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Abstract
The conversion corridor represents the safe region of flight for tilt-rotor aircraft during the transition bew-

teen helicopter and aeroplane mode. A low-order rotary-wing model has been established and validated

throughout the conversion corridor, showing good agreement with experimental data. Furthermore, the

equations of motion for longitudinal flight have been derived and solved to determine the conversion corri-

dor boundaries with the results correlating well with published data. The largest discrepancy was observed

at the lower boundary which indicated a downwash model of the rotor wake over the wing was required.

Additionally, from a trimmed flight perspective, it was found the tilt-rotor aircraft had transitioned from

helicopter to aeroplane mode by the approximate shaft angle  = 60�.

1. INTRODUCTION
Tilt-rotor helicopters operate as lateral-tandem,

counter-rotating rotorcraft that combine rotary-

wing and fixed-wing flight. This merges the flight en-

velopes of their respective counterparts and inher-

ently allows these rotorcraft to fly faster and further

than conventional helicopters, whilst losing none

of their low speed and vertical/ short take-off and

landing capabilities. These rotorcraft therefore ful-

fil an operational niche not shared by current in-

service aircraft.

The transition between helicopter mode and

aeroplane mode is known as the conversion cor-

ridor. It is a transient phase of flight that is

both safety critical and mechanically complex. The

conversion corridor, as shown in Figure 1, repre-

sents the upper and lower flight speed boundaries

against the shaft angle. The boundaries are gen-

erally characterised by wing stall at the lower limit

and installed engine power at the upper limit. Dur-

ing the transition between flight modes, the control
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authority of the rotors are increased or decreased

depending on the shaft angle and flight speed. Fly-

ing at intermediate shaft angles utilises a blend of

fixed-wing and rotary-wing control mechanisms.

Figure 1: Bell XV-15 conversion corridor
[1]

The construction of the conversion corridor re-

quires the equations of motion to be solved at given

shaft angles and flight speeds. To calculate the net

forces and moments on the aircraft requires fixed-

wing and rotary-wing aerodynamic models and ad-

ditionally, a control authority model. Rotary-wing

modelling is generally more computationally expen-

sive than fixed-wing modelling due to several phe-

nomena:

• Asymmetric lift due to a cyclic variation of the

in-plane velocity.

• Reverse flow and dynamic stall on the retreat-

ing blade.

• Transonic Mach numbers and compressibility

effects on the advancing blades.
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• Periodic and/or unsteady aeroelastic blade de-

formations.

• Aerodynamic interferences, e.g. blade vortex

interactions.

The use of low-order models are ideally suited

for the design and assessment of tilt-rotor concepts

and their conversion corridors. From the prelimi-

nary design stage, the rotor geometry is optimised

for both helicopter and aeroplane mode. Further-

more, due to the tandem-rotor configuration sev-

eral flight conditions (e.g. side-slipping flight or dif-

ferential rotor control inputs) require separate eval-

uation of the induced velocity fields and blade dy-

namics to calculate the tandem-rotor performance.

Therefore, validated low-order models which pro-

vide quick performance estimates that are suffi-

ciently accurate are important in the preliminary de-

sign of tilt-rotor aircraft.

The work undertaken has derived the force and

moment expressions for longitudinal flight (wings

level and zero sideslip) for any generic tilt-rotor. Ad-

ditionally, a low-order rotary-wing model has been

established and validated against published exper-

imental data. This model has been implemented

into the equations of motion and the conversion

corridor established based on a set of prescribed

constraints. Furthermore, the trim states through

the conversion corridor have been compared with

published data and conclusions drawn with respect

to general rotary-wing and fixed-wing behaviours.

2. AIRCRAFT MODEL
The aircraft model and aerodynamic analysis has

been developed in dimensionless rotary-wing form:

lengths are dimensionless with respect to the ra-

dius, R, and velocities with respect to shaft tip
speed, 
R. The force and moment vectors pre-
sented herein are dimensionless using the defini-

tions:

F =
2F �

��
2R4
;(1)

G =
2G�

��
2R5
;(2)

where F � and G� are dimensional quantities and
� is the air density (international standard atmo-
sphere sea-level reference was used throughout). In

the notation used, the rotor torque and power coef-

ficients are identical. Data presented later will make

use of this fact. Furthermore, all rotary-wing, fixed-

wing and fuselage reference data, unless cited oth-

erwise, was taken from Harendra et al.
[2]
.

2.1. Coordinate Systems
In the proceeding analysis, several coordinate

systems are introduced to simplify the modelling.

All coordinate systems are Cartesian systems with

the unit vectors i , j and k subscripted with the ap-

propriate frame of reference symbol. These are de-

fined as follows:

1. Gravity system (subscript g): the conventional
right-handed inertial coordinate system lo-

cated at the aircraft centre of gravity (c.g.).

2. Body system (subscript b): the conventional
right-handed coordinate systemwith the origin

attached to the aircraft c.g..

3. Stability/ wind system (subscript w ): the co-
ordinate system aligned with the freestream

wind vector. The system is co-located at the air-

craft c.g. but rotated about the yb-axis through
the angle of attack, �, described by

(3) Tw!b =

cos� 0 � sin�
0 1 0

sin� 0 cos�

 ;
where the subscript arrow indicates the trans-

formation direction. The angle of attack is de-

fined by

(4) � = tan�1
w

u
;

where u and w are the xb- and zb-axis com-
ponents of the flight speed in the body frame.

This transformation matrix is also used to

transform the weight vector from the gravity

system into the body system since the flight

path angle is set to zero.

