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Abstract 

In this paper, the incremental method and Newton-Raphson iteration 

method are used for calculating the frequency adapter stresses. The F.E. 

method is used to solve the stresses of the rubber structure that can be 

simplified as the problem of plane strain. All the formulations are based 

on strain energy £unction, considering non-linear relation of the stress­

strain of rubber materials, the nonlinear relation of displacement-strain 

and incompressibility of the rubber materials, 

1 • Introduction 

The frequency adapter which is made of stainless steel, aluminum alloy 

and silicone-rubber is a important part of the rotor-hub of helicopter. 

The calculations of the parts are complicated and difficult problems because 

of -: (1) It is hard to model the parts made of several kinds of materials, 

(2) Rubber material is hyperelastic, its stress-strain relation can generally 

expressed by a strain energy function of three strain invariants I 1, I 2 and 

I
3 

Which are very complicated nonlinear functions, (3) The deformation of 

structural parts of rubber associates generally with large displacements and 

large strains. When forces act on them, therefore, the strain-displacement 

relation is also a nonlinear function, (4) During deformation of rubber, the 

volume of rubber does not change obviously, this material is taken as incom-

pressible. The stress tensor is not determined by the strains only. The 

hytrostatic pressure which does not influence the deformation must be consi­

dered when calculating the stress tensor. 
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Due to the nonlinearity of geometry and physics and incompressibility 

of rubber complicated nonlinear equations are obtained by l'.E.H. after discre-' 

tization. To solve them is very difficult, According to real size of 

frequency adapter and its working condition, a spatial problem is simplified 

to a plane one, All the formulations are based on the strain energy. ~he 

method of separation of dosplacement and pressure is used, overcoming the 

difficulty that there are the zero elements at the diagonal in the structura2-

tangential stiffness matrix. 

incremental procedure is used. 

Combined Newton-Raphson procedure ;d.th 

2, Structure of frequency adapter and its simplification 

The structure figure of frequency adapter of the hub of helicopter io 

shown in figure 1. Its functions ;1hich are similar to frict.ional adapter 

or oil adapter in metal hub allow to swing and damp the shake to a blade 

consume energy. Therefore -~ lc is subjected to shear :'ot'ces associated l..ri.ti-. 

shear deformation along the s1-.r:ing direction. The maximum shear de:forr:'.a tior: 

is 6 ± 3.6 mm. ?he axial a."ld shear forces along the cli!'ection of axic sna 
flapping, compared vi th them, are small a:"1d ::~-.n be DP[lec"t.eO. 

Because stiffness of stainless steel and aluminum alloy is much larger 

than rubber, -:.he .~-teel end aluminur:1 alloy are considered s.s rigid, onl;; 

rubber is subject~d to deformation. ~·rnen forces a c..:..~ on total adaptAr, 

structural part which is made of three kinds of materials is simplified to 

one that is madP of rubber ~.nd the rubber is malysed. 

Three ribber parts are very regular, their sizes are 1S.4~~72·:qo5(mm). 

The sizes of two directions are considered as much larger than one of the 3rd 

direction. <{ssuming shear forces and deformations 3.long length direction 

are Uniform and piane strain probJ em is then obtained, providint; convenience 

of calculation and saving computation time, 

Simplified rr:o;Iel is shown in 7j_g. 2. In order to ~ompare with analyti-

cal results, as an example, the mesh Df calculation model is shown in Fig. 3. 

3. ?:>rmulation of calculation 

3-1. Constitutive relation of rubber materials 

Rubber materials obey t1oor~.eyt s la\.r, the stres:;es are described by strair; 

energy function 

( 1) 
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in which r
1 

and r2 are the 1st and 2nd invariants, c1 and c2 are material 

constants obtained by experiments. 

Considering the incompressibility of rttbber, the nodified strain energy 

f'u.nctior: 
U=U(l,I,) +P(f,-1) (2) 

is used, in 

(tension). 

wr~ch r
3 

is the 3rd straininvariant, 

Stresses are computed by 

P is hydrostatic pressure 

au 
{T} =~ 

3-2. Strain-displacement relations for plane strain 

(3) 

(4) 

Let u, v ~nd w be the displacement components along x, y and z direction. 

For plane strain problem, u = u(x,y), v = v(x,y), w = 0, Green strain is 

\.ritten as 
{ e } = { e, } + I e 1 } 

(5) 
--

in which { e,} is the linear strain, { e 1 } is the nonlinear one 

( 6) 

.{e} r= { Y1t' y,2 ... Y1,.., Yss) 

{ e . } = CHJ { A } (7) 
au 
·ax-

0 0 0 av 
0 -t + 0 { A } ax 

CHJ = 
= 

0 -t + 0 au 
' ay 

0 0 0 1 ! 

