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Abstract

The paper summarizes a simple state space derivation
for the continuous time form of the SISO HHC compen-
sator; demonstrates how the same approach can be used
to work out a state space representation for a SISO peri-
odic HHC compensator, suitable for stability and robust-
ness analysis; generalizes that result to get to a general
approach for the derivation of the state space form for a
MIMO HHC controller; and presents the results of a nu-
merical investigation into the performance and stability
properties of Higher Harmonic Control, implemented in
the rotating system, based on a simulation study of the
coupled rotor-fuselage dynamics of a four bladed hinge-
less rotor helicopter.

The results show that the IBC controller is very ef-
fective in reducing the 4/rev CG accelerations. The
percentage reductions obtained in the simulations are
in excess of 80-90%. The vibration attenuation occurs
within 5-7 seconds after the IBC system is turned on.
This is equivalent to a frequency of around 1 rad/sec,
which is a frequency at which flight control systems and
human pilots can operate. Therefore, the interactions
and potential adverse effects on the stability and control
characteristics of the helicopter should be explored. The
IBC problem is intrinsically time-periodic if the IBC in-
puts include frequencies other than the frequency one
wishes to attenuate. This is true even if the rest of the
model is assumed to be time-invariant. In these cases,
the closed-loop stability results obtained using a con-
stant coefficient approximations may be incorrect even
at lower values of the advance ratio µ, where constant
coefficient approximation of the open-loop dynamics are
accurate.
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Notation

A(t) Open loop stability matrix
A0 Stability matrix (constant approximation)
B Number of blocks in the Harmonic Transfer

Function
B(t) Input (control) matrix
C(t) Output (measurement) matrix
CT Rotor thrust coefficient
D(t) Direct Input/Output matrix
K Gain of HHC controller
m No. of control inputs
N Number of rotor blades
n No. of measured outputs
ns System order
p No. of measured outputs
T Rotor revolution period
t Time
u Input vector
y Output vector
ψ Azimuth angle of reference blade, ψ = Ωt
Ω Rotor angular velocity
Abbreviations
CG Center of mass of the helicopter
HHC Higher Harmonic Control
HTF Harmonic Transfer Function
IBC Individual Blade Control
LTI Linear Time Invariant (or constant-

coefficient) model
LTP Linear Time Periodic (or periodic-

coefficient) model
MIMO Multi-Input Multi-Output system
PHHC Periodic Higher Harmonic Control
SISO Single-Input Single-Output system

Introduction

Higher Harmonic Control (HHC) and Individual Blade
Control (IBC) have been considered for many years as a
viable approach for the design and the implementation
of active rotor control laws aiming at the attenuation of
helicopter vibrations (see, e.g., the recent survey papers
[1, 2]). The main idea of HHC and IBC is to try and at-



tenuate N/rev vibratory components in the fuselage ac-
celerations (N being the number of rotor blades) or in the
rotor hub loads by adding suitably phased N/rev com-
ponents to the rotor controls, either in the fixed (HHC)
or rotating (IBC) frame. A number of studies have been
carried out in order to determine the feasibility of active
vibration control both from the theoretical and the ex-
perimental point of view; in particular, as far as the anal-
ysis of the dynamic behaviour of the single-input single-
output (SISO) HHC is concerned, a fundamental result
was given in [3] where a continuous time analysis of HHC
was carried out for the first time and it was shown that
to first approximation the classical T-matrix HHC algo-
rithm (see [4]) can be written as a linear time invariant
dynamic compensator. More recently, however, it has
been proposed to try and exploit the interharmonic cou-
pling due to the periodicity of rotor dynamics in forward
flight ([5]) in order to achieve the attenuation of N/rev
vibrations by means of lower frequency inputs, such as,
e.g., 2/rev or 3/rev for a 4 bladed rotor. To this purpose,
a generalization of the T-matrix algorithm has been pro-
posed in the literature (see [6]), but no detailed theoreti-
cal analysis of that approach has been carried out so far.
As the above mentioned generalization of the T-matrix
algorithm turns out to be a linear time-periodic compen-
sator, we will refer to it as the Periodic HHC (PHHC)
algorithm. Therefore, both the HHC and the PHHC al-
gorithms call for the use of periodic systems theory ([7])
for closed loop stability and performance analysis. How-
ever, a very limited attention has been devoted so far in
the literature to the dynamic analysis of vibration atten-
uation schemes; in particular, the existing contributions
to the study of closed loop stability issues (see for exam-
ple [8]) deal only with time-invariant dynamic models
of helicopter dynamics, and the assessment of the role of
periodicity in determining the actual closed loop dynam-
ics still has to be fully assessed. More recently, Cheng et
al. [15] have presented a methodology for the derivation
of linearized, time-invariant, state-space models of heli-
copters and have examined the interaction between HHC
and FCS. Finally, it is worthwhile to point out that while
HHC and IBC represent significantly different technolo-
gies from the implementation point of view (i.e., choice
of actuators and sensors), they are completely equivalent
from the control theoretic point of view. In particular,
the extension of IBC to the more realistic case of a rotor
with dissimilar blades requires only a trivial modification
of the control algorithms.

