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Abstract

Ground resonance is a type of aeromechanical instability that occurs when the helicopter is in contact with
the ground. It may occur due to coalescence between frequencies of two modes of the system if damping
is insufficient. In this paper, we analyze the phase relations between the fuselage states corresponding to
the least damped mode (regressive lag mode) and its correlation with frequency coalescence. The phase of
fuselage states (attitude or attitude rates), which are easily measurable, is observed to exhibit certain trends
with variation in parameters like rotor speed and landing gear stiffness. The phase data can aid in the design
of a stability augmentation system for ground resonance. It can serve as a parameter to detect the possibility
of instability and in systems with uncertainties in parameters, like landing gear stiffness, it can aid in selecting
the appropriate feedback gain for stabilization. The model we have primarily considered has isotropic rotor and
anisotropic hub, hence multiblade coordinate transformation is used and the stability analysis is done in fixed
frame. The analysis is further extended to incorporate dynamic inflow effects and anisotropy in rotor blades,
where Floquet method is used for stability analysis. Air resonance instability is also investigated on similar
lines and the proposed method is found to be good for its detection.

1. NOMENCLATURE

A(t) System matrix
F (t) Periodic eigenvector
J Diagonal matrix of the eigenvalues of the sys-

tem
K Steady state gain
Kφ Fuselage roll stiffness
Kθ Fuselage pitch stiffness
[L] Influence Coefficient Matrix
[M ] Mass matrix
M Number of harmonics
[V ] Mass flow matrix
Yo Response of second order system
Yi Input to second order system
amn Inflow states
t Time
vz Inflow
x, y Lateral and longitudinal displacement of the

fuselage
Ω Rotor rpm
Φ Phase of the frequency response
Φrp Phase difference between the fuselage atti-

tude or attitude rates
β Blade flap motion
γ Blade lock number
ω Natural frequency of the degrees of freedom
ωn Natural frequency of a second order system
φ Fuselage roll angle

φmn Pressure potential
ψ Blade azimuth angle
τmn Pressure expansion coefficients
θ Fuselage pitch angle
ζ Blade lag motion, Damping ratio
ζc, ζs Cyclic lag displacement
c, s Cosine and sine terms
fx, fy Forces in the lateral and longitudinal direc-

tions

2. INTRODUCTION

Aeromechanical instabilities are self-excited os-
cillations in helicopters, which may occur when the
frequencies of the fuselage mode and a rotor mode
of the system coalesce. However, frequency coales-
cence need not lead to instability provided there is
enough damping present in the system. Ground reso-
nance is a type of aeromechanical instability that oc-
curs when the helicopter is in contact with the ground.
It has been demonstrated both analytically and ex-
perimentally in literature [1–3] that ground resonance
occurs due to coalescence between the regressive
lag mode of the rotor and the fuselage modes. The
similar kind of phenomena experienced while the he-
licopter is in flight is air resonance [3,4] . This occurs



due to coupling between the blade flap motion, lead-
lag motion and the body modes. The focus in this
paper is on ground resonance although air resonance
will also be discussed very briefly.

The degrees of freedom of the coupled rotor-
fuselage system considered in ground resonance
analysis are the flap, lead-lag degrees of freedom of
the rotor blades and the roll, pitch degrees of freedom
of the fuselage. The equations of motion are inherent-
ly periodic with frequency equal to the rotor rotational
frequency. However, if the blades are isotropic, it is
possible to convert the system equations to constant
coefficient form by using Multiblade Coordinate Trans-
formation [5,6] . Anisotropy in blades can arise due to
wear and tear and this results in a periodic coefficient
system. In such cases, the equations are retained
in periodic form and the analysis is done using Flo-
quet method [7,8] . In either case, the modal damping
and modal frequency plots are obtained by sweeping
across a range of rotor frequencies. Instability is indi-
cated by the modal damping being greater than zero
and by the coalescence between the modal frequen-
cies of the participating modes.