4. Shaft system (subscript s ): is a non-rotating
system describing the position of the rotor

shaft relative to the body system. The shaft sys-

tem is rotated about the yb-axis through the
shaft angle, . The shaft angle is defined to
be 0� in aeroplane mode and 90� in helicopter
mode.

The system is located at the centre of the rotor

hub with the xs -axis pointing parallel to the ro-
tor shaft in the direction of conventionally pos-

itive thrust. The zs -axis is positive towards the
leading edge of the rotor disc and the ys -axis
makes a right-hand set. In aeroplanemode, the

body and shaft axes are parallel but not nec-

essarily coincident. A transformation from the

body system to the shaft system is described
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by

(5) Tb!s =

cos  0 � sin 
0 1 0

sin  0 cos 

 :
Alternatively, the shaft system velocity compo-

nents can be computed directly from the wind

vector if a shaft angle of attack, � , is prescribed:

(6) Tw!s =

cos � 0 � sin �
0 1 0

sin � 0 cos �

 :
The shaft angle of attack is related to the shaft

angle and body angle of attack through

(7) � =  + � ;

and taken positive is the aft sense.

5. Blade system (subscript bl ): is the rotating sys-
tem attached to the rotor shaft. The system

is coincident with the shaft system at the az-

imuth position  = 90� on the advancing
side of the rotor disc. The xbl -axis is parallel to
the shaft direction, the ybl -axis runs along the
blade span and the zbl -axis makes a right-hand
set. A transformation from the shaft system to

the blade system is described by

(8) Ts!bl =

1 0 0
0 sin � cos 
0 cos sin 

 :
6. Flapping system (subscript f ): is the rotating
system attached to the flapping origin. The

system is coincident with the blade system at

zero flap angle and rotated about the zbl -axis
through the flap angle, �, positive convention-
ally ‘upwards’. A transformation from the blade

system to the flapping system is described by

(9) Tbl!f =

1 �� 0
� 1 0
0 0 1

 ;
where the small angle approximations sin� �
� and cos� � 1 have been made.

7. Blade wind system (subscript lw ): is the refer-
ence system aligned with the resultant veloc-

ity normal to the leading edge of the blade el-

ement. The system involves a single rotation

through the inflow angle, �, defined by

(10) � = tan�1
VP
VT
;

where VP and VT are the perpendicular and
tangential velocity components in the flapping

frame. The blade element lift, drag and mo-

ment coefficients are defined in this reference

frame and rotated back to the flapping frame

through

(11) Tlw!f =

 cos� 0 sin�
0 1 0

� sin� 0 cos�

 :
The existence of a velocity component along

the blade span yaws the resultant velocity over

a blade element by the angle

(12) � = sin�1
VR
jjV f jj ;

where VR is the radial velocity component and
jjV f jj denotes the Euclidean norm of the flap-
ping velocity vector - the velocity magnitude.

This resultant velocity is resolved through the

cosine of the yaw angle to give the velocity nor-

mal to the leading edge of the blade.

2.2. Aircraft Discretisation
The aircraft model was based on the Bell XV-

15 research tilt-rotor
[1,2,3,4]

, but the methodology

is applicable to general tilt-rotor aircraft. The air-

craft was discretised into several parts: fuselage,

rotors, wing and nacelle, and horizontal tail. The

vertical tails were not included as the focus was

on the longitudinal motion of the aircraft. These

parts were analysed individually in their appro-

priate reference frame to determine their three-

dimensional force and moment contributions. The

aeromechanic quantities were then transformed

into the body frame and summed to give the total

forces and moments.

The position coordinates of several components,

referenced from the aircraft c.g. at the aft limit are

presented in Table 1. The longitudinal change in the

c.g. position with shaft angle was assumed to be

negligibly small. Furthermore, the longitudinal rotor

hub position was determined from

xb
R = xb

P + l cos  ;(13)

zb
R = zb

P � l sin  ;(14)

where the superscript P denotes the pivot posi-
tion and l is the dimensionless straight-line distance
from the pivot to the rotor hub.
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Table 1: Dimensionless reference distances from the

c.g..

Component xb yb zb
Fuselage 0.05 0.00 -0.02

Starboard pivot 0.01 1.29 -0.12

Port pivot 0.01 -1.29 -0.12

Wing 0.06 0.00 -0.09

Horizontal tail -1.73 0.00 -0.14

The work undertaken has focussed on the im-

plementation of a rotary-wing model into the lon-

gitudinal equations of motion for tilt-rotor aircraft.

Aerodynamic data relating to the fuselage, wing and

horizontal tail was taken from lookup tables defined

in the wind system. The data was converted into

rotary-wing nomenclature by multiplying the data

by the tip speed ratio, J = V1=(
R), where V1
is the flight speed, and area ratio, A = S=(�R2),
where S is the reference area of the fuselage,

wing or horizontal tail. Lastly, aerodynamic data was

corrected for compressibility using the extended

Prandtl-Glauert expression

(15) C =
C0

�
;

where C is the compressibility corrected C0 and �
is given by

(16) � =
A+ 4cos �

A
p
1�M2 cos2 � + 4 cos �

:

The aspect ratio is denoted byA, the wing sweep

angle (positive aft) by � andM is the Mach number.