In the light of the above remarks, the objectives of this
contribution are the following (see also the preliminary
results in [9]):

1. to provide a simple state space derivation for the
continuous time form of the SISO HHC compen-
sator, first introduced in [3];

2. to demonstrate how the same approach can be used
to work out a state space representation for the

SISO PHHC compensator, which is suitable for sta-
bility and robustness analysis of this kind of rotor
control algorithm;

3. to generalize the above results in order to get to
a general approach for the derivation of the state
space form for a MIMO HHC controller;

4. to present the results of a numerical investigation
into the stability properties of Higher Harmonic
Control, based on a simulation study of the coupled
rotor-fuselage dynamics of a four bladed hingeless
rotor helicopter (see [10]).

For the purpose of the present study, only fixed pa-
rameters HHC will be considered, i.e., the presence of
an adaptive part will not be taken into account. Also,
the stability analysis is carried out in continuous time.
The role of digital implementation on the stability and
performance of the HHC loops will be investigated in
future work.

Helicopter simulation model

The baseline simulation model used in this study is a
nonreal-time, blade element type, coupled rotor-fuselage
simulation model (see [10] for details). The fuselage is
assumed to be rigid and dynamically coupled with the
rotor. A total of nine states describe fuselage motion
through the nonlinear Euler equations. Fuselage and
blade aerodynamics are described through tables of aero-
dynamic coefficients, and no small angle assumption is
required. A coupled flap-lag-torsion elastic rotor model
is used. Blades are modeled as Bernoulli-Euler beams.
The rotor is discretized using finite elements, with a
modal coordinate transformation to reduce the number
of degrees of freedom. The elastic deflections are not re-
quired to be small. Blade element theory is used to ob-
tain the aerodynamic characteristics on each blade sec-
tion. Quasi-steady aerodynamics is used, with a 3-state
dynamic inflow model. Linearized models are extracted
numerically, by perturbing rotor, fuselage, and inflow
states about a trimmed equilibrium position. Since the
equations of the coupled rotor/fuselage dynamics are
written in the fixed frame of reference, the linearized
models turn out to be time-periodic with period T/N ,
where N is the number of rotor blades and T is the pe-
riod of one rotor revolution. Note that in the following
introducing the azimuth angle ψ = Ωt will be used as
independent variable.

The matrices of the linearized model are generated as
Fourier series. For example, the state matrix A( ψ ) is
given as:

A(ψ ) = A0 +

K∑

k=1

[Akc cos(kN ψ ) + Aks sin(kN ψ )]

(1)



where the matrices A0, Akc, and Aks are constant, and
only A0 is retained for constant coefficient approxima-
tions.

Similarly, the control matrix B(ψ ) is obtained assum-
ing for the pitch control of each blade the form

θi(t) = θ0 + θ1c cos( ψ +
2π

N
i) + θ1s sin( ψ +

2π

N
i)

+ θ2c cos(2ψ +
2π

N
i) + θ2s sin(2 ψ +

2π

N
i) + . . .