Several techniques including passive, semi-active,
and active methods [9] have been proposed in liter-
ature for control of ground resonance. Active and
semi-active control strategies require some triggering
mechanism, usually amplitude of the fuselage signals,
to activate the control system in the event of instabil-
ity. The signals are composed of many modes and
are noisy, hence the triggering of the control system
based on amplitude alone can lead to errors.

In this paper, we analyze the phase relations be-
tween the fuselage states corresponding to regressive
lag mode and its correlation with frequency coales-
cence. The difference in phase of the fuselage states
(attitude or attitude rates), which are easily measur-
able, is observed to exhibit certain trends, which can
aid in the designing of a stability augmentation system
for ground resonance. The phase data can serve as a
parameter to detect the possibility of instability and in
systems with uncertainties in parameters, like landing
gear stiffness, it can supplement in the feedback gain
selection.

It has been verified in literature that the inflow
through the rotor has a significant effect on the stabili-
ty [10–12] . The inflow through the rotor can be modeled
in different ways, uniform or dynamic. In the initial
analysis in this paper, the inflow through the rotor is
assumed uniform. However, the inflow in real scenario
varies in both radial and azimuthal directions. Peters-
He dynamic inflow model [13] is a finite state dynamic
inflow model developed from the basic potential flow

equations and is used in this paper to analyze the ef-
fects of dynamic inflow on phase relations. The model
is in the form of a set of ordinary differential equations
(Eqn. 1), which can be easily incorporated into the
stability analysis model.

(1a) [M ] {ȧmcn }+ [L]
−1

[V ] {amcn } = {τmcn /2}

(1b) [M ] {ȧmsn }+ [L]
−1

[V ] {amsn } = {τmsn /2}

(2) vz =

∞∑
m=0

∞∑
n=m+1

(amcn φmcn + amsn φmsn )

Here all the matrices have closed form expres-
sions, c, s represent the cosine and sine terms, amn
the inflow states and τmn the pressure expansion co-
efficients computed from the lift. The inflow is com-
puted using Eqn. 2, where the variation of m denote
the number of harmonics and n the number of radial
shape functions. φmn denote the pressure potential in-
corporating the variations in the radial and azimuthal
directions. Convergence in inflow can be obtained
with a limited number of harmonics (M ). If M = 1, for
an isotropic rotor system, the system equations will
be in constant coefficient form. However M > 1 leads
to a periodic coefficient system and hence Floquet
method has to be used for stability analysis.

The paper is structured as follows. The methodol-
ogy used for analysis is explained first followed by re-
sults and discussion. First an isotropic rotor model for
ground resonance is analyzed using Mutiblade Coor-
dinate Transformation assuming uniform inflow. Sec-
ond, phase change with parametric variations are con-
sidered and the applicability to stability augmentation
is discussed. Third, the dynamic inflow model is ap-
plied to the system dynamics and the effect on phase
relations and stability is analyzed. Fourth, anisotropy
is introduced into the rotor and the analysis is done
using Floquet method. In the last part the analysis is
extended to case of air resonance.

3. METHODOLOGY

The analytical model used in this study for ground
resonance analysis is based on the experimental
model in Ref. [2]. The model has roll, pitch degrees
of freedom for the fuselage and lag, flap degrees of
freedom for the rotor blades and inflow is assumed u-
niform. Multiblade Coordinate Transformation is used
to convert the system equations to constant coefficien-
t form and eigenvalue analysis is used for computing
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Figure 1: Variation of modal frequency and phase
difference between fuselage attitude rates with ro-
tor speed
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Figure 2: Variation of RLM damping and phase d-
ifference between fuselage attitude rates with ro-
tor speed

the modal damping and frequency across a range of
rotor rotational frequencies (Ω). The soft-in-plane re-
gion of the rotor, which is prone to ground resonance
instability, alone, is considered in the current analysis.
The mode corresponding to the minimum damping
is identified as the regressive lag mode (RLM). The
phase difference between the fuselage states cor-
responding to the RLM at different rotor speeds is
investigated. The phase difference between the fuse-
lage attitudes or attitude rates corresponding to RLM
will be referred to as Φrp in the subsequent sections.

