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Abstract. In this paper the pitch bounce oscillation of a tandem-suspended long and
heavy underslung load is investigated. It is compared with a case of violent pitch oscilla-
tion experienced in flight with a Chinook helicopter with such an underslung load. It is
concluded that it is very likely that in that case the helicopter plus load were excited close
to the pitch bounce natural frequency leading to a resonant condition. The paper hypoth-
esized that the motion was negatively affected by the rotor downwash or more specifically
the tip vortices of the rotor blades and that the system had not enough aerodynamic
damping.

1. INTRODUCTION

A Chinook helicopter of the Royal Netherlands Air Force experienced a violent pitch oscil-
lation during an external load operation with a large open tower construction suspended
in a tandem cargo hook configuration, see Fig. 1. As the helicopter and underslung load
were experiencing pitch oscillations, which were in opposite direction, so in anti-phase, it
was presumed to be a potential elasticity matter, such as for a single suspension would be
called ”vertical bounce”, see Gabel & Wilson [2]. Typically, the vertical bouncing phe-
nomenon is a dynamic resonance condition which occurs when the natural frequency of
the helicopter with its sling load, as a mass-spring-system, is close to the once per revolu-
tion frequency of the helicopter rotor. This motion would normally dampen, but might be
divergent in case of out-of-phase steering input, see Gabel & Wilson [2]: ”A disturbance
in the system can induce a vertical vibration at the system natural frequency which under
normal circumstances would damp rapidly. However, the presence of the pilot and his
thrust lever control can add another element to the system which can lead to a divergent
oscillation”. In vertical bounce, motion coupling can be accomplished by the pilot’s arm
and depends then on his arm stiffness and the force that is induced through his body
motion to the collective lever motion. That is why vertical bouncing can be associated to
a pilot induced oscillation problem as the pilot is unconsciously exciting divergent vehicle
oscillations by applying control inputs that are in the wrong direction or have phase lag.

The tandem cargo hook suspension is an interesting application as it can easily counter
the yaw instability (e.g. Prabhakar [3]) of an underslung load, but it might in this case
have resulted in another type of instability, which could be called ”pitch bounce”. In this
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Figure 1. Picture of the tandem-suspension external load under tandem-rotor helicopter.

paper the dynamics of such a pitch bounce oscillation of a tandem-suspended long and
heavy load under a helicopter is treated.

2. EQUATIONS OF MOTION

We define the equations of motion in the horizontal earth-fixed axis system through the
centre of gravity of the helicopter, with the x axis (horizontal reference line, hrl) positive
to the rear of the helicopter and the z axis in the direction of the gravity (weight W ), see
Fig. 2. From Fig. 2 we have the coordinates of the points 1, 2, 3 and 4 for the equilibrium
of the helicopter in hovering flight:

(x10
, z10

) = (−a1, b1), (x20
, z20

) = (a2, b2),
(x30

, z30
) = (−d − a3, h − b3), (x40

, z40
) = (−d + a4, h − b4).

(1)

The motion under investigation was predominantly a pitching motion of helicopter and
load, furthermore the vertical displacement of helicopter and load plays a role, we assume
four degrees of freedom (4 DOF) θh, θl, zh, and zl, corresponding to respectively helicopter
pitch attitude, load pitch attitude, helicopter vertical position and load vertical position
w.r.t. the defined system of coordinates. In Fig. 2 the fuselage reference line (frl)
of the helicopter is drawn in the equilibrium position and after disturbance θh of the
attitude (frl’). We consider small disturbances (θh, θl, zh, zl) from the equilibrium position
(θh0

, θl0 , zh0
, zl0) and after linearization with cos θ ≈ 1 and sin θ ≈ θ, we obtain

(x1, z1) = (−a1 − b1θh, b1 − a1θh + zh),
(x2, z2) = (a2 − b2θh, b2 + a2θh + zh),
(x3, z3) = (−d − a3 + b3θl, h − b3 − a3θl + zl),
(x4, z4) = (−d + a4 + b4θl, h − b4 + a4θl + zl).