3. FLIGHT MECHANICS
The conversion corridor represents the combi-

nations of shaft angle and flight speed that permit

the aircraft to fly steady and trimmed. These trim

points are defined by a solution to the equations of

motion that does not break any constraints. Math-

ematically, steady and trimmed flight is defined by

the vector x that satisfies f (x) = 0, where f is a

vector function. In the work undertaken, only the

longitudinal motion of the aircraft is considered and

hence, the vector function is given by

(17) f (x) =

Xb(x)
Zb(x)
Mb(x)

 ;

where Xb and Zb are the longitudinal force compo-
nents along the xb- and zb-axes andMb is the pitch-

ing moment about the yb-axis.

The solution vector to the equations of motion is

(18) x =

 �
�0
�s
�

 ;

where � is the aircraft pitch angle (positive above
the horizon), �0 is the rotor collective pitch, �s is
the longitudinal cyclic pitch and � is the elevator
deflection. Since there are four variables to solve

three equations, the system of equations is under-

determined. To overcome this, the moment control

variables �s and � are related to a single variable,
�, to create a unique solution to the equations of
motion:

�s = f1(�) ;(19)

� = f2(�) :(20)

The � variable can be considered as the lon-
gitudinal control stick displacement and f1 and f2
are arbitrary functions. Limits of � = �1 were set
that represented the arbitrary control input limits,

� = 1 being the forward displacement to give a
nose-down moment and � = �1 being the aft dis-
placement giving a nose-up moment. The longitudi-

nal cyclic pitch and elevator deflection were related

to the � stick displacement through

�s =
d�s

d�
� ;(21)

� =
d�

d�
� ;(22)

where
d�s
d� and

d�
d� are the control derivatives. These

derivatives were taken originally from Harendra et

al.
[2]
, however, their dependence on the dimen-

sional stick displacement was removed. Addition-

ally, the longitudinal cyclic was approximated using

a sinusoidal wash-out with shaft angle. The control

derivatives are then

d�s

d�
= �10� sin  ;(23)

d�

d�
= 20� :(24)

The elevator deflection was positive downwards

and the negative longitudinal cyclic pitch gives the

nose-down moment with respect to forward stick

displacement. This closes the control problem and

the solution vector to the equations of motion be-
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comes

(25) x =

 �
�0
�

 :

The net force and moment vectors on the air-

craft were established from the discrete summation

from several components. The rotary-wing aerody-

namics were defined in the shaft system and the

fuselage and fixed-wing aerodynamics in the sta-

bility/ wind system. The discrete contribution from

each aircraft part was found by applying the kine-

matic relationships transforming the forces and

moments into the body system:

F b = Tx!bF x ;(26)

Gb = Tx!bGx + pb � F b ;(27)

where F and G are force and moment vectors, the

subscript x denotes the reference system in which
the forces and moments are expressed (other than

the body system), p is the position vector of the

forces and Gx are moments expressed in frame x .

4. ROTARY-WING MODELLING
4.1. Blade Model
The XV-15 rotor blade geometry was taken from

Felker et al.
[5]
. The blade implements five aero-

foils from the NACA 64-series, although, only one

has published experimental data. Instead, a simi-

lar blade was constructed using data from Abbot et

al.
[6]
. A comparison of the blade aerofoils is given

in Table 2. The aerodynamic data was tabulated for

incompressible flow and at a single Reynolds num-

ber of Re = 106. The lookup table called the lift,
drag and pitching moment coefficients as functions

of the local angle of attack.

Table 2: Original and model aerofoils along the di-

mensionless blade span.

Position, r Original Model
0.09 NACA 64-935 NACA 64-618

0.17 NACA 64-528 NACA 64-418

0.51 NACA 64-118 NACA 64-218

0.80 NACA 64-(1.5)12 NACA 64-412

1.00 NACA 64-208 NACA 64-208

In each case, an attempt to match the thickness-

to-chord ratio and design lift coefficient was made.

The model blade implemented thinner aerofoil sec-

tions compared with the original blade before r =
0:51 and the design lift coefficients are generally

somewhat smaller along blade span (except at r =
0:51 and r = 1:00). As a result, some degree of dis-
crepancy was expected between the experimental

and theoretical results, especially in the stalled re-

gions and the flapping response to collective and

cyclic pitch inputs.

4.2. Stall Model
Aerodynamic data outside of the experimental

angle of attack range was approximated using the

trigonometric models suggested in Leishman
[7]
:

Cl = A sin(2(�� �0)) ;(28)

Cd = B + C cos(2(�� �0)) ;(29)

Cm = D sin(�� �0) + E sin(2(�� �0)) :(30)

In the set of equations A, B, C, D and E are exper-
imentally determined coefficients, � is the angle of
attack and �0 is the zero-lift angle of attack.
The empirical models suggested the values: A =

1:175, B = 1:135, C = �1:050, D = �0:500
and E = 0:110, based on experimental data from
the NACA 0012 and SC1095 rotorcraft aerofoils. Both

these aerofoils are relatively thin and stall is ini-

tiated from the leading edge; characterised by an

abrupt loss of lift. By contrast, thicker aerofoils ex-

hibit a trailing stall with a more gradual loss of lift.

Therefore, the stall model was best suited for the

outboard, thinner sections of the blade. As noted by

Johnson
[8]
, in helicopter mode the inboard sections

of the highly twisted blades are stalled even for

moderate thrusts. Consequently, the thin aerofoil

stall model may fail to capture the inboard stall be-

haviour adequately. Nonetheless, the models were

implemented to approximate stall and reverse flow

aerodynamics.

4.2.1. Compressibility
In forward flight, the local Mach number on the

advancing side of the rotor can become transonic.

