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Abstract

An approximate approach is proposed for investigations of optima control of the
helicopter as a complex object not having a complete analytical description, to use efficient
methods and procedures accounting for specific features of applied problems such as
degeneration and turnpike nature of their solutions. Approximation of multidimensional
numerical data arrays by analytical structures of various complexity and accuracy is envisaged
and a search for a rough global solution on their basis with subsequent iterative refinement is
made. Investigation of safe non-standard landing maneuvers performed by a real helicopter with
determination of a safe zone is presented as an illustrative example.

1. Introduction

Many problems originating in investigation of helicopter flight performance both at
helicopter design and operation stages are essentidly dynamic problems of optimization
connected with selection of optimal maneuvers and corresponding control laws in normal and
emergency conditions. Typical criteria of optimality are minimum time values of maneuver
completion, take-off and landing distances or typical sizes of dangerous zones, maximum values
of flight range, load lifting capability, attainable altitude including all multiple design and
operation restrictions [1-3].

In Kamov practice, just as in practice of any other helicopter manufacturer, they use
helicopter flight dynamics analysis methods of various complexity levels of applied agorithms
for solutions of practical problems. Specific nature of the flight dynamics is investigated using
mathematic and semi-full size models. Methods involving nonlinear motion equations with pilot
work models have been widely used of late. Possibility of realizing in actual flight the control
laws obtained  through crude modeling is evaluated by its analysis accounting for control
margins and observation of prescribed restrictions.

Application of the above listed dynamic processes investigation methods allows one to
solve a lot of problems. But on the other hand, complexity of a rotary wing aircraft as a control
object very much complicates the solution process tasks and compels to look for approaches
which simplify the helicopter motion equations and methods of their investigation.

One of such approaches is a well known in aircraft aerodynamics energy method based
on using a helicopter energy equation that originated in the time when limited computational
capabilities did not allow to solve differential motion equations in a wide range of
altitude/climatic conditions and aircraft weights even in a simplified form, but it is still used in
practice when motion trajectories can be divided in quasi-steady motion segments [4,5]. The
corresponding agorithms are implemented in working programs.

However, this method is absolutely inapplicable for investigations of essentially unsteady
motions like complex spatial high-response maneuvers or landing OEI or engine failures at low
altitudes (rejected takeoff) (fig.1).
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Fig. 1.

A certain positive experience has been accumulated in application of modern optimal
control methods for solution of such problems [6-10]. Thus, in [6] a piloting method
optimization for Mi-4 type helicopter take-off with increased payload using an iteration method
of gradient type resulted in considerable shortening of a take-off distance. In [8-10] similar
methods were used to find a series of optimal planar and spatial maneuvers for coaxial
helicopters. Wide application of this method is hindered, in our opinion, by a complex and
implicit nature of motion models used at present, sometimes in the form of computer programs
including a considerable number of empirical dependencies.

Successful solution of the above mentioned practical problems mainly depended upon
smplification of motion equation systems that allowed one within an acceptable time period to
find approximately optimal control parameters and tragjectories even but in any case better than
the traditional ones. In [8] a more complicated multistage procedure of successive refinement
was applied using ordered series of object models from simpler but crude to more accurate but
complicated.

The purpose if this work consisted is to systematize this approximated approach in order
to extend the usage of various highly efficient optimal control methods and procedures well
proven when applied to solution of aircraft dynamic problems accounting for their specific
features like degeneracy and turnpike nature of solutions [11-13], and to demonstrate them on an
example of safe landing maneuver investigations.

2. General approach
The proposed approach consists of the following stages:
1) setting of the practical problem;
2) choice an appropriate dynamic model and formulation the mathemeatical variation problem;
3) analytical approximation of the dynamic model;

4) approximate qualitative analysis using smplifying assumptions to obtain initial approximation
of the global solution;

5) iterative refinement of the initial approximation using a suitable method.

The first two stages are preparatory steps usua for investigation of any applied problem
by mathematical tools and do not need any special clarifications. Consider the third stage in
more detail.



