 
a second order algebraic equation as Eq. (50) is 
obtained. The λt will be the largest positive root of 
Eq. (50) if it existed. 

(50) 
2

2 1 0 0t ta a a     

in which, 

(51) 
2

2 1( 1) ( ) ( )T T

t t t t ta n tr   σ σ x P x  

(52)
1 1 1 1(2 1) ( ) ( )T T T T

t t t t t t t t t t ta n tr tr    
     σ σ e e x P x x P x  

(53) 
0 1 1( ) ( )T T T

t t t t t t t ta n tr tr   
    σ σ e e x P x  

Finally, the basic OBE algorithm can be illustrated in 
Fig. 4 below. 

 

Fig. 4 Basic OBE Algorithm 

 Indirect OBE Algorithm for Rotorcraft 

The helicopter flight dynamics model is expressed as 
differential state space equation as shown in Eq. (1), 
and it is not possible to apply OBE algorithm to 
identify such model directly. Therefore, an indirect 
OBE algorithm is derived to satisfy the requirement 
of identifying a rotorcraft flight dynamics model.  

In order to do this, an observation equation as Eq. 
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(54) is required. 

(54)  Y DX ε  

Then based on Taylor series expansion theorem, the 
Eq. (54) can be transformed to an indirect 
identification model as shown in Eq. (55). 

(55) 
T  Y θ X ε  

in which, 

(56) ( )c Y Y DX θ  

(57) c




 θ θ

X
X D

θ
 

(58) 
c  θ θ θ  

Finally, the OBE algorithm can be applied to identify 
the indirect model and then the original parameters 
can be obtained according to Eq. (58). In summary, 
the indirect OBE algorithm can be concluded as 
follows: 

1) Set initial value of 0θ , 0P , 0  and c
tθ , let 1t  ; 

2) Solve Eq. (1) to get ( )c
tX θ , thenY is obtained; 

3) Solve Eq. (9) to get
( )

c
t



 θ θ

X θ

θ
, then X is 

obtained; 

4) Use MIMO system OBE algorithm described in 
Fig. 4 to identify Eq. (55), then the estimation of 
θ is obtained; 

5) Let 1

c c

t t  θ θ θ and t=t+1, go to 2. 

6. APPICATIONS OF IDENTIFICATION 

The developed identification methods are applied to 
different types of rotorcraft. These applications arise 
from the requirements of high fidelity models for 
flying quality analysis, flight control system design of 
manned helicopters as well as UAVs. In this section, 
some of these applications will be introduced. 

 Identification for flying quality analysis and 

flight control system design of a manned 

helicopter 

The NUAA has worked together with helicopter 
industries in flying quality design as well as flight 
control system design research for many years. In 
order to increase the confidence of the flight 
dynamics model, the system identification technique 
is introduced, and a series of flight test for 
identification purpose has done by a Z-11 research 
helicopter. 

 

Fig. 5 Z-11 Helicopter 

Both rigid body model and high order model with 
rotor degrees of freedom were identified for different 
level of flying quality analysis as well as flight control 
system design. In the early study, the conventional 
time domain and frequency domain methods were 
applied, and the set-membership identification 
technique was used in the last two years to increase 
the identification accuracy as well as robustness. 

Fig. 6 shows the identification results of low order 
rigid body flight dynamics model. The overall 
accuracy is good. However, the frequency band of 
such model is limited which lead to a relative large 
error in predicting high frequency responses. This 
kind of model is suitable of basic flying quality 
analysis and conventional flight control system 
design. 
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a)                                              b) 

                               Fig. 6 Low Order Model Identification Result

Fig. 7 shows the high order flight dynamics 
identification results. The introduction of rotor 
degrees of freedom increases the frequency band of 
the model. Therefore, the prediction error at high 
frequency part still remains the same level as low 
frequency part. Fig. 8 shows the comparison of 
model accuracy between low order model and high 
order model. It is obviously that the high order model 

can follow the high frequency oscillation of response 
data well. In the contrast, the low order model can 
only follow the low frequency response. So the high 
order model can be used to analyse the high level 
flying quality which considers rigid body mode, rotor 
mode as well as the rotor-body coupled mode. 
Another application of such model is the high 
bandwidth flight control system design.

 

a)                                         b) 

Fig. 7 High Order Model Identification Result 
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a)                                            b) 

Fig. 8 Comparison of High Order Model with Low Order Model 

 Identification of UAVs 

The unmanned air vehicles have been widely used in 
many areas. In NUAA, the research on UAV 
technology has started as early as last century. The 
system identification technique was used for rapid 
flight dynamics modeling of several UAVs including 
helicopters as well as the tilt rotor aircraft. The 
conventional time domain identification method was 
applied in early stage, and the subspace 
identification method has been used to identify the 
high order model of UAVs since 2008. In recent 
years, the set-membership identification technique 
was applied to UAVs for adaptive control system 
design purpose. All of these identification techniques 
have provided the accurate flight dynamics models 
for control system design. It has been proven that 
the established identification tools can greatly 
increase the efficiency in the development of UAVs. 

 

Fig. 9 Unmanned Research Helicopter 

 

 

Fig. 10 Unmanned Tilt Rotor Aircraft 

Because the scale of the UAVs is usually small, the 
response frequency is much higher than the manned 
helicopters. So the measured data are usually 
contaminated by high frequency noise heavily. The 
low signal-to-noise ratio problem brings difficulties in 
identifying such models with high accuracy. 
Therefore, the new identification techniques such as 
subspace identification and especially the set-
membership identification that are less influenced by 
measurement noise have significant advantages.  

 

Fig. 11 Verification of Roll Rate Calculation 
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Fig. 12 Verification of Vertical Velocity Calculation 

 

 

Fig. 13 Verification of Pitch Rate Calculation 

The Fig. 14 shows the comparison of set-
membership identification with conventional 
maximum likelihood method. It is obvious that, the 
new identification technique has better accuracy 
especially in identifying a model from the test data 
that have relatively low signal-to-noise ratio.

 

a)                                        b) 

Fig. 14 The Comparison of Set-membership Identification with Maximum Likelihood Method

 

7. CONCLUSIONS 

The research on rotorcraft flight dynamics model 
identification technique as well as its applications in 
NUAA for the last decade is introduced. The main 
identification methods are discussed in details. The 
advantages of the system identification in 
constructing high fidelity flight dynamics model for 
flying quality analysis and flight control system 
design are proven. However, there are still many 
challenges in rotorcraft system identification 
technology. For conventional identification methods, 
the optimal model structure determination is still 
need to be investigated, and the influence of non-
ideal noise should be considered in the parameter 

identification. For the subspace method, the future 
research will be focused on eliminating the 
difficulties in identifying complex models. For set-
membership identification, a more comprehensive 
noise bound determination technique is required and 
the applications should be expanded to the extended 
models which contain rotor degrees of freedom in 
the future. 
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