+ θ6c cos(6ψ +
2π

N
i) + θ6s sin(6 ψ +

2π

N
i),

i = 0, . . . , N − 1 (2)

and defining the input vector u of the simulation model
as

u =
[
θ0 θ1c θ1s . . . θ6c θ6s

]T
(3)

so that in this model the sine and cosine coefficients of
the higher harmonics can be used as inputs in the for-
mulation of a vibration control problem.

Finally, the trim procedure is the same as in Ref. [11].
The rotor equations of motion are transformed into a
system of nonlinear algebraic equations using a Galerkin
method. The algebraic equations enforcing force and
moment equilibrium, the Euler kinematic equations, the
inflow equations and the rotor equations are combined
in a single coupled system. The solution yields the har-
monics of a Fourier expansion of the rotor degrees of
freedom, the pitch control settings, trim attitudes and
rates of the entire helicopter, and main and tail rotor
inflow.

State space formulation of higher harmonic
controllers

This section presents the state space formulation of
HHC controllers of increasing complexity. First, some
background on the T -matrix algorithm is given, and a
continuous-time, state space analysis is presented for the
case of a SISO HHC system in which input and output
are at the same harmonic (N/rev, i.e. N times the ro-
tor speed). Next, the analysis is extended to the case in
which input and output are at different harmonics and
the case of a MIMO HHC system with inputs and out-
puts at arbitrary harmonics is considered, by combining
the results of the two previous cases. More precisely the
following three cases, corresponding to three different se-
lections for the control input vector u, will be dealt with:

• Control input given by a single harmonic at the
blade passing frequency, i.e.,

u = uN =
[
θNc θNs

]T

• Control input u given by a single harmonic at a
frequency different from the blade passing one, i.e.,

u = uM =
[
θMc θMs

]T

with M 6= N , like, e.g., M = N − 1 or M = N + 1.

• Control input u given by the superposition of a num-
ber of different harmonics:

uT = [θN1c θN1s . . . θN2c θN2s . . . θNmc θNms]
(4)

with Ni, i = 1, . . . ,m multiples of the rotor angu-
lar frequency. For example, one might consider in
practice the choice of u given by

u =
[
θ(N−1)c θ(N−1)s θNc θNs θ(N+1)c θ(N+1)s

]T

(5)

As will be made clear in the following, assuming as
control variables the harmonics of the rotating frame
pitch control greatly simplifies the task of the state space
realization of the HHC compensators.

SISO with input and output at the same fre-
quency

A typical non-adaptive HHC system is based on a dis-
crete time mathematical model describing the response
of the helicopter to higher harmonic inputs, of the form

yN (k) = TN,NuN (k) + y0N (k) (6)

where k is the rotor revolution index, yN is a vector of
N/rev harmonics of measured outputs (e.g., hub loads
or accelerations at some point of the fuselage), uN is a
vector of control inputs, and TN,N is a 2 by 2 constant
matrix. The vector yN (k) is defined as

yN (k) =

[
yNc(k)
yNs(k)

]

=




1

π

∫ (k+1)π

kπ

y( ψ ) cos(Nψ ) dψ

1

π

∫ (k+1)π

kπ

y( ψ ) sin(Nψ ) dψ




(7)

The vector y0N contains the N/rev harmonics of the
“baseline” vibrations, i.e., the vibrations in the absence
of HHC. The control input vector is similarly defined as:

uN =

[
θNc

θNs

]
(8)

where θNc and θNs are, respectively, the cosine and sine
components of the N/rev pitch control input, applied in
the rotating system.