(2)

2



1 2

3 4

hrl

hrl
frl
frl’

d

a1 a2

a3 a4

b1 b2

b3 b4

Tf Ta

Wh

Wl

h lf la

φf φa

θh
θh0

θl

x

z

FaFf

acgl

Figure 2. Tandem-suspension external load under tandem-rotor helicopter.

As the weights of helicopter and load are heavy and the external load is an open con-
struction, the damping which would be the result of the aerodynamic force is omitted. If
we consider the disturbances from the equilibrium, the equations of motion are:

Iyh
θ̈h = kf∆lf (−a1 cos φf + b1 sin φf ) + ka∆la (a2 cos φa − b2 sin φa) ,

Iyl
θ̈l = kf∆lf (a3 cos φf + b3 sin φf ) − ka∆la (a4 cos φa + b4 sin φa) ,

mhz̈h = kf∆lf + ka∆la, (3)

mlz̈l = −kf∆lf − ka∆la,
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in which kf and ka are the spring constants of the forward and aft slings, respectively. The
elongations of the forward and aft slings relative to the equilibrium position are defined
by

∆lf = lf − lf0
and ∆la = la − la0

. (4)

They are calculated from Eqs. (1) and (2), by

lf0
=

√

(x10
− x30

)2 + (z10
− z30

)2, la0
=

√

(x20
− x40

)2 + (z20
− z40))2,

lf =
√

(x1 − x3)2 + (z1 − z3)2, la =
√

(x2 − x4)2 + (z2 − z4)2.
(5)

Substitution of Eqs. (5) with (1) and (2) into (4) and approximation to first order of
θh, θl, zh, and, zl, and furthermore using the Taylor series for the square root (

√
1 + θ ≈

1 + 1
2
θ + O(θ2)), yields

∆lf = (c1θh + c2θl)/lf0
+ c3(zl − zh) + O(θ2),

∆la = (c4θh + c5θl)/la0
+ c6(zl − zh) + O(θ2), (6)

with

c1 = −a1b3 + a1h − a3b1 − b1d, c2 = a1b3 + a3b1 − a3h − b3d, c3 = h − b1 − b3,
c4 = a2b4 − a2h + a4b2 − b2d, c5 = −a2b4 − a4b2 + a4h − b4d, c6 = h − b2 − b4.

(7)

Substitution of (6) into (3) yields with cosφf ≈ 1, cos φa ≈ 1, sin φf ≈ φf0
, and sin φa ≈

φa0
:









θ̈h

θ̈l

z̈h

z̈l








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
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



e1c1 + e2c4 e1c2 + e2c5 −e1c3 − e2c6 e1c3 + e2c6

e3c1 − e4c4 e3c2 − e4c5 −e3c3 + e4c6 e3c3 − e4c6

e3c1 + e6c4 e5c2 + e5c5 −e5c3 − e6c6 e5c3 + e6c6
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(

θ2
)

, (8)

with
e1 = (−a1 + b1φf0

) kf/(lf0
Iyh

), e2 = (a2 − b2φa0
) ka/(la0

Iyh
),

e3 = (a3 + b3φf0
) kf/(lf0

Iyl
), e4 = (a4 + b4φa0

) ka/(la0
Iyl

),
e5 = kf/lf0

, e6 = ka/la0
.

(9)

These equations of motion can furthermore be written as a system of eight first-order
differential equations, with the introduction of qh ≡ θ̇h, ql ≡ θ̇l, wh ≡ ẇh, and wl ≡ ẇl:
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ẇl

























=
























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, (10)

with

A11 = e1c1 + e2c4, A12 = e1c2 + e2c5, A13 = e1c3 + e2c6,
A21 = e3c1 − e4c4, A22 = e3c2 − e4c5, A23 = e3c3 − e4c6,
A31 = (e5c1 + e6c4)/mh, A32 = (e5c2 + e6c5)/mh, A33 = (e5c3 + e6c6)/mh.