An analytical presentation of motion equations (their rights parts), even if approximate, is
required for realization of main stages 4) and 5) of the problem solution while, as a rule, for the
discussed class of objects they are in general set up only algorithmically. For this purpose at
stage 3) a procedure is proposed that is analogous to statistical patterns for processing empirical
data.

It is assumed that a motion model in general is presented by a controlled system of
differential equationsin a normal form
d I

and additional restrictions
xI X(@t) ={xx'(t,x)£0}1 R", ul U(t,x):{u:nk(t,x)EO}i RP,

with at least a program-algorithmic representation available (computer calculation programs) for
the equation right parts (1) and the left parts of inequalities as functions of many variables
fi(t,xu), x'(t,x), n*(t,x). Using existing programs, tables of their values on nodal grids
generated by combinations of each argument values uniformly distributed in its operating range
are caculated. The following polynomials are considered as approximating structures:
éy . (a, (y), for example, algorithmically convenient compositions of one-dimensional

polynomials like

.60
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where y = (t,x,u), r =1+n+ p. Approximation is done using the least-squares method
© mind (9. (%) .1-  (v))° ® min.
a b a

where f (y, ) - approximated function values in selected nodes.

For the structures under consideration the method is reduced to solution of a linear
equation system with respect to coefficients y ,(y ; ;. ;). For the unique of the system each

value $m _{k}$ should not the number of nodal values of the corresponding variable $y{k}$ (in
case equality polynomia (2) becomes interpolation one). In order to select a suitable
approximation structure from this class a preliminary analysis of table value senstivity to
argument variations in the working range (practically by building of graph families describing
dependencies on this or that variable under various typica combinations of other variables) is
performed.

It is useful to construct not one but several different approximations. Part of them can
be selected in a class alowing for efficient analysis but not providing for high accuracy. For
example, it may be a class of linear structures since a much advanced general theory of control
linear systems is available, or a class of structures linear with respect to all or part of controls
because the corresponding control systems of the type
4) %—g(t X, u,) +K(t, X)u,
allow the transformed to derived systems of alower order, system decomposition and application
of specific effective methods of degenerate problem solution [9, 10].



On the contrary, the other part is aimed to the most accurate object description for the
application at the stage 5) in iterative refinement universal methods independent of the model
specific nature. Though this stage can be in principal performed using model computer
presentation, its analytica presentation has the advantage of independency from the
computational system in which the object model is realized, and allows one to implement it in
the same system where its refinement algorithm is realized. The final selection of approximating
construction can be made based on a natural criterion (3) of the mean square deviation from table
values.

Note that as arule only part of dependencies contained in expressions of the system right
parts (1) is described algorithmically, not analytically. Then one can approximating only those
very dependencies. Their corresponding tables can apparently be obtained by simple
recalculation of the corresponding right parts.

At stage 4), besdes using special rough approximations, possible idealizing and
smplifying assumptions are adopted based on the content of the dependencies under
consideration in order to obtain a smpler system (4). Then the transformation to a derived is
made ( perhaps multiple one, up to the first order), and thus an approximate decomposition (4)
to separate systems and, probably, to separate loosely interconnected equations is performed.

This decomposed system can be investigated in order to evauate initial system
attainability domains, to find approximate turnpike solutions of the origina problem [11], with
their approximation by the original system solutions serving as initial approximations for the
next stage 5). At this stage it is proposed to use iterative methods of control successive
improvement similar to [12], applicable directly to both analytical and algorithmic presentations
of the object model. The methods are based mainly on approximation of generalized Krotov
Lagrangian in the vicinity of the current approximate trajectory. They are described in detall
together with the corresponding algorithmsin [13].