The HHC inputs are generally updated at discrete
time intervals, for example, once per rotor revolution.
The conventional HHC control law is derived by mini-
mizing at each discrete time step k the cost function

J(k) = yN (k)T QyN (k) + ∆uN (k)T R∆uN (k) (9)



Figure 1: Block diagram of the continuous time SISO
HHC algorithm.

where Q = QT ≥ 0, R > 0 and ∆uN (k) is the increment
of the control variable at time k, i.e.,

∆uN (k) = uN (k) − uN (k − 1) (10)

Differentiating (9) with respect to ∆uN (k) yields the
control law

uN (k + 1) = uN (k) − KN,NyN (k) (11)

where KN,N = (T T
N,NQTN,N + R)−1T T

N,NQ. Equation
(11) is well known in the literature as the ”T-matrix”
algorithm. It can be seen from Eqs. (6) and (11) that
this control algorithm introduces a discrete time integral
action which ensures that yN → 0 as k → ∞. Actually,
with Q = I2,2 and R = 0 deadbeat control (i.e., the
output goes to zero after one discrete-time step) could
in principle be achieved if exact knowledge of the TN,N

matrix was available, and if the static model, Eq. (6),
was an accurate representation of rotor dynamics. How-
ever, these two assumptions are generally not satisfied,
as TN,N can only be estimated up to some accuracy level
and Eq. (6) clearly does not hold if the helicopter is not
operating in steady state. Note, also, that if in the cost
function (9) one chooses R = 0 and Q proportional to
the identity matrix, the control law (11) reduces to

uN (k + 1) = uN (k) − T−1
N,NyN (k) (12)

which can be given a minimum variance interpretation,
in the sense that this control law guarantees at each time
step the closed loop minimization of the cost function

J(k) = yN (k)T yN (k) (13)

Neglecting the effects of the sample and hold scheme
of the digital implementation in the T -matrix algorithm,
the overall control algorithm can be represented by the
block diagram given in Figure 1.

Now, following [3], choose yNc and yNs as state vari-
ables for the controller in Fig. 1. Then, the following
state space model for the HHC compensator is obtained:

ẏN = AcyN + Bc(ψ )y (14)

u = CcyN (15)

where

Ac =

[
0 0
0 0

]
(16)

Bc( ψ ) = KN,N

[
cos(Nψ )
sin(Nψ )

]
(17)

Cc = − 2

T
I2,2

SISO with input and output at different frequen-
cies

The HHC input in the rotating system is usually not lim-
ited to the same N/rev frequency of the vibrations to be
attenuated. Typically, inputs at N-1/rev and N+1/rev
are also applied (recall that N/rev inputs of collective,
longitudinal, and lateral cyclic pitch in the fixed system
result in N-1, N, and N+1/rev pitch inputs in the rotat-
ing system).

In this case, the steady state model relating the N/rev
harmonic of the output y(t) to the M/rev harmonic of
the pitch input u(t), with M 6= N , can be written in the
form

yN (k) = TN,MuM (k) + y0N (k) (18)

where uM is defined as in Eq. (8), but for an M/rev har-
monic, and where the (constant) matrix TN,M relates
the amplitude of the M/rev control input u to the corre-
sponding steady state amplitude of the N/rev component
of the output y. The control scheme for the attenuation
of N/rev vibrations using an M/rev input can then be
derived along the lines of the previous case, and is rep-
resented by the equation

uM(k + 1) = uM(k) − KN,MyN (k) (19)

where KN,M = (T T
N,MQTN,M + R)−1T T

N,MQ. As shown
in the following Section, the matrix TN,M can be related
to the Harmonic Transfer Function (HTF) of the con-
trolled system, which is an extension to periodic systems
of the frequency response function of a time-invariant
system [12, 13]. In addition, as in the case of HHC with
input and output at the same frequency N/rev, the dis-
crete control law, Eq. (19) guarantees that yN → 0 as
k → ∞, provided that the system can be modeled as in
Eq. (18).

Similarly to the M = N case, the state space model
for the case N 6= M is given by

ẏN = AcyN + Bc( ψ )y (20)

u = CcyN (21)

where

Ac =

[
0 0
0 0

]
(22)

Bc( ψ ) = KN,M

[
cos(N ψ )
sin(Nψ )

]
(23)

Cc = − 2

T
I2,2 (24)



This discussion shows that a coupled rotor-fuselage
system with even a simple SISO HHC controller is in-
trinsically a system with periodic coefficients if the HHC
output and the vibration to be attenuated are at two
different multiples of the rotor frequency. This happens
even if the rotor-fuselage system is modeled as a system
with constant coefficients. Therefore, rigorous stability,
performance and robustness analyses of an HHC system
can only be carried out using the tools of periodic sys-
tems theory.