If the local Mach number exceeds the critical Mach

number, supersonic flow exists in regions along the

aerofoil chord. If the drag-divergence Mach number

is reached, the drag force on the aerofoil section

sharply increases and consequently, so does the

required shaft power. The drag-divergence Mach

number was estimated using the empirical equa-

tion

(31) Mdd = K � t

c
� jCl j

10
:

The drag-divergence number is denoted byMdd , K
is a technology factor (K = 0:87 for NACA 6-series
aerofoils), t=c is the thickness-to-chord ratio and

Presented at 44th European Rotorcraft Forum, Delft, The Netherlands, 19–20 September, 2018.

This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2018 by author(s).
Page 5 of 14



jCl j is the absolute value of the lift coefficient. In
regions where the drag-divergence Mach number

was exceeded, an incremental drag force, �Cd , was
added to account for the wave drag

[9]
:

(32) �Cd = 12:5(M �Mdd)
3 :

The empirical drag correction was based on exper-

imental data for a NACA 0012 aerofoil. Therefore, it

will not accurately capture the drag-divergence of

the substitute XV-15 aerofoils but serves as a simple

approximation. No transonic compressibility effects

were made to the lift and moment data.

Below the drag-divergence Mach number, the

aerodynamic characteristics of each aerofoil were

corrected using the Kármán-Tsien
[10,11]

compress-

ibility correction up to the Mach numberM = 0:70:

(33) C =
C0p

1�M2 + C0

2

(
M2

1+
p
1�M2

) ;
where M is the local Mach number and C is the
compressibility corrected C0.

4.3. Blade Element Velocity Kinematics
The aerodynamic analysis was undertaken in

the rotating flapping system using a blade element

methodology. The velocity of a given blade element

was calculated using the general expression for a

static shaft:

(34) V f = Tbl!f (Ts!bl(Tw!sV w + v i)

+ !bl � pbl) + !f � pf ;

where V w is the flight speed vector, v i is the in-

duced velocity vector defined in the shaft system,

T is a transformation matrix, ! is a rotational veloc-
ity vector, p is a position vector and the subscripts

denote the reference frames. These dimensionless

quantities are given by:

V w = Jiw !bl = 1ibl pbl = rbl jbl
v i = ��i i s !f = ��0k f pf = rf j f

where J is the tip speed ratio, �i is the induced in-
flow ratio, r is a radial position and �0 is the blade
flapping velocity with respect to the azimuth. The

induced inflow ratio was defined negative as the ve-

locity kinematics describe the motion of the blade

relative to air. Based on the small flapping angle

approximation, the radial position along the blade

span is equivalent in both the flapping system and

blade system.

Denoting the flapping frame velocity vector as

V f = VP i f + VRj f + VT k f and performing the kine-
matics gives the scalar perpendicular, radial and

tangential components as:

VP = J(sin � + � cos � cos )� �i + r�0 ;(35)

VR = �(J sin � � �i)� J cos � cos ;(36)

VT = J cos � sin + r :(37)

The existence of a non-zero radial velocity compo-

nent yaws the resultant flow over the blade element

through the angle �. This radial flow component is
analogous to a swept wing seeing a yawed oncom-

ing flow. To correct the two-dimensional blade ele-

ment theory for this three-dimensional effect, the

velocity magnitude is resolved through the yaw an-

gle. The velocity normal to the leading edge is then

(38) V = jjV f jj cos� :
The unknown quantities in the velocity kine-

matic equations are the induced inflow and flap-

ping states. Methods to solve for these quantities

are presented in the proceeding sections.

4.4. Induced Inflow
The induced inflow ratio (dimensionless induced

velocity) was calculated using a localised blade ele-

ment momentum theory
[12,13]

. The theory assumed

that global characteristics hold on a local level; the

induced inflow at the rotor disc plane was half the

final downstream value. The theory was selected

due to its simplicity to implement and inexpensive-

ness computationally. The localised construction

was adopted to capture the radial induced inflow

distribution at a given azimuth location. The equa-

tion was solved iteratively using an under-relaxed,

successive substitution scheme:

(39) �i n+1 = (1� �)��i n+1 + ��i n ;
where � is the under-relaxation factor used to im-
prove the solution convergence and

(40) ��i = � �V 2(Cl cos�+ Cd sin�)

8r
√
J2 + �i

2 � 2J�i cos �
:

The solidity ratio based on the local dimensionless

chord is denoted by � = Nc=�, where N is the
number of blades, � is the inflow angle and Cl and
Cd are the lift and drag coefficients. Note, in the co-
ordinate system used the drag force is negative.
The lift and drag coefficients were found from a

lookup table based on the local angle of attack com-

puted from

(41) � =

{
� � � if 0 � � � 180�

� � �� 360� otherwise
;
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where � is the blade pitch angle measured from the
zbl -axis. The four quadrant resolution of the inflow
angle was used to give the blade angle of attack in

the range �180� � � � 180�. The blade pitch
angle term comprised of the geometric twist an-

gle, �tw , collective pitch input, �0, longitudinal cyclic
pitch input, �s , and a kinematic pitch-flap coupling
term, �3

[14]
:

(42) � = �tw + �0 + �s sin + � tan �3 :

The lateral cyclic pitch was omitted because the

rolling moments from each rotor cancel in longitu-

dinally symmetric flight.

The under-relaxation factor was initially set to

� = 0:5 but was successively halved depending on
the local convergence history:

(43) � =

{
0:5� if " � 0 and � > 10�3

� otherwise
;

where " is the absolute error between iterations.