' av I 

ay ) 

{ e 1 } = -t CCJ { A } 

(8) 

in 1>'11-i ch 

au av 
0 n ax ax 

au 1 av 1 au 1 av 
2 ar 2 a-y- 2 -ax- 2 ax 

( CJ = 
1 au 1 av 1 au 1 av 
2 ·ay- 2 ay . - ax ·ax· 2 2 

0 
au av 

0 ay ay 
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After calculation we get 

(9) 
cl { e 1 ) = (C) d { A } 

d {e) = (CHJ + CCJ) d (A) (1 0) 

3-3. Equilibrium equations 

By means of the principle of virtual displacements, equilibrium equa­
tions of an oloment are obtained as 

lv .. d (c.}' { ~.) dv=dW, =d { 1~.)' { F,} (11) 

in '1hich V is thG undcformod volume o.f element, dH is the Gxternal virtual e . e 
work. ( 1[1., } , {F .. } are nodal forces, respectively. According to element 

interpolation functions, 1et 
d { A. ) = (G.) d { 1/J, } 

in which matrix G is obtained by element interpolation functions, e 
Therefore 

d { c' } = (13.) d { 1~" l 

in 11hich 

By substituting eq. (14) into (11) virtual displacement equations 

(12) 

(13) 

(14) 

lv.CB,l'{~.)dV={F,} (15) 

are obtained. The incompressibility in an average sense over the element 

is 
j v, (l,, -1) dV = o (16) 

3-4. Tangent stiffness matrix and residuals 

CombinGd incremental/iterative method is chosen. The eq. (15) 

corresponding to load level n reads s CB,)n~.)dV={F,)"={F,)n-J+{LIF,}u (17) 
v. 

uith an approximate solution at iteration step m,{ 1~,},and {p,},. 

The r0sidual loads of eq. (17) is 
{R,}= S (B,)~m{~c)nmdV-{F,)n (18) 

V• 
By uaing of Ne>rton-Raphson procedure the equations 

{LIR,}= -{R,),. (19) 

are obtained From eq. (18) '1e get equations 

{ LIR,)m= s CLIB,)b;{ -r,}m +eB,)L;{ll~,}m)dV 
. V• 

(20) 
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By calaulation the 1st term in eq. (20) is 

(L',B,J,l;{ ~, }., = CG eJ7 CM sJm{ t, A. lm = CG,J 7 GM ,J.,(G,){ il,P,}., 

in which 

~" 0 ("r'' + ~") /2 

, ... +~'"'I CM.J= 
0 ~" 0 
('f"+~''l/2 0 ~22 

0 <~"+~"l/2 0 

The 2nd term in eq. (20) involves {D.~,} , from eq,(2) and (3) we get 

(21) 

(22) 

{ll~.}=CE.J{ile.}+{L.}ilp, (23) 

with the matrix Ee and vector Le defined by 

a•u a•r 
CE,) -a"'c~e:::.:,J"''-+ P oCe_j' ' 

, L J- ar, 
c. • - a{~.} 

At last incremental residual is written as 

{ ilR } .; ()v,CG.J'CG,,J.CG,)dV + j.,CB,).,p::,J CB )d'V) { il,P } 

+ <lv. (B,J;, { 1,) ,dV) (illi',)., 

(24) 

(25) 

(26) 

The incompressibility condition has also to be accounted for iteratively, 

From residual 

(r.) ... ; j v, (1 3 ") ,dV - V. 

we get equation 

<tlr.).; !v.OI, ) .. ,dV 

in which 
·' 1 , l T a1,. 

(ul' ')"' = ue' m . aC.{'->e-,') 

The element tangent stiffness matrix equation is 

CK .. )., {T,},) r{t,1)J,}m }=-{ {R,)m} 
{T,.}~ 0 \{D,P,Jm (r,)m 

in which 

4. Iterative solution 

From eq. (30) the total tangent stiffness equation 

( 
CKlm (T).) { { illjl} } { { R' } 
CTJ,!', COJ { D.P} ,, ; - { R' ) ) m 
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(28) 

(29) 

(30) 

(31) 

(32) 
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are formed. '!'~10 inciexes l and i on the rig.h.t-ha..l"l.d-side refer to load 

residuals a.."ld incompressibility residuals. 