The effect of parametric variations on system sta-
bility and phase(Φrp) characteristic is analyzed by
varying the fuselage roll and pitch stiffness. To use
the phase characteristic as a supplement in stability
augmentation in real scenario, it should be computed
from the time response of the system obtained from
sensors. To demonstrate this, the phase difference
is computed from the time response of the nonlinear
system using appropriate method.

To analyze the effect of wake, Peters-He dynamic
inflow model is applied to the system dynamics and
the number of harmonics (M ) is restricted to three.
Floquet method is used for stability analysis and the
periodic eigenvector (F (t)) is computed using Eqn. 3,
where J is the diagonal matrix of the eigenvalues of
the system, A(t) is the system matrix and F (0) is the
eigenvector of the Floquet transition matrix [14] . The
eigenvectors are converted from blade coordinates to
multiblade coordinates and the phase difference be-
tween the fuselage attitude rates for the regressive lag
mode is considered.

(3)
d

dt
F (t) = A(t)F (t)− F (t)J

For anisotropic rotor, Floquet method is used for
analysis. Anisotropy is introduced by varying the stiff-
ness of the blades. The least damped mode is consid-
ered and the phase difference between the fuselage
attitude rates for this mode is considered in the analy-
sis.

The analytical model in Ref. [3] is considered in
this study for air resonance analysis. The model has
the same degrees of freedom as the ground reso-
nance model but with the landing gear stiffness equal
to zero. The analysis is done in multiblade coordi-
nates and the phase difference between the fuselage
attitude rates for the regressive lag mode is consid-
ered.

4. RESULTS AND DISCUSSION

4.1. RPM Sweep

The soft-in-plane region of the rotor for the model
considered [2] corresponds to Ω > 400 rpm . The
modal damping, frequency and the phase difference
between the fuselage attitude rates (Φrp) or equiva-
lently the states are computed and plotted. Figure 1
shows the variation of Φrp as a function of rotor speed.
The modal frequency plots are also shown in the same
figure. Since the analysis is done in fixed frame, the
frequency of the roll and pitch modes remain almost
constant with rpm variation. The regressive lag mode
frequency variation is denoted in the figure as RLM.
It can be observed that the coalescence between
the pitch mode frequency and RLM frequency occurs
around Ω = 600 rpm and between roll mode frequen-
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cy and RLM frequency around Ω = 775 rpm.

From the Φrp variation, it can be noted that the
phase deviates from π/2 to about 3π/2 passing
through π at the coalescence between pitch frequen-
cy and RLM frequency and from 3π/2 to π/2 passing
through π at the coalescence between roll frequency
and RLM frequency. Figure 2 shows the variation of
RLM damping with rotor rpm along with the Φrp plot.
Comparing the two figures, it can be observed that
reduction in damping occurs corresponding to coales-
cence between the fuselage mode frequencies and
the RLM frequency as expected. In addition, it can be
inferred that the minimum damping region for the two
coalescence is accompanied by a phase difference
(Φrp) change from π/2 or 3π/2 and that the stable
regions are characterized by a phase difference (Φrp)
of about π/2 or 3π/2.

4.1.1. Second Order System Analogy

Ground resonance occurs when the frequency of the
whirling motion of the center of gravity of rotor equals
the frequency of the fuselage motion on its landing
gear [15–17] . The instability can be explained by con-
sidering the lead-lag motion (whirling motion) to be
a forcing to a second order system with pitch or roll
degrees of freedom. This implies the phase relations
between the lead-lag motion and roll or pitch displace-
ments (or velocities) corresponding to the regressive
lag mode will follow the typical phase relationship be-
tween forcing and response of a second order system
near the coalescence regions.