4.5. Three-Dimensional Flowfield Effects
The blade element equations assume that the

aerodynamics along the blade can be adequately

modelled in a two-dimensional flowfield. However,

in the vicinity of the blade tip a three-dimensional

flowfield exists and a loss of lift is observed. This

‘tip-loss’ was accounted for using an effective blade

radius, B. The selected value of the effective radius
was established by comparing theoretical and ex-

perimental data, described in Section 6.1. The aero-

dynamics of the blade sections outboard of the ef-

fective radius retained only the profile drag, Cd =
Cd0 , and the lift was set to zero, Cl = 0. A similar
loss of lift is observed at the blade root, however,

since the dynamic pressure is substantially lower in

this region, its influence was considered negligibly

small.

4.6. Blade Flapping Dynamics
The equation of motion describing the flapping

dynamics of a rotor blade attached to a static shaft

and gimballed rotor hub is
[15,16]

(44) �00 + v2� = (v2 � 1)�pc +
�R5A

2I�
;

where �00 is the azimuthal blade acceleration, v
is the dimensionless natural frequency, �pc is the
blade precone angle, � is the air density, I� is the
blade inertia about the flapping axis and A is the

dimensionless aerodynamic moment. The dimen-

sionless natural frequency is given by

(45) v2 = 1 +
2K�

�

NI�
2
;

K�
�
is the dimensional flapping spring stiffness.
The aerodynamic moment was calculated using

blade element theory, giving

(46) A =

∫
1

e
rcV 2(Cl cos�+ Cd sin�) dr ;

where e is the blade offset from the rotor shaft and
c is the dimensionless local blade chord. The equa-
tion cannot be solved analytically and was therefore

solved numerically.

4.6.1. Flapping Spring Moment
The existence of a flapping spring creates a phys-

ical moment on the rotor hub. In the flapping frame,

the dimensionless spring moment due to a spring

extension � � �pc creates a restoring moment on
the blade given by

(47) G
�
f = K�(� � �pc)k f ;

where K� is the dimensionless spring stiffness (us-
ing themoment definition in Section 2). The average

springmoment on the rotor hub during a single rev-

olution is found by transforming the springmoment

into the shaft frame and applying the azimuthal av-

eraging operator

(48) �f ( ) =
N

2�

∫
2�

0

f ( ) d ;

where �f ( ) is the azimuthal average of f ( ). Per-
forming the afore mentioned gives the shaft frame

spring moment vector as

(49) G�
s =

NK�

2
(�c j s + �sks) ;

where �c and �s are the first harmonic Fourier co-
efficients of the cosine and sine functions:

�c =
1

�

∫
2�

0

� cos d ;(50)

�s =
1

�

∫
2�

0

� sin d :(51)

4.6.2. Numerical Blade Flapping Solutions
The flapping equation of motion cannot be

solved analytically without making several simpli-
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fying assumptions that are not applicable to tilt-

rotors. In the current work, the flapping dynam-

ics were initially solved using four different meth-

ods
[15,17]

. The solutions were then compared in

terms of accuracy and speed to select the most

appropriate solver throughout the conversion do-

main. The four methods implemented were:

1. Steady-state method

2. Modified Taylor series

3. 4
th
order Runge-Kutta

4. System of first-order ordinary differential

equations (ODEs)

The numerical methods were implemented to

solve the flapping dynamics at three flight condi-

tions representative of a tilt-rotor aircraft: hover,

high speed helicopter mode and low speed conver-

sion mode. In each case, the transient flapping mo-

tion was allowed to decay until a steady-state solu-

tion converged.

It was found that all the solutions were concor-

dant with each other, suggesting a reliable steady-

state solution was reached. A slight phase shift was

observed using the modified Taylor series but this

disappeared with increased azimuthal resolution

and, consequently, computational time. Therefore,

the modified Taylor series method was not chosen

as the flapping solver. The steady-state method was

marginally slower than the modified Taylor series

but quicker than the Runge-Kutta and ODE system

methods. At higher forward speeds above approx-

imately J = 0:35 (160kn) some solutions did not
converge using the ODE system (this was also ob-

served in Krishnan
[17]
). This problem was not en-

countered with the other methods. As a result, the

steady-state method was selected as the flapping

solver for all flight conditions due to its robustness,

speed and accuracy.

4.7. Rotor Performance
Having solved for the steady-state blade flapping

states and induced inflow ratio, the differential ro-

tor loads were computed. The dimensionless flap-

ping frame aerodynamic force vector was denoted

by

(52) dF f = dFx i f + dFy j f + dFzk f ;

with scalar components:

dFx =
�

2�
V 2(Cl cos�+ Cd sin�) dr d ;(53)

dFy = 0 ;(54)

dFz =
�

2�
V 2(Cd cos�� Cl sin�) dr d :(55)

The flapping frame forces were then transformed

into the shaft frame. Denoting the dimensionless

differential shaft frame force vector by

(56) dF s = dCT i s + dCU j s + dCV k f ;

the scalar components were computed from

(57) dF s = Tf!s dF f ;

where Tf!s is the flapping frame to shaft frame

transformation matrix, given by

(58) Tf!s =

 1 � 0
�� sin sin cos 
� cos � cos sin 

 :
The scalar contributions to the thrust, lateral and in-

plane forces were then:

dCT = dFx + � dFy ;(59)

dCU = � dFx sin + dFy sin + dFz cos ;(60)

dCV = � dFx cos � dFy cos + dFz sin :(61)

The radial force term, dFy , although equal to zero
in the current work, was retained for generalisation.