MIMO with input and output at arbitrary har-
monics

In typical implementations of HHC, multi-harmonic sig-
nals are frequently used to attenuate several components
of the vibratory loads. For example, inputs at N-1/, N/
and N+1/rev, sine and cosine (for a total of 6 inputs),
could be used simultaneously to control six components
of the N/rev vibratory hub forces and moments. There-
fore, this section extends the previous SISO discussion
to a MIMO HHC system. We will consider a general
configuration in which output measurements of N/rev
vibration are available at n different locations, while a
number m of harmonics at frequencies Ni, i = 1, . . . , m
is applied on the control input u. In this case, the mea-
surement vector has 2n elements and is defined as:

yT
N =

[
y1

Nc . . . yn
Nc . . . y1

Ns . . . yn
Ns

]
(25)

where yi
Nc and yi

Ns, i = 1, . . . , n are, respectively, the
cosine and sine components of the i-th N/rev output,
which can be, for example, a force or moment compo-
nent, or a component of the acceleration at one or more
points of the fuselage.

On the other hand, the HHC input vector u has 2m
elements and is defined as

uT = [uN1c uN1s . . . uN2c

uN2s . . . uNmc uNms] (26)

where uNic, i = 1, . . . , m and uNis, i = 1, . . . , m are the
cosine and sine component of the HHC input, at desired
harmonics not necessarily equal to N .

Assume now, as in the SISO case, that input and out-
put harmonics are related by the linear equation

yN (k) = Tu(k) + y0N (k) (27)

where T is a 2n×2m constant coefficient matrix, which is
again related to the HTF of the time periodic linearized
model of the helicopter. Then, the ”T-matrix algorithm”
is given by

u(k + 1) = u(k) −KyN (k) (28)

where K = (TT QT + R)−1TT Q, where Q = QT ≥ 0
and R = RT > 0 are cost weighting matrices of suitable
dimensions.

In the MIMO case, the operation of the HHC con-
trol law differs considerably depending on the relation-
ship between the number of control inputs and measured
variables which are available. In order to illustrate this,
we now consider the formulation of the ”T-matrix algo-
rithm” in the MIMO case with Q = In,n and R = 0, by
treating separately the cases of n = m and n > m1.

In the case of a ”square” control problem, i.e., when
n = m, the SISO algorithm can be readily extended to

u(k + 1) = u(k) − T−1yN (k) (29)

On the other hand, if n > m matrix T is no longer square
and the discrete time control algorithm must be written
as

u(k + 1) = u(k) − T†yN (k) (30)

where T† = (TTT)−1TT is the pseudoinverse of T. In
particular, the minimum of the cost function equals zero
only in the n = m case, i.e., unless one considers (at
least) the square case, it is not possible to guarantee that
the vibratory disturbance will be zeroed on all output
channels.

The equivalent continuous time formulation for the
MIMO HHC compensator, described in discrete form by
Eq. (28), can be obtained by applying the previously
described SISO results.

Therefore, considering first the case of a control system
with as many inputs as outputs, the state-space formu-
lation is given by the order 2n system:

ẏN = AcyN + Bc( ψ )y (31)

u = CcyN (32)

where Ac is the 2n× 2n matrix

Ac =




0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0


 (33)

Bc(ψ ) is the 2n × n matrix

Bc( ψ ) = K

[
cos(N ψ )In,n

sin(N ψ )In,n

]
(34)

and

Cc = − 2

T
I2n×2n (35)

For example, consider the case of a control system relying
on the application of (N-1), N and (N+1)/rev inputs
in the rotating frame in order to attenuate vibratory
accelerations in n = 3 different locations in the fuselage,

1The case of n < m is hardly relevant from a practical
point of view.