3. Emergency landing dangerous zone lower boundary problem
Helicopter motion in the vertical plane described by the following equations is examined:

%—f (x', x%,x%,utu )——( Xgp COSQ - TSNUY),
dx?
5) F—f (x5, x%,x%,ut,u )——( X g Sing + T cosu® - G),

dx®

F—f(xx 3 utu? N) = £33, %%, %3, ut,u? N)+—(N N) ,
dx*
_:f4)(2 :XZ’
m (x%)

where x',x*, —horizontal and vertical speed vector component,

x® — main rotor angular velocity, x* — geometrical height, u' — thrust vector defection angle
from vertical, u®> —main rotor collective pitch,

Xgp =Q((x')2 +(x*)?), T=F (XR)*, q=arctg(x*/x"),
N —engine available power (considered to be an external effect in emergency situation),

N - engine require power, m,G,P,Q and R —constants (m and G — correspondingly mass
and weight of the helicopter, R- helicopter rotor radius). Dependences



F (¢, x2,x3,ut,u?), £3(¢, x2, x3,ut,u?,N) are calculated beforehand and set up as data arrays
for a specific helicopter along with constant parameters.

Initial values of state variables, control limits and state variable values at the end of the
maneuver are assigned as:

u” £u' £u,i =12, XM t.) £ xFL Xt ) 3 xT L X3 () 3 xE.

It is required to minimize the final height h(t.) =x*(t.), that is equivalent to
maximization of the emergency landing dangerous zone lower border.

The described simplified helicopter dynamic model is often used in helicopter flight
performance preliminary evaluation problems [5, 6]. On the one hand, it is comparatively simple
and on the other hand, it allows to considerably increase the accuracy of take-off/landing
characteristic calculation in transient conditions (in particular, when determining dangerous zone
borders in coordinates h- v) in comparison with the energy method due to including the main
rotor dynamic characteristics.

For the conditions under consideration rather hard restrictions for transients are typical at
which more or less narrow working ranges of these parameter variations are obtained. It permits
to accept a linear structure as a comparatively crude approximation of motion model at the stage
of qudlitative anayss. %= Ax+Bu+Cwhere A, Bu C - (4" 4), (42 ad ,

(4" 1) matrices, and at the itineration refinement stage --- approximation for types F. and f*

2 3 2
énk(xs)k +é. yjé.y jk(Xs)ka y = (X' x%,x%).
k=0 =1 k=0

At the qualitative analysis stage the following simplifying assumptions are accepted:

Tsinu* =Gu', X,, =0, (remembering that in the conditions under investigation T » G, and

1+

u 1

values , X!, x* are comparatively small). Under these assumptions, the model linear

approximation looks like

dx* dx?
E:-9.8u1, —— = a,X +a,X* +a,x’ +byu’ +c,,
ax® dx*
(6) at = aSlxl + a32x2 + a33X3 + b32u2 *+GC, ot =x?

In accordance with theory [11] the following transformations are made. Equation for x*
is excluded since it is absolutely independent.

Anintegral of aback-up (limit) systemisfound

dx?
yzq:bzzlbsza y=x*- o,
and a derived system is written as
dy dx* _dx® _ L 3 dx* 3
o d qE_ayyy-Fale +ay3X" +C, - O3, E-Y"‘qx :

Inthis system x*, x, play the role of controls, and y, x*- therole of state variables.

Taking into account that the right parts do not depend ontime t, it can be eliminated, passing to

argument x* =h assuming that x* <0 (that is typical for the kind of maneuver under
examination):



1 3
a,yta,X +a,x +c,

(7) ﬂ:h(y,xl,xﬂ: .y =X - o,

dh y+0gx°

Thus we get afirst order system with the boundaries of its possible solutions
being determined by boundaries of the right part (accounting for the given set restrictions):

dyu |
8 ’
(8 ah

To determine the boundaries where operations max, min are performed, equation (8) is
supplemented by equations relative to x*, x*:

= max, minh (y, x*, x%).

dx’ - 9.8u'
° — =Xy ut) = :
© KO =
(10) @ =x3(y,x',x*,u?) = OsyY + X' + 933);3 +kpu® +1, _
dh y+ax