This system of first-order differential equations can be solved using the method of eigen-
values. The equilibrium is stable when the real parts of both eigenvalues are negative,
implying that if the equilibrium is disturbed, the displacement will tend to zero. As we
have not included the aerodynamic damping, we have a conservative system.
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3. EVALUATATION OF THE PITCHING MOTION OF THE SPECIFIC

SYSTEM

3.1 Flight with an open construction tower

The underslung load with which the violent pitching oscillation was experienced, was an
open construction steel tower with suspension as in Figs. 1 and 2. For the fore and aft
suspension five-meter extension strops were used in combination with two-legged slings
to obtain two inverted-Y suspensions. The load was rigged with consideration of a 3 deg
attitude of the Chinook, so the front extension legs were made 20 cm longer than the
aft sling legs. Furthermore a slack redundant sling, see Fig. 1 (but not shown in Fig.
2), was attached to the load and the centre cargo hook. The centre of gravity in the
fuselage reference system of the Chinook CH-47D of the Royal Netherlands Air Force,
was at fuselage station 326 inch and at 35.4 inch waterline, with the front and aft cargo
hooks, respectively, at fuselage stations 249 and 409 inch. The data is given in Table 1.

helicopter load slings

a1= 2.1 m a3= 3.4 m kf= 1.2×106 N/m
a2= 2.0 m a4= 4.0 m ka= 1.2×106 N/m
b1= 2.1 m b3= 1.7 m lf0

= 11.3 m
b2= 2.3 m b4= 1.7 m la0

= 11.1 m
h = 15.0 m φf0

=8.2 deg
d = 0.3 m φa0

=8.8 deg
θh0

= 3 deg θl0 = 0 deg
zh0

= 0 m zl0 = h m
mh= 13.5×103 kg ml= 9.3 × 103 kg
Iyh

= 2.74×105 kgm2 Iyl
= 1.72×105 kgm2

acgl
= 7.2 m

length= 14.5 m
width= 3.4 m
height= 3.4 m

Table 1. Data of the specific tandem load under Chinook CH-47D.

The spring constant of the nylon slings, see Table 1, are determined from data of the
manufacturer of the extension strops. The spring constants of the two-legged slings were
not available and were assumed to have the same elasticity as the extension strops. The
cables appear to be very stiff in comparison to data used in studies of Cheng et al. [1],
who used 16.4 to 20 kN/m and Sheldon [4], who used 29.3 and 73.2 kN/m.

3.2 Evaluation of the video recording

During the flight the airspeed remained less than 40 kts and the pitch oscillations were
repeatedly experienced. The pitch oscillation became severe during the deceleration and
landing. Some parts of the flight were recorded with a hand-held videocamera. Pictures
from that recording were used to estimate the frequency of the motion. A few seconds
of video of the vertical oscillation of the pilot in the cockpit, see Fig. 3(a), and some
more seconds of the helicopter with load during the landing, see Fig. 3(b), were available.
The video images were available at a rate of 25 frames per second. The video recording
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Figure 3. Measured motion from the video images.

was decomposed in separate images to evaluate the motion. The separate pictures show
double images of the rotor blades, as can be seen in Fig. 3(b). This is due to the camera
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recording the pictures with a 50 Hz interlace technique in combination with the 25 frames
per second recording rate of the videocamera. The oscillating motion was evaluated by
measurement of:

1. the distance between helmet knob and upper edge of the windshield s1, see arrow
in Fig. 3(a),

2. the distance between front ends of the helicopter and load s2, see forward arrow in
Fig. 3(b),

3. the distance between aft ends of the helicopter and load s3, see aft arrow in Fig.
3(b).

The resulting data in time is plotted, after subtraction of the mean value (s1, s2 and s3

respectively) and division by the respective mean value, in Figs. 3(c) and 3(d). There is
some variation due to the relative motion of the helicopter with respect to the camera.
Furthermore there is a major increase of the distance in Fig. 3(d) at t ≈ 10 s, which
is the result of zooming action of the camera lens. From the time traces, fast fourier
transformations (FFT’s) were made. The resulting power density plots of the data of
Figs. 3(c) and 3(d) are given in Figs. 3(e) and 3(f), respectively. The frequency peaks of
the observed motion correspond to 2.23 Hz in Fig. 3(e) and 2.35 Hz in Fig. 3(f).