Second order system characteristic: A typical sec-
ond order system frequency response characteristic
is given by Eqn. 5, where Yo and Yi denote the output

and input respectively, ω, the input frequency, ωn the
natural frequency of the system, ζ the damping ratio
and K the steady state gain.

Yo
Yi

(iω) =
K√[

1−
(
ω
ωn

)2]2
+ 4ζ2ω2

ω2
n

(4)

6 − tan−1
2ζ(

ω
ωn
− ωn

ω

)
The condition ω = ωn is known as the resonance

condition, and if sufficient damping is not present (low
ζ), the system response will rise to very high magni-
tudes. For a particular value of ζ, the phase charac-
teristic can be described as below,

Φ = 6 − tan−1
2ζ(

ω
ωn
− ωn

ω

)(5)

= 6 − tan−1
2ζωωn

(ω2 − ω2
n)

When ω < ωn, Φ > −π/2. It varies from 0 at
ω/ωn = 0 to −π/2 at ω/ωn = 1. Similarly when
ω > ωn, Φ < −π/2. It varies from −π/2 to −π as ω/ωn
tends to ∞. A representative second order system
frequency response (magnitude and phase) is shown
in Figs. 3 and 4. It can be observed from Fig. 4 that
as ζ increases, the width of the transition region in-
creases. Hence for high ζ, the entire transition region
will not exactly correspond to the coalescence region
(ω/ωn = 1). However, for reasonably moderate (low)
values of ζ as is observed in mechanical systems, the
trend (variation from 0 to −π through −π/2) can be
observed in correspondence with the frequency coa-
lescence region.



Figure 5: The reference coordinate system used
in the analysis [3]
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Table 1: Computation of phase difference between fuselage attitude rates using the second order system
analogy

Φx − Φfx Φφ − Φfx Φφ − Φζc Φy − Φfy Φθ − Φfy Φθ − Φζs Φφ − Φθ (Φrp)

Region 1 -
Forcing frequency <
Pitch frequency

0 0 π 0 π π π/2

Ω− ωζ < ωθ
Region 2 -
Pitch Coalescence 0 0 π −π/2 π/2 π/2 π
Ω− ωζ = ωθ
Region 3 -
Pitch frequency <
Forcing frequency <
Roll frequency

0 0 π −π 0 0 3π/2

ωθ < Ω− ωζ < ωφ
Region 4 -
Roll coalescence −π/2 −π/2 π/2 −π 0 0 π
Ω− ωζ = ωφ
Region 5 -
Forcing frequency >
Roll frequency

−π −π 0 −π 0 0 π/2

Ω− ωζ > ωφ
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We will now show how the observed trend in Φrp
(Fig. 1) can be explained using the above simplified
analogy. The reference coordinate system (Fig. 5)
used in the analysis is based on Ref. [3] with on-
ly a minor modification. From the figure, it can be
observed that a positive displacement in y-direction
corresponds to negative pitch motion and a positive
displacement in x-direction corresponds to positive
roll motion.

In the derivation, Φ represents the phase of the
frequency response function, Ω the rotor rpm and ω
the natural frequency of the degrees of freedom. The
least damped mode that is the regressive lag mod-
e is actually a low frequency progressive lag mode,
implying Φζc − Φζs = π/2. Also Φζs = Φfy and
Φζc = Φfx ± π, since blade-lead motion is considered
positive (Fig. 5). Here, Φfx and Φfy represent the
phase of the forces in the lateral and longitudinal di-
rections. As mentioned before the lead-lag motion is
considered to be the forcing and fuselage displace-
ment (φ, θ) the response of the system. For the model
considered, fuselage pitch natural frequency is less
than the roll natural frequency (ωθ < ωφ). The anal-
ysis is done by dividing the rotor frequency sweep
considered into five regions, the regions before and
after the coalescence points. The forcing frequency is
the RLM frequency Ω− ωζ and the response frequen-
cies are ωφ and ωθ .