Asaresult, we get an initial system (with argument h) written in new variables(x*, y?, x°).
Boundaries x. | (h), x¢,(h) are determined as solutions of equations

dxt (h dx3 (h
u € ):max, minx*(y, x°,ut), u ()
dh dh

X £X £x, u” £u’ £u’ under assigned boundary conditions and state bounds. Here

(11) = max, minx 3(y, x*, x%,u?),

Ye 2y = X 43X,

The turnpike solution of the variation problem of minimum x* =h is obtained as
one of the boundaries to the extreme (in projection on axis x*) point of crossing with the set
multitude. Then this solution is approximated by an allowable one under controls u'(h), u®(h),
assigned in the process of building of the indicated boundary that is taken as an initia
approximation m' = (x(h),u*(h),u®(h))' for subsequent iterative refinement.

Further on, system (8), (11) isintegrated from right to left and from left to right at various
values of h.; that allows one to find external boundaries of a feasible domain. It may be seen
that the turnpike solution corresponds with the upper boundary y and value h at which it crosses

the a priori lower bound y™ . In other projections there are no limitations for the h lower value,
so for determination of target minimum value h it is enough to examine the situation in plane
(h,y). In genera everything is reduced to building of a one-parameter family of indicated
boundaries x;, (h), X, (h)as system (11) solutions and corresponding boundariesy, (h) . From
this family the solution is selected where y, (h:) =y .

Thus we obtain control laws u*(h), u®(h), accepted with the found h. as an initial

approximation. Its further iterative refinement by an algorithm using more accurate analytic
description of the model and then the initial algorithmic presentation leads to the final solution.

4. Specific example

Calculations were performed based on a conventional helicopter similar in its characteristics to
Ka-226 helicopter [19, 20, 22] as regards the following numerical values of parameters,
limitations and initial conditions (in flight at pressure atitude of 2000 m, ISA +20°C):
1. Available controls U(x):
Thrust vector defection angle from vertical 1< url max}; uMl _max=0.349 rad;
main rotor collective pitch <uM2<uM2_max; u*2 min=0.08 rad;
ur2_max=0.349 rad;



2. Admission conditions X:

horizontal speed: X 1(t)>0 m/s;
vertical speed x"2(t)>a; a=-3.2 (mpu x*1<15,5) m/s,
main rotor angular velocity 24.6< x"3(t)< 30.8 rad/s;
3. Admission final conditions T': X (t_F)<7.5; (t_F - KOHeYHBII MOMEHT);
x"2(t_F)>-3.2;

4. Initial conditions:
x"1(0)=1 knvh;
x"2(0)=0ms,
x"3(0)=29.635 rad/s;

5. Minimum duration of control movement - Al epexsamn >0,5 Sek.

6. Minimum pilot reaction - Aty =1 cek.

For this object a proven Fortran program is available for calculation of the right parts
equations. Using this program, a table of their values in the nodal point grid, generated by
combinations of each argument values uniformly distributed in it working range, was calculated.
The following coefficients of linear approximation (6) were obtained:

ay, =01, a, =-0.24, a, =+0.35, b,, =+39, c, =-20.5,
a, =0.019, a,, =-0.13, a, =-0.19, b,, =-13,

which correspond to concrete system (7),(9),(10):

- 1 3 -
(12) dy —h(y, %, x) = 0.18y +0.16x +0.332x 20.5+3c, =X 43X,
dh y- 3(x°)
1 _ 1
(]_3) dl :Xl(y, Xs,ul) :L‘ua’
dh y- 3(x°)
3 _ 1 3 _ 2
(14) ax® =Xy, ) = 0.13y + 0.019x +0.320X 13u +c3’
dh y- 3(x°)

and concrete system (8), (11) for the bounds, where c, is left as a parameter defined by the
available power which value is varied depending upon the emergent Situation scenario.

Let us examine the expression in the right part (12). It is evident that within the
examined domain it is a decreasing function x* and x* (fig. 2).

dyy dy

dh dh

Fig. 2.