Models accounting for the radial drag force can be

found in the literature
[15]
but were not included in

the present work. The total rotor force vector, F s =
CT i s +CU j s +CV ks , was then found by integrating
along the blade radius and around the azimuth:

(62) F s =

∫
2�

0

∫
1

e
dF s :

The total rotor moments, Gs = CQi s + CRj s +
CSks , were calculated by summing the contribu-

tions from the aerodynamic loads, GA
s , and the flap-

ping spring moments, G�
s :

(63) Gs = GA
s + G�

s :

The differential aerodynamic loads were calculated

from

(64) dGA
s =

(Tf!sdG
0
f

)
+ (Tf!spf )� dF s ;

where dG0
f is the aerofoil pitching moment vector.

The aerofoil pitching moment was dG0
f = dCM j f ,

where

(65) dCM =
�

2�
cV 2Cm dr d :

Denoting the differential aerodynamicmoment vec-

tor by

(66) dGA
s = dCA

Qi s + dCA
Rj s + dCA

Sks ;
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the scalar components were computed as:

dCA
Q = r dCV sin + r dCU cos + � dCM ;(67)

dCA
R = �r dCT cos � �r dCV + dCM sin ;(68)

dCA
S = �r dCU � r dCT sin � dCM cos :(69)

The total aerodynamic moment was again found by

integrating along the blade radius and around the

rotor azimuth:

(70) GA
s =

∫
2�

0

∫
1

e
dGA

s :

The steady-state spring moment on the rotor hub

(Equation 49) was summed with the integrated

aerodynamic moments to give the total moments

on the rotor hub.

4.8. Tandem Rotor Aerodynamics
Tilt-rotor aircraft operate as lateral-tandem heli-

copters. In longitudinally symmetric flight, the total

rotor forces and moments in the body frame are re-

lated to a single rotor performance through:

FL+R
b = M1F

LjR
b ;(71)

GL+R
b = M2

(
Ts!bG

LjR
s + p

LjR
b � F

LjR
b

)
:(72)

The superscripts L + R (left and right) and LjR are
the combined performance and single rotor per-

formance respectively, and M1 and M2 are the di-

agonal matrices M1 = diag(2 0 2) and M2 =
diag(0 2 0). These diagonal matrices double the
longitudinal contributions and cancel the lateral

contributions from each rotor.

5. CONVERSION CORRIDOR
5.1. Methodology

It was assumed that throughout the conversion

corridor, a solution to the equations of motion ex-

isted that was finite and continuous. The conversion

boundaries were determined using a sweep-and-

refine methodology. The sweep was started from

a shaft angle of  = 90� (helicopter mode) and
flight speed of 0kn (hover). At the initial shaft an-
gle and sequentially increasing flight speeds, an at-

tempt to solve the equations of motions was made.

Upon an interval where a solution and no viable

solution was found (i.e a solution that broke con-

straints), the velocity interval was bisected until the

appropriate lower or upper boundary was located.

Having solved for the lower and upper boundaries

at a given shaft angle, at the subsequent shaft an-

gles a further attempt was made to solve the equa-

tions of motion at the previous flight speed bound-

aries. If no viable solution was found, the velocity

was incremented by 20kn and the same procedure
followed to determine the boundaries.

Having located the conversion corridor bound-

aries at a given shaft angle, the flight speed range

was divided into several discrete flight speeds and

the equations of motion were solved. This was done

to investigate how the steady and trimmed solu-

tions changed with flight speed and shaft angle,

and ensure no constraints were broken between

the flight speed boundaries.

The equations of motion represented a system

of nonlinear equations which were solved using a

multivariate Newton-Raphson iteration scheme de-

scribed by

(73) xn+1 = xn + J(xn)
�1f (xn) ;

where J , in this instance, is the Jacobian matrix of
partial first-order derivatives:

(74) J =

X� X�0 X�

Z� Z�0 Z�
M� M�0 M�

 :
These derivatives were approximated using a for-

ward finite-difference scheme, e.g.

(75) X� =
X(� + h)�X(�)

h
;

where h is some arbitrary increment in the deriva-
tive variable.

Most systems of nonlinear equations require an

initial guess close to the solution vector to converge.

During the conversion corridor, the collective pitch

varies by as much as 30� to ensure the rotor does
not stall. Therefore, no single initial guess of the col-

lective pitch was sufficient to be used throughout

the conversion. The relationship

(76) 2CT = (Cmg � Cd0F ) sin  + Cd0F ;

where Cmg was the weight coefficient and Cd0
F
was

the profile drag coefficient of the fuselage, was es-

tablished to estimate an initial collective pitch set-

ting. The fuselage profile drag was assumed to be

CF
d0

= 0:05(J2=3) (J2 converts the fixed-wing coef-
ficient into rotary-wing form and the fuselage area

ratio was assumed to be 1=3). Since the thrust pro-
duced is largely independent of the tip path plane

angle of attack
[14]
, the rotor performance was anal-

ysed without inclusion of the flapping dynamics to

reduce computation time. In the first instance, the
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initial guess was then

(77) x0 =

 0
�0
�
0

 ;

where �0
�
is the collective pitch that satisfied Equa-

tion 76.

If the system of equations was solved at a par-

ticular flight speed, the solution vector became the

initial guess for the subsequent flight speed. If no

solution was found at this flight speed, another at-

tempt was made to solve the equations of motion

using Equation 77.