In Table 1, the derivation for the phase difference
is done for all the five regions. A sample derivation
is done here for region 1. Here Ω − ωζ < ωθ. As per
the second order system resonance model (Fig. 4
- Region A), here the phase difference between the
response and forcing is zero, implying Φx − Φfx = 0
and Φy − Φfy = 0. As already mentioned, positive
x-displacement correspond to positive roll motion and

positive y-displacement correspond to negative pitch
motion. This implies, Φφ = Φx and Φθ = Φy + π,
hence, Φφ − Φfx = 0 and Φθ − Φfy = π. Again using
the relations connecting the phase of the forces in the
lateral and longitudinal directions and the lead-lag mo-
tion, Φφ−Φζc = π and Φθ−Φζs = π. Φζc−Φζs = π/2,
implying Φφ − Φθ = π/2 for region 1.

Table 1 thus clearly explains the trend observed
in Fig. 1. The phase variation between the lead lag
displacement (ζc, ζs) and the fuselage motions (φ, θ)
is also shown in Fig. 6, which correspond to columns
4 and 7 in Table 1. For the model considered ωθ < ωφ,
hence the Φrp deviates from π/2 to 3π/2 at the first
coalescence and back to π/2 at the second coales-
cence. For a reversed configuration, ωφ < ωθ, Φrp
will shift from 3π/2 to π/2 at the first coalescence and
back to 3π/2 at the second coalescence.

Due to non-zero damping present in the system,
the transitions between the regions indicated in Table
1, will not be sharp but gradual. This is the reason for
the smooth curve obtained in the phase difference plot
(Fig. 1). When the roll and pitch frequencies are close,
the system dynamics become more coupled. Hence
in such cases, the second order system analogy can-
not be applied and the above derivations (Table 1) will
not hold.

4.2. Parameter Variations

Ground resonance occurs when the helicopter is in
contact with the ground. Improper maintenance of
landing gear components like struts, dampers or tyres,
or based on the nature of the ground the helicopter is
landing on, slopes, uneven rough ground, the land-
ing gear stiffness may vary from the actual expected
values. This may result in frequency coalescence oc-



curring in the operating rpm range and if sufficient
damping is not present can lead to ground resonance.
To study the effect of landing gear parameter varia-
tion on stability and phase as the helicopter lands,
the landing gear roll stiffness (frequency ωφ) is varied
across a range for a fixed rpm Ω = 700. The results
are as shown in Fig. 7. It is observed that the stable
regions (modal damping < 0) are characterized by a
phase difference (Φrp) of about π/2 or 3π/2.

For further clarification, the parametric study of
landing gear stiffness is performed in conjunction with
rotor rpm variation. Figure 8 shows the change in
phase with roll frequency variation for a range of rp-
m. The roll frequency is varied from the isotropic case
where ωθ = ωφ to a range of increasing values of ωφ
with ωφ > ωθ. Figure 1 is a baseline case for this anal-
ysis, for a specific value of ωφ. Similar to the base-
line case, there will be two coalescence (roll and pitch
mode with RLM) in all these cases and with increas-
ing ωφ, the coalescence point between lag and rol-
l mode shifts towards higher rpm. In addition, similar
to Fig. 1, here we can see that there is an upward and
downward shifts in the phase (Φrp). It is observed that
as the difference between the two fuselage frequen-
cies increase (increasing ωφ), the downward shift of
the phase difference plot also shifts towards the right
while the upward shift occurs around the same point
(rpm Ω) in all cases. This further emphasizes the fact
that the upward shift (from π/2) occurs around the co-
alescence between the lag and pitch modes and the
downward shift (from 3π/2) occurs around the coales-
cence between the lag and roll modes.

4.2.1. Control

From the above discussion, we can conclude that
the stable regions are characterized by a phase dif-
ference value of π/2 or 3π/2. A deviation from this
value indicates frequency coalescence and can be
used to trigger the stability augmentation system and
in choosing the required feedback gain. The disad-
vantage in using increasing amplitude as the trigger
for control system is that the sensor, measurement
and component noise effects amplitude much more
than phase. Hence, phase difference estimation can
be used in conjunction with amplitude to trigger the
control system.