3.3 Estimation of the natural frequencies

Using the linearized equations of motion (10) we can estimate the natural frequencies
of this geometry. Substitution of the data from Table 1 into Eq. (10) and solving for
the eigenvalues λ yields: λ1,2 = ±15.48i, λ3,4 = ±20.82i and λ5,6,7,8 = 0. So, neglect-
ing the aerodynamics, we have two periodic motions with the respective frequencies of
15.48/(2π) ≈ 2.46 Hz and 20.82/(2π) ≈ 3.31 Hz. The result of a simulation run of system
(10) with the appropriate coefficients and with initial disturbance θl(t = 0) = −0.01 rad
(-0.57 deg) and the other initial values equal to zero is given in Figs. 4(a) and 4(b).
In Figs. 4(c) and 4(d) the results of a simulation run of the same system is shown for
initial disturbance zl(t = 0) = 0.05 m with the other initial values equal to zero. In these
figures the two natural frequencies are clearly shown. The natural frequency of 2.46 Hz is
associated with a pitching oscillation of helicopter and load (θh, θl) which have opposite
phase (anti-phase). The natural frequency of 3.31 Hz is related to the pure vertical bounce
(zh, zl), which is also an anti-phase motion of helicopter and load. From these figures it
is also clear that there is cross-coupling between these modes. This is the result of the
asymmetry of the geometry d 6= 0, a1 6= a2, a3 6= a4 and b1 6= b2.

From the equations of motion in z direction, which are the last two equations of (8) with
θh = θl = 0, it can directly be derived that this pure vertical motion with the assumption
kf = ka = k has the vertical bounce frequency (see also, e.g. ref. [1]):

fvb =
1

2π

√

2k
mh + ml

mhml

. (11)

Substitution of the masses and stiffness constant from Table 1 yields fvb=3.32 Hz, which
is in agreement with the second natural frequency. This motion was not observed during
the flight.
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Figure 4. Attitude θ and vertical displacement z of helicopter and load, produced by a simu-
lation run of system (10), with data from Table 1 for two different initial conditions and the
other initial values equal to zero.

The 2.46 Hz natural mode is the type of anti-phase pitch oscillation which was encoun-
tered by helicopter and load during the flight. One can see that the calculated value of
this undamped natural frequency is reasonably in agreement with the experienced pitch
oscillation frequency, which we determined in the preceding section: 2.23 Hz and 2.35 Hz
for the motion inside and outside the helicopter, respectively. When we assume that the
two-legged sling was somewhat less stiff compared to the extension strop, so the value of
k is somewhat lower, we find e.g. for kf = ka = 1.05 × 106 N/m the natural frequency of
the pitching motion at 2.30 Hz.

It is noted that this specific open tower had natural pitch and vertical bounce frequencies
near 3.75 Hz, corresponding to the 1/rev frequency of the rotor system of the helicopter.
Furthermore the long and relatively wide (3.4 m) load is in the hover or low-speed regime
easily excited by the downwash. This interaction could be especially strong when the tip
vortices of the rotor blades interact with the ends of the long load, as sketched in Fig.
5(a). The flight was at a slow airspeed, less than 40 kts, and with a heavy load, so with
strong downwash, which thus remained near the helicopter at a relatively small angle of
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deflection relative to the vertical. When such an aerodynamic force is excited on an end

(a) Schematic drawing of rotor
downwash and load.

(b) t=7.00 s. (c) t=7.04 s.

(d) t=7.08 s. (e) t=7.12 s. (f) t=7.16 s.