Hence it may be seen that the maximum is attained at the lower boundaries of these variables
and the minimum - at their upper boundaries. The bounds for x* were calculated accounting for
the constraint y = x* + 3(x%) and x> bounds. For example, one of upper bounds is determined on



the base of prescribed restrictions as x° = min(% y- x*,x*). Other, more accurate ones , are

determined in the same way accounting for equations (12)—(14), containing control variables

ut, uZ.

According the above described rule a family of bounds as solutions of this system was
built, and the bound corresponding to the least value of h. was selected (fig.3).

Fig. 3.
The corresponding set (t.,u*(t),u®(t)), (after recaculating to argument t) can be
considered as a qualitative analysis result — an initial approximation for the further improvement.
At the next stage (initial approximation refinement) a more accurate model was used
obtained through crude approximation of F, and f *for variant B:

1
O('jlt = - 0.00044x* + (- 9.8u"):

de: =-0.00044x* +0.12(x*)?(- 0.0046 - 0.00041x> + x*(0.0013- 0.58%10 °x%) + x?(- 0.055 +
+0.00010x%)) - 9.8+0.12(x*)?(0.087- 0.0015x%)u* +0.12(x%)?(0.35+ 0.0013x%)u?;
dT)f =-0.16x> + 6.80 + x'(- 0.021+ 0.0014x>) + x*(0.035- 0.063x°) + (- 0.36+ 0.093x°)u* +
+(5.5- 0.65x%)u® +0.19(N - 357)/ x;
d_X4 — 2
dt ’

Substitution of the obtained set (t.,u*(t),u®(t)), into this model resulted in the trajectory not
satisfying exactly to given restrictions (due to approximation errors). To eliminate this drawback
the u?-dynamics was corrected to observe the restrictionson  x?, x*. Thus more rigorous initial
approximation was obtained. It is presented on fig. 4 for different valuesof N .
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It is seen that for sufficiently large N (in this example for N >320) h. has no lower

bound; this means that there is no dangerous zone whereas for smaler N its lower bound is
determined (in first approximation).
Then the most simple algorithm from [12] (of first order, second type), related to known
fast descend algorithm. To account for restrictions cut-off penalty functions were used.
Results for the most hard scenarios under consideration, N =160 are presented on fig5.
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It is seen that after 3-d iteration h. reduced by 1 m, which corresponds to increasing of the
dangerous zone lower bound by 15% from initial approximation whereas .the qualitative
character of state and control dynamics was preserved. This tells about comparatively high

accuracy of the initial approximation as aresult of qualitative analysis.

On the base of above investigations and calculations for a conventional example several
versions of smple control laws were elaborated for areal helicopter, Ka-226, approved with the
use of the original Fortran-program. Two of them are presented on fig. 6.
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Fig. 7 presents a variant of control and flight trgjectory accounting for a pilot reaction to
an engine failure (1 sec) and physical limitations of the control change rate. The height of the
lower boundary of the dangerous zone is approximately 7,5..8 m that correspond to the Ka-226

helicopter in examined conditions.
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5. Conclusion
Thus two types of the object model approximations were considered: linear and
nonlinear. The first one, more rough, can be used not only for the complex simulation models
but also for the models described completely analytically to simplify them and to carry out an
effective qualitative analyss. The last one is strictly important for practice leading to
comparatively simple near-optimal control laws applicable in emergent situation.

In the whole the approach proposed is seen as effective one for the wide class of problems
of helicopter dynamics and control. It allows one to take into account such circumstances and
physical features as:

- delayed pilot reaction to failure situation;
- physical limitations on motion speed of control structura elements.
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On the base of analysis and generalization of the obtained qualitative results and numerical
data it is possible:

- to reduce the scope of recommendations for the pilot (it is not expedient to include into
RFM too complicated recommendations on piloting techniques for one-engine failure
in various high-hot conditions and helicopter weights;

- to use more accurate, though more complicated math helicopters models for validation
of the data on next stages of the work;

- to establish requirements for the main flight parameters (for example those associated
with emergency engine modes).

The authors thank A.O. Blinov and E.A. Trushkova for their great help in the calculations
for the example considered.
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