The system can be stabilized using pole place-
ment or LQR control strategy. The conventional
method requires analysis of the system matrix and de-
termination of feedback gain based on this. To esti-
mate the control gain in a real scenario, without go-
ing through the entire system analysis, we can cre-
ate a reference chart for gain to be selected based on
phase difference. The difficulty in this regard is that

the phase characteristic is dependent only on modal
frequency coalescence, implying it does not provide
any information with regard to the intensity of the insta-
bility. The feedback gain required is however directly
related to the intensity of the instability.

To overcome this disadvantage, an analysis to de-
termine the RLM damping that correspond to each
Φrp for a range of roll and pitch frequencies is deter-
mined assuming the mechanical damping (roll, pitch
and lag damping) present in the system is very low.
The roll and pitch frequency ranges are determined
such that the equivalent roll and pitch stiffness varies
from very low values (around 1

10

th the actual values)
to around 1.5 times the actual values. For the mod-
el considered, the actual fuselage roll frequency is
4Hz and fuselage pitch frequency is 2Hz. Figure 9
shows the variation of phase difference with roll and
pitch frequencies and Fig. 10 shows the correspond-
ing variation in RLM damping. For each Φrp, we can
determine the minimum damping (worst case) and the
corresponding gain required for stabilization.

Keeping the worst case data (Φrp, minimum damp-
ing and gain) as reference, we can determine the
gain required in any case from the phase difference
and damping values. The worst case damping corre-
sponding to each Φrp is plotted in Fig. 11. The plot
also enables us to determine the unstable region in
terms of Φrp. The region around π/2 and 3π/2 as
seen from the figure are stable regions. The control
algorithm we have employed computes the phase dif-
ference Φrp. If the value is different from π/2 or 3π/2,
the control system is triggered. If the damping of the
least damped mode can be determined the feedback
gain is chosen taking this into consideration, otherwise
the worst case feedback gain is selected. Full state
feedback was assumed and simple Linear Quadratic
Regulator with cyclic pitch as control input is applied
to stabilize the system. The fuselage pitch response
for the system without and with feedback control is
shown in Fig. 12.

The system is able to stabilize under most of
the possible variations in the configuration in terms
of landing gear stiffness and mechanical damping
present in the system. As mentioned before, if the
two fuselage frequencies are close, the phase (Φrp)
derivations are not valid and the method will need
some modifications. There are certain other draw-
backs, one of them being the assumption of full-state
feedback, which is not practically possible. The feasi-
bility of the control strategy and the control input mag-
nitudes should also be considered. In addition a better
approach towards selection of feedback gain should
be developed. These drawbacks will be considered in
future work and is not discussed in this paper.
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4.3. Using time response to compute
phase difference

For real time analysis, the phase difference need to
be computed from the system response, in this case
the fuselage attitude or attitude rate measurements.
This is comparable to the response of the nonlinear
system obtained using simulation. The least damped
mode or the RLM should be obtained from the sig-
nals using appropriate modal analysis technique and
the phase difference should be evaluated. This can
be done using different methods, Fourier analysis,
Prony’s method, Hilbert transform.

Here, the time response of the non-linear system
was computed and Fast Fourier Transform was used
to evaluate the phase difference between the fuselage
attitude rates. Reasonably good correlation is ob-
served between the results (damping, frequency and
Φrp) obtained using the eigenvectors of the linearized
model and the non-linear model time response. The
results are shown in Figs. 13 and 14.

4.4. Effect of wake
In the above computations, the inflow through the
rotor was assumed to be uniform. To analyze the
effect of wake, Peters-He dynamic inflow model [13]

is applied to the system dynamics. For M = 1, the
system is constant coefficient and the analysis is
done using constant coefficient eigenvalue analysis.
For M = 3, the analysis is done using Floquet method
and periodic eigenvectors are computed using Eqn.
3. The phase difference and modal damping results
obtained with the inclusion of wake are plotted in Figs.
15 and 16 respectively. The results obtained without
the inclusion of wake are also shown for comparison.
The results show that the trend observed in phase
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Figure 17: Variation of phase difference and RLM
damping with rotor rpm for anisotropic rotor configu-
ration

Φrp is preserved with the inclusion of wake.