5.2. Conversion Corridor Constraints
The conversion corridor boundaries were deter-

mined from solutions to the equations of motion

that did not break the prescribed performance con-

straints. These constraints ensured the steady shaft

power, flapping angle and control limits were not

exceeded:

1. Steady shaft power (single rotor)
[3]
:
CP

� � 0:033

2. Flapping limit
[2,3]
: j�j � 12�

3. Control limit: j�j � 1

No structural or pitch attitude constraints were im-

posed.

The conversion corridor presented was calcu-

lated for an aircraft mass of 5900kg (13000lbs), a
shaft tip Mach number of Mstip = 0:65, flaperon
setting of �f = 40�=25� and c.g. in the aft position
(see Table 1).

6. RESULTS AND DISCUSSION
6.1. Rotary-Wing Model Validation
The predicted rotor performance has been as-

sessed in terms of the thrust and power coeffi-

cients, figure of merit and propulsive efficiency. The

figure of merit, FM , and propulsive efficiency, �, are
defined by:

FM = �CT
3=2

2CP
;(78)

� = �JCT
CP

:(79)

6.2. Axisymmetric Inflow
The validation cases for axisymmetric inflow for

three different effective radii are presented in Fig-

ures 2 and 3. The results show the model predicts

the figure of merit and propulsive efficiency rela-

tively well in each case. In hover, the figure of merit

is best matched using the effective radius B =
0:95, although is somewhat invariant in aeroplane
mode. The slightly smaller effective radius com-

pared with general helicopter literature (B = 0:97)
is accounted for by the higher disc-loading for tilt-

rotor helicopters. Consequently, strong tip vortices

create a larger region of three-dimensional flow and

tip-region losses.

Figure 2: Predicted and measured
[5]
figure of merit

against thrust for different effective radii.

Figure 3: Predicted and measured
[18]
propulsive ef-

ficiency against shaft power for different effective

radii.

6.3. Asymmetric Inflow
The validation cases for asymmetric inflow in he-

licopter and conversion mode are presented in Fig-

ures 4 and 5. The results show that the model ad-

equately predicts the required shaft power for any
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given thrust setting. However, the model does un-

der predict the shaft power at high thrust settings in

helicopter mode. Additionally, in conversion mode,

the model continually over predicts shaft power.

These discrepancies are accounted for by differ-

ences in the aerodynamic data and deficiencies in

the stall and drag-divergence models.

Figure 4: Predicted and measured
[19]
shaft power

vs. thrust for several shaft angle of attacks in heli-

copter mode at a tip speed ratio J = 0:17.

Figure 5: Predicted and measured
[8]
shaft power vs.

thrust for several shaft angles at a tip speed ratio

J = 0:32.

More validation cases have been undertaken

with the results giving similar accuracy, but only

a handful have been presented. Owing to the dif-

ferences between the original and model blade, a

more rigorous assessment using an identical blade

should be compared with comprehensive experi-

mental data encompassing the entire flight enve-

lope. Overall, the validation cases show the rotary-

wing model captures the rotor performance to a

level of accuracy sufficient for preliminary design

purposes through the conversion corridor.

6.4. Conversion Corridor
Theoretically predicted and published conver-

sion corridors are presented in Figure 6. Overall, the

predicted conversion corridor showed good agree-

ment to that presented in Maisel et al.
[1]
. The up-

per boundary was accurately predicted between

the shaft angles  = 90� and  = 45�. However,
below the a shaft angle  = 45� the boundary was
continually over predicted. The vertical line from

the published corridor was a structural constraint

and therefore overlooked in the absence of any

structural considerations. Nonetheless, the general

trend was consistent in the fact there was a steady

increase of the upper flight speed boundary below

the shaft angle  = 45�. At the lower boundary, the
wing stall was consistently over predicted, except in

aeroplane mode. This implied the theoretical pitch

attitude to trim was under predicted.

Figure 6: Calculated conversion corridor boundaries

against the published conversion corridor
[1]
.

The predicted trimmed pitch attitudes through

the conversion corridor are shown in Figure 7,

alongside comparative data from Harendra et al.
[2]
.

The pitch attitude curves followed the expected

trend whereby for a given shaft angle, as the flight

speed increased a larger nose-down attitude was

required. Lower flight speeds required a greater

nose-up attitude to increase the magnitude of the

wing lift vector or align the rotor thrust vector

against the gravity vector. Thereafter, as the flight

speed increased, a progressively greater nose-down

attitude was observed to reduce the wing angle of

attack and magnitude of the wing lift. Overall, the

correlation of predicted pitch attitude agreed well

with the published data for all shaft angles. There
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was a consistent under prediction of pitch attitude

but this was accounted for by the absence of any

downwash models for both the rotor wake on the

wing, and also the rotor and wing wake downwash

over the horizontal tail.

Figure 7: Predicted trimmed pitch attitude during

the conversion corridor against data published in
[2]
.

Helicopters typically transition into forward flight

by pitching the aircraft nose-down to create lift

and propulsive forces as components of the ro-

tor thrust. This is usually done in a concave man-

ner consistent with the shaft angles  = 90� and
 = 75� in Figure 7. However, the trimmed pitch at-
titude against flight speed for a fixed-wing aircraft

is usually a convex function, seen by the shaft an-

gles  = 30� and  = 0� curves. Figure 7 there-
fore demonstrates the transition from helicopter to

aeroplane mode, in terms of the adopted trimmed

pitch attitude, is achieved early in the conversion

corridor at approximately the shaft angle  = 60�,
where the curvature inflects.