so that m = 3, N1 = N − 1, N2 = N and N3 = N + 1
and

uT =
[
θ(N−1)c θ(N−1)s θNc θNs

θ(N+1)c θ(N+1)s

]
(36)

yT = [y1 y2 y3] (37)

Then, the state space model for the controller is given
by

Ac = 06×6 (38)

Bc( ψ ) = K




cos(N ψ ) 0 0
0 cos(Nψ ) 0
0 0 cos(Nψ )

sin(Nψ ) 0 0
0 sin(Nψ ) 0
0 0 sin(Nψ )




(39)

As in the SISO case, since the control inputs are directly
given by the higher harmonics of θ, there is no need for
a ”modulation” term in matrix Cc which therefore turns
out to be constant:

Cc = − 2

T
I6×6 (40)

Similar expressions can be worked out in the case of a
control system with more outputs than inputs.

Definition of the T matrix in terms of the
helicopter models

The control laws discussed in the previous Section call
for the availability of input/output models for the heli-
copter response to higher harmonic control inputs. The
objective of this Section is to provide the necessary back-
ground on the frequency response of time-periodic sys-
tems and use such analytical tools in order to derive
explicit expressions for the T matrix.

Development of the Harmonic Transfer Function

This Section summarizes the main aspects of the devel-
opment of the Harmonic Transfer Function (HTF) [12].
Consider a continuous-time linear periodic system:

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

(41)

Each matrix can be expanded in a complex Fourier se-
ries

A(t) =

∞∑

m=−∞
AmejmΩt (42)

and similarly for B(t), C(t) and D(t). The system can be
analyzed in the frequency domain as follows. Introduce
the class of Exponentially Modulated Periodic (EMP) sig-
nals [12]. The (complex) signal u(t) is said to be EMP

of period T and modulation s if

u(t) =

∞∑

k=−∞

ukeskt = est
∞∑

k=−∞

ukejkΩt (43)

where t ≥ 0, sk = s + jkΩ, and s is a complex scalar.
The class of EMP signals is a generalization of the

class of T-periodic signals, i.e., of signals with period T :
in fact, an EMP signal with s = 0 is just an ordinary
time-periodic signal.

In much the same way as a time invariant system sub-
ject to a (complex) exponential input has an exponen-
tial steady-state response, a periodic system subject to
an EMP input has an EMP steady-state response. In
such a response, all signals of interest (x, ẋ, y) can be
expanded as EMP signals. By deriving Fourier expan-
sions for A(t), B(t), C(t) and D(t), it is possible to prove
that the EMP steady-state response of the system can
be expressed as the infinite dimensional matrix equation
with constant elements [12]

sX = (A−N )X + BU
Y = CX + DU (44)

where X , U and Y are doubly infinite vectors formed
with the harmonics of x, u and y respectively, organized
in the following fashion:

X T =
[
· · · xT

−2 xT
−1 xT

0 xT
1 xT

2 · · ·
]

(45)

and similarly for U and Y . A, B, C and D are doubly
infinite Toeplitz matrices formed with the harmonics of
A(·), B(·), C(·) and D(·) respectively as follows

A =




. . .
...

...
...

...
...

· · · A0 A−1 A−2 A−3 A−4 · · ·
· · · A1 A0 A−1 A−2 A−3 · · ·
· · · A2 A1 A0 A−1 A−2 · · ·
· · · A3 A2 A1 A0 A−1 · · ·
· · · A4 A3 A2 A1 A0 · · ·

...
...

...
...

...
. . .




(46)

(and similarly for B, C and D), where the submatrices An

in Eq. (46) are the coefficients of the Fourier expansion
of matrix A(t), given in Eq. (42). Note that the expan-
sions of the state space matrices can be also expressed
in trigonometric form, see Eq. (1), as follows 2

Ak = 1
2 (Akc − jAks)

A−k = 1
2 (Akc + jAks)

k = 1, 2, . . . (47)

2Recall that the Fourier series can be rewritten
in complex exponential form, i.e., a(t) = a0 +∑∞

k=1 (anc cos nωt + ans sinnωt) =
∑∞

k=−∞ akejkωt,
with ak = (akc − jaks)/2, and a−k = (akc + jaks)/2, k =
1, 2, . . .



with A0 identical in both Eq. (46) and Eq. (1). Similar
relations hold for the harmonics of B, C , and D.