4.5. Anisotropic rotor analysis

The individual rotor blade properties will differ due
to manufacturing errors or wear and tear. Here,
anisotropy is introduced into the model [2] by varying
the blade stiffness in a range of 2− 5% from each oth-
er. Since the anisotropy introduced and expected in
real scenario is less, a constant coefficient analysis
will give approximately accurate results. However, for
a detailed analysis, Floquet method is used here. The
periodic eigenvectors are computed using Eqn. 3 and
the phase difference is computed for a range of rpm.
Figure 17 shows the results obtained and it can be
observed that the phase relations between fuselage
attitude rates hold for this configuration.
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Figure 18: Variation of phase difference and
modal damping (least damped mode) with rotor
rpm for air resonance model
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4.6. Air Resonance
Air resonance occurs while the helicopter is in flight
and is highly influenced by aerodynamics. It can
occur due to coalescence between the regressive
lag mode and the gyroscopic mode frequencies, or
due to coalescence between the regressive lag mode
and the regressive flap mode(RFM) frequencies [3,4]

. However an eigenvector analysis of both the gy-
roscopic mode as well as the regressive flap mode
show significant participation from the flap states
as well as the fuselage states, thereby relating the
phenomena to ground resonance. It can be observed
that with increasing aerodynamic forces, the air
resonance instability is reduced significantly. This has
been demonstrated through the effect of increasing
lock number (γ) on stability [3] . The instability due to
coalescence between RLM frequency and gyroscopic
mode frequency is seen to occur only if the aerody-
namic conditions resemble near vacuum (γ = 0) [3] .

Here we have considered the model from Ref. [3]
with γ = 5 and the results are as shown in Figs.
18 and 19. The frequency plot shows coalescence
between gyroscopic mode and RLM and between
RFM and RLM. The phase deviation from π/2 occurs
corresponding to the coalescence between gyroscop-
ic mode and RLM. However since the coalescence
between the RLM and RFM occurs at a nearby rotor
rpm, the phase difference shifts back to π/2 before
reaching 3π/2. However, similar to ground resonance
case, we can see two shifts corresponding to the two
coalescence. As mentioned before since lock number
(or equivalently aerodynamic damping) is high, here
instability occurs corresponding to the coalescence
between RFM and RLM alone as seen from the
modal damping plot. In spite of this, we can conclude
that the stable regions are characterized by a phase

difference of π/2.

5. CONCLUSION

• Ground resonance instability occurs due to fre-
quency coalescence between the lead-lag mo-
tion of the rotor blade and the fuselage motion on
its landing gear. A second order system analogy
considering the lead-lag motion as the excitation
force and the fuselage motion as the response
is used to explain the phase difference between
fuselage attitudes (or attitude rates) in region of
frequency coalescence.

• It is observed that the stable regions correspond
to a phase difference value of π/2 or 3π/2 and
the unstable (frequency coalescence) regions
are characterized by a deviation from these val-
ues.

• A parametric study (landing gear stiffness vari-
ation) on the phase difference variation is also
performed and this information can be useful for
stability augmentation.

• To demonstrate practical implementation, the
phase difference is computed from time re-
sponse and compared with eigenvector analysis
results.

• The effect of wake and rotor anisotropy is in-
vestigated. Floquet method is used if system is
periodic coefficient and similar phase difference
characteristics as with constant coefficient anal-
ysis is observed.



• The analysis is extended to air resonance
cases, where flap motion and aerodynamics
play a prominent role. Similar features as in
ground resonance is observed in this case also
which shows the feasibility of the method for air
resonance detection.
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