The trimmed shaft power through the conver-

sion corridor is shown in Figure 8. Additionally, the �
control through the conversion corridor is shown in

Figure 9. This shows that at a shaft angles  = 90�
and  = 45�, the limiting flight speed was actually
constrained by the � control limit and not the en-
gine power. This was attributed to differences in the

flapping dynamics response to cyclic pitch inputs

being under predicted, i.e. more cyclic pitch was re-

quired to achieve a desired tip path plane tilt. At all

other shaft angles, the limiting constraint at the up-

per boundary was the engine power.

In the published literature, the lower conversion

boundary was defined by the pitch attitude at the

onset of wing stall, approximately � = 11� with the
inclusion of the wing setting angle of � = 3�. In
the theoretical model, no limitation was made that

the wing may not be stalled. The predicted lower

Figure 8: Trimmed shaft power at several shaft an-

gles, plotted for shaft increments of � = 15�.

Figure 9: � control during the conversion corridor.

boundary for hovering flight was then observed to

be  = 60�, which was approximately 15� lower
than the published corridor.

At this trimmed setting, the aircraft was pitched

nose-up and the tip path plane tilted in the aft di-

rection to align the thrust vector towards the grav-

ity vector. This orientation would have caused sig-

nificant interaction of the rotor wake over the wing,

resulting in a download force and a pitch down mo-

ment. Therefore, additional aft tilt of the tip path

plane would have been required to trim. As a re-

sult, the flapping constraint may have been broken

and thus to accurately determine the lower conver-

sion boundary a rotor wake downwash model is re-

quired.

The theoretical shaft power as a fraction of the

maximum take-off power is compared in Figure 10.

This shows that the required power was consis-

tently under predicted through the corridor. In low-

speed helicopter mode, the under prediction was
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accounted for by the neglect of download. Themea-

sured download on the aircraft due to the rotor

wake on the wing has been measured empirically

at approximately 10% of the rotor thrust
[20,21,22,23]

.

From Section 6.1, the rotor shaft power was rea-

sonably well predicted over the full conversion cor-

ridor - under predicted at high thrust settings in

helicopter mode and over predicted towards aero-

plane mode. Therefore, the under predicted power

through the conversion corridor was determined to

result from an under predicted thrust requirement

(and hence aircraft drag) due to the aerodynamic in-

teractions from the rotor wakes and wing wake over

the length of the aircraft. Furthermore, no rotor per-

formance validation has been undertaken for neg-

ative shaft angles of attack and some discrepancy

may exist in this region.

Figure 10: Comparison between the required and

maximum power through the conversion corridor.

7. CONCLUSIONS
A low-order rotary-wing model has been devel-

oped and implemented into the equations of mo-

tion to solve the conversion corridor boundaries

of tilt-rotor helicopters. The rotary-wing model dis-

played good agreement with experimental data

throughout the conversion - under predicting the

shaft power at high thrusts in helicopter mode and

slightly over predicting the shaft power during con-

version. This was determined to be from inaccu-

racies within the blade, stall and drag-divergence

models. Additionally, the experimental data was

best matched using an effective blade radius

smaller than in conventional helicopter literature.

Overall, the correlation between theoretical and ex-

perimental data indicates a level of accuracy suit-

able for preliminary design analysis and validates

the implementation of low-order methods.

The conversion corridor boundaries were deter-

mined by solving the derived set of equations for

longitudinal motion in a sweep-and-refine method-

ology. A set of prescribed constraints ensured the

stalled engine power, flapping and control limits

were not exceeded. A comparison between the the-

oretical and published conversion corridor showed

a good level of accuracy.

The lower boundary was consistently over pre-

dicted leading to the conclusion that downwash

models from the rotor wake andwing were required

to improve the accuracy of the model. Between the

shaft angles of  = 90� and  = 45� the up-
per boundary was well predicted and constrained

mostly by the required shaft power. At a shaft an-

gle  = 90�, the upper boundary was constrained
by the control limit. This was considered to arise

from an over prediction of the cyclic pitch to gener-

ate the required tip path plane tilt when compared

to the original blade model. At all other shaft an-

gles, the upper boundary was constrained by the re-

quired shaft power. Below the shaft angle  = 45�,
the published corridor was limited by a structural

constraint. In the developed model, no structural

considerations were made and therefore the upper

boundary in this region was over predicted.

From a steady and trimmed perspective, it was

observed that the transition between helicopter

mode and aeroplane mode was at the approximate

shaft angle  = 60�. Above this shaft angle, the
trimmed pitch attitude solution to the equations

of motion displayed a convex curvature; gradually

pitching the aircraft nose-down to create lift and

propulsive forces from the rotor thrust. Below a

shaft angle  = 60�, the curvature of the pitch atti-
tude solutions inflected, demonstrating a trend of a

fixed-wing nature.

The required power as a fraction of the total in-

stalled power was under predicted throughout the

corridor. In low speed helicopter mode, this was ac-

credited to the additional power required to com-

pensate for the download force produced on the

airframe from the rotor wake. However, in forward

flight at higher speeds, the rotor wake is convected

over the wing and the download effects are signif-

icantly reduced/ negligible. Since the rotor power

was well predicted throughout the conversion cor-

ridor, it was concluded that the aircraft drag force

was under predicted. This could have arisen from

deficiencies in the airframemodel, or neglect of any

aerodynamic interference along the fuselage length

(rotor and wing wake over the horizontal tail). More-

over, the rotor performance was not validated at

negative shaft angles of attack and therefore an un-

der predicted shaft power may have contributed to

the total under predicted power when operating at
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these inflow conditions.
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