Matrix N is a block diagonal complex-valued matrix
given by

N = blkdiag {jnΩI} =

= jΩ




. . .
...

...
...

...
...

· · · −2I 0 0 0 0 · · ·
· · · 0 −I 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 I 0 · · ·
· · · 0 0 0 0 2I · · ·

...
...

...
...

...
. . .




(48)

where I is the identity matrix, of size equal to the num-
ber of states.

From Eq. (44), one can define the HTF as the opera-
tor:

G(s) = C[sI − (A−N )]
−1B + D (49)

which relates the input harmonics and the output har-
monics (contained in the infinite vectors U and Y respec-
tively). Eq. (49) is the extension to the case of periodic
systems of the corresponding constant coefficient expres-
sion for the transfer function

G(s) = C [sI − A]
−1

B + D (50)

In particular, if s = 0, which, in the helicopter case, cor-
responds to the steady-state response of the system to a
periodic input of basic frequency N/rev, the appropriate
input/output operator for periodic systems becomes

G(0) = C[N −A]
−1B + D (51)

Definition of the T matrix

The TN,N , TN,M and T matrices used in the formulation
of the HHC and PHHC algorithms can be related to the
elements of the HTF of the linearized helicopter model,
as follows.

First of all, note that according to the definition of the
control input vector u which has been adopted, the rotor
will be subject to a proper, steady state higher harmonic
control input whenever the control vector u is constant.
This implies that in order to define the T matrix for the
helicopter we only have to study the response of the pe-
riodic helicopter models to a EMP input with s = 0,
i.e., we only have to compute the input/output operator
Ĝ(0). For example, consider the linear time-periodic sys-
tem (41) and the constant input u(t) = u0. The vector
U corresponding to u(t) = u0 is given by

UT =
[
· · · 0 0 uT

0 0 0 · · ·
]

(52)

and the steady state response Y of the periodic system
is given by

Y = G(0)U (53)

which can be equivalently written as




...
y−2N

y−N

y0

yN

y2N

...




=




. . .
...

...
· · · G−2N,−2N G−2N,−N

· · · G−N,−2N G−N,−N

· · · G0,−2N G0,−N

· · · GN,−2N GN,−N

· · · G2N,−2N G2N,−N

...
...

...

...
...

...
G−2N,0 G−2N,N G−2N,2N · · ·
G−N,0 G−N,N G−N,2N · · ·
G0,0 G0,N G0,2N · · ·
GN,0 GN,N GN,2N · · ·
G2N,0 G2N,N G2N,2N · · ·

...
...

. . .







...
0
0
u0

0
0
...




(54)

From equation (54) we have that

[
y−N

yN

]
=

[
G−N,0

GN,0

]
u0 (55)

and converting the N/rev harmonics of the output from
exponential to trigonometric form we have that3

[
yNc

yNs

]
= 2

[
Real[GN,0]
Imag[GN,0]

]
u0, (56)

so that the T matrix is given by

T = 2

[
Real[GN,0]
Imag[GN,0]

]
(57)

Construction of the T matrix

From a practical point of view, the above theoretical
analysis of the frequency response of periodic system,
and the corresponding definitions for the T-matrix re-
lating selected input-output frequencies only, rely on the
use of infinite dimensional matrices. When it comes to
the numerical construction of the T-matrix, however, one
has to resort to finite dimensional approximations of the
system matrices A, B, C, and D. Consider, for exam-
ple, the problem of constructing the T-matrix, as de-
fined in equation (57) for a periodic system of the form
(41) with n outputs, m inputs and ns states. First of
all, one chooses the dimension of the expansions A, B,
C, and D for the state space matrices A, B, C, and D,
in terms of the number of block rows one wants to take
into account in A. For example, we choose to include a
number B = 5 of blocks in each row of the expansion of
the system matrices, then A has dimension nsB × nsB