Figure 5. Tip vortex motion.

of the load, it works with a large leverage and can thus produce a large exciting moment
initiating the pitch oscillation of the relatively long load. During the analysis of the video
images it was found by coincidence that a part of the tip vortex of the aft rotor became
visible as a result of the high humidity. In Fig. 5, five subsequent images are shown where
the condensation (indicated by the inserted rectangular box) in a part of the tip vortex of
the aft rotor can be seen passing aft of the load. It is hypothesized that the close relation
to the rotor 1/rev frequency might not be the only reason of the load being easily excited
and poorly damped, but that the intersection of the tip vortex with the end of the load
could very well have been contributing to the excitation of the resonant condition of the
helicopter-load system.

4. INFLUENCE OF SLING STIFFNESS AND MASS MOMENT OF IN-

ERTIA OF THE LOAD

As we have the linearized equations of motion, Eqs. (8) or (10), we can now easily
investigate the influence of a different stiffness of the slings or a different mass moment of
inertia of the load. The results are plotted in Fig. 6, with fvb the vertical bounce natural
frequency and fpb the pitch bounce natural frequency.
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Figure 6. Natural frequencies with variation of cable stiffness and mass moment of inertia of
the load.

It is noted from Fig. 6(a) that the sling stiffness has a major influence on the natural
frequencies of both the vertical and pitch bounce motion. This is important as the cable
stiffness can be varied over a large range by choosing material and cable length. From
Fig. 6(b) it is concluded that the influence of the mass moment of inertia of the load Iyl

is also relevant, but only to the pitch bounce natural frequency. This might particularly
be relevant if for a certain load the mass could be distributed in different ways.

The crossing of the frequencies in Fig. 6(b) is a special point. At this value of Iyl
/Iyh

≈
0.340 there is strong interaction between the two vibration modes. This is shown in Fig.
7, which is the output of system (10) for the same conditions of Fig. 4, but now for
Iyl

/Iyh
= 0.340 with the same Iyh

. Comparing Fig. 7 for Iyl
= 0.340Iyh

with Fig. 4 for
Iyl

= 0.628Iyh
it can be seen that the influence between both modes is greatly increased.

When we change the sling stiffness, keeping the relation ka = kf , it can be seen from Eqs.
(10) and (11) that the cross-over point of the two eigenfrequencies remains at the same
value of Iyl

/Iyh
=0.340, which is verified by comparing Figs. 6(b) and 6(c).
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Figure 7. Attitude and vertical displacement of helicopter and load, produced by a simulation
run of system (10), with data from Table 1, except Iyl

= 0.340Iyh
, for two different initial

conditions and the other initial values equal to zero.

5. CONCLUDING REMARKS

The paper investigated the causes of a violent pitch oscillation experienced with a Chinook
helicopter with a long and heavy tandem-suspended underslung load. The vibration is in
agreement with the estimated motion of a 4-DOF model of helicopter and load. It seems
most likely that the natural pitch bounce frequency of the system was excited during that
flight. Especially as the motion did not actually diverge, but was repeatedly excited during
the flight, it is hypothesized that the rotor downwash may have been contributing to the
excitation of the natural pitch bounce vibration mode. In the case of the vertical bounce
divergence through coupling through the pilot’s arm as described by Gabel & Wilson [2],
the oscilations might lead to divergent oscillations. Divergence did not occur in this case,
but in some instants of persistance of the motion during the flight, the coupling through
the controls might also have been a factor.

A solution to eliminate the easy excitation of the natural pitch bounce frequency, would
be to decrease this natural frequency by using a lower cable stiffness in order to keep
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this frequency further away of the rotor 1/rev frequency. Such a reduction of stiffness
could most easily be accomplished by using extra extension strops, and thus making the
cables longer. This would also result in a larger distance from the load to helicopter, and
consequently in a decrease of the excitation force by the rotor downwash.

Finally, an interesting feature is the exchange of vibration modes at Iyl
/Iyh

=0.340. At
this condition the energy of the vibration in z direction (vertical bounce) easily transfers
to the rotation vibration in θ direction (pitch bounce) and vice versa. In this case the
rotation mode can arise more easily as a result of excitation of the translational mode.
The rotation vibration is more easily sensed on the pilot’s station, as the pilot’s station
is on the end of the rotating long helicopter.

We are grateful to dr. Theo Hupkens for his great help with the data processing of the
video recording.
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