\-lith proper boundary conditions, q, (33) can be solved iteratively 
{ \jJ } m• 1 ~ { \) } "' i- { .} 1~ } m ) 

I (34) {P}m+ 1 ~ {P)·,+ {_jP}r: 

are cufficiently small. 

!row ~.:,:~~. (33), omitti11g the iteration index m, we get 

(i\: ~ { ~ ~l } -r : T J { ~p } = - { R' ] 

:T) {LI$}=-{R 

~he solution to eq. (35) is 

{ ..\ 'i' ) = - : K, - ' ( { R 1 : + l T: { _1P } 1 

;.:r~ch, a.:fter being inserted i..r:.. (36), gives 

CDJ {C,P} = {Q} 

with 

-· : Q) = c T) I c K) - : { H I } -:- { 1l } 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

~~- (38) cru~ be solved if the conditions given in ref. (3) are avoided. 

In summa-_ry, by solvi__ng eq, (38) WE get {LIP} 1ihich is then substituted 

into (37) to firtd { Ll~, l • 

5. Test example anci numerical solution 

:Cn order c;o compare ;lith analytical solution, the test example which 

is simplifieG as plane strain and is mc:ieled by 9 quadrilateral elements is 

shown :.n Fig. ;: . The lower boundarf r~des 1009-1012 are fixed, A !mown 

displa<:ement on.:_y along x direction is given at the upper boundary nodes 

1001-1004. r;fter deformation the rest nodes on bounda_ry are modev to make 

!"i.ght w1d left bounda_,···y straight. 

TLe element shape functions are 

11', =(a-x)(b-y)/(4ab), 

:v, = (a+x)(b+ y)/(4ab), 

N, o {"}=(' 0 N, ~ 
v oN,oA, 

'71 ' , ~-o 

N, =(a+ x) (b-y) /(4ab) 

N, =(a-x) (b + y)/(4ab) 

1 r 0 u' 

J !V' ]{) 



{A}=[·lE._ ox 
()v 

ax J
T au 

oy 

1 u, ~ 

r -<b-y) 0 (b-y) 0 (b+ y) 0 
I II v1 I 

-<b+y) o I 
jt U:. I 

1 I 0 -(.b-y) 0 (b-y) 0 (b+ y) 

=4ab-l-<a-x) 0 - (a+x) 0 (a+x) 0 

l 0 -(a-x) 0 -<a+x) 0 (a+x) 

(E,J~«C, + Pll~ 
0 0 1 1 r 2+ru 1 
0 -1 O! {l,}= \ -4r,, 

-1 0 0 !' I -4r, i 
0 0 0; ~ 2 + rn 

~11 

I 1'l2 
{~}= : 

,. 2l 

T2z ) 

r 
2(C, +2C, + p) +4(C, + p)r, 1 

-4(C, + p)r, 

=j-4<C,+p)r12 r· 

l 2(C, +2C, + p) +4(C, + P)r11 J 

0 -(b+ylj)u,, 

(a-x) 
i 

o I u, : 
J Us ! 

(a+x) : 
I u4 l 
I 
l v 4 i 

Tl: e results of F ,E .M. compared with analytical solution are shown in 

table 1. From the table the maximum error 1.3~of stresses can be seen. ;, 

The reEult accuracy is satisfactory. 

Wben the convergency 

forces is less than 10-15 
is reached the absolute value of unbalanced nodal 

kg, The equilibrium condition is also satisfied, 

In order to illustrai;e general purpose of the programme compared cal­

culations have been done ::'or the structure, One is conducted with given 

displacements and the other •lith given forces shown in Fig. 4 and 5. The 

maximum departure of displacements at the corresponding nodes is less than 

1%, the pressure departure in the corresponding element is less than 2%. 

6. Conclusion 
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i analytical! present 
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I analytical! 
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present ·analytical. present 

0.115 16.38467 16.88467 -0.14061 I 
-0.140616 16. 87764 16.8771l4 

1l. 3 16.9027 
I 

17.1305 : -0.8437 I -0.843696 

! 

16.87764 16.877114 

0.5 17 ~5806. 17.58072 ! -1.4061 ! -1.40616 16.87164 JB.871li4 
' 0.8 I 18.6772 18.67752 -2.2493 -2.24986 16.87764 16.877114 

1.0 19.7488 19.68996 -2.8122 -2,81232 I 16.87764 16.871114 
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By means of several examples and in comparison ~th analytical solution 

we think the computation model of rubber material is proper, the accuracy 

is satisfactory, the programme that we have designed is of general purpose. 

Tris method can be generalized to structural calculations with large defer-

mation .. 
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