3Note that G−N,0 and GN,0 are complex conjugate.



and is given by

A =




A0 A−1 A−2 A−3 A−4

A1 A0 A−1 A−2 A−3

A2 A1 A0 A−1 A−2

A3 A2 A1 A0 A−1

A4 A3 A2 A1 A0




(58)

and similarly for B, C, and D. Therefore, the HTF is
given by the 2nB ×mB matrix, as follows




y−2N

y−N

y0

yN

y2N




= G(0)U

=




G−2N,−2N G−2N,−N

G−N,−2N G−N,−N

G0,−2N G0,−N

GN,−2N GN,−N

G2N,−2N G2N,−N

G−2N,0 G−2N,N G−2N,2N

G−N,0 G−N,N G−N,2N

G0,0 G0,N G0,2N

GN,0 GN,N GN,2N

G2N,0 G2N,N G2N,2N







0
0
u0

0
0




(59)

Using a Matlab-like notation, the blocks G−N,0, GN,0

can be extracted from G(0) as the submatrices G(0)(2n+
1 : 3n, 2m + 1 : 3m) and G(0)(4n + 1 : 5n, 2m + 1 :
3m). respectively. Clearly, the choice of the number of
block rows B will affect the accuracy of the numerical
construction (see also [14] for an analysis of the effect of
truncation in the study of frequency response operators),
so as a general rule B should be chosen sufficiently large
in order to ensure that the T-matrix constructed from
the truncated HTF gives a good approximation of the
actual T-matrix.

Formulation of the coupled helicopter/HHC
model

The compensator will be designed along the lines of
Ref. [12]. Denote with A( ψ ), B(ψ ), C( ψ ), and D(t)
the matrices for the LTP state space model of the he-
licopter, for the selected input/output pair. Similarly,
denote with Ac( ψ ), Bc( ψ ), kCc(ψ ) the compensator’s
state space model. The closed-loop LTP state matrix
Ae(ψ ) is given by

Ae( ψ ) =

[
A(ψ ) B(ψ )Cc

Bc( ψ )C( ψ ) Ac + Bc(ψ )D( ψ )Cc

]
(60)

The closed-loop stability of the helicopter with HHC is
then given by the characteristic exponents of Ae(ψ ), and
will be studied as a function of the design parameters
Q and R. In practice Ae( ψ ) is computed directly by
linearizing the nonlinear closed-loop system equations.

Results

The objective of this Section is to present the results
obtained in the stability analysis of a Higher Harmonic
Control loop which has been designed on the basis of a
coupled rotor-fuselage simulation model. Note that for
the purpose of this study a continuous time implemen-
tation of the controller is assumed, i.e., the analysis is
carried out by using the continuous time state space form
for the HHC controllers derived in the previous Sections.
Discretization issues will be analyzed in future work.

The helicopter configuration used for the present study
is similar to the Eurocopter B0-105, with a thrust coef-
ficient CT /σ = 0.071. Three blade modes are used in
the modal coordinate transformation, namely, the fun-
damental flap, lag, and torsion modes, with a natural
frequency of 1.12/rev, 0.7/rev, and 3.4/rev, respectively.
Because the aerodynamic model consists of a simple
linear inflow with quasi-steady aerodynamics, vibratory
loads and CG accelerations, and consequently also IBC
inputs, tend to be underestimated. Therefore, their ab-
solute values can be considered representative only in a
qualitative sense. However, the overall simulation model
is likely reasonable for stability studies, and for a gen-
eral assessment of the design and closed-loop analysis
methodology.

In all cases, the helicopter is first trimmed in steady,
straight flight, at the desired velocity. Then, the nonlin-
ear simulation begins, with the pilot controls held fixed
at their trim values, and the IBC system turned on at
time t = 0.

Results for V=80 kts

Figures 2 and 3 show, respectively, peak-to-peak magni-
tude and phase of the 4/rev component of the vertical
(i.e., along the z-body axis) acceleration at the CG, for
a speed V = 80 kts, corresponding to µ = 0.19. The
figures show four curves, one each for values of r=0, 10,
100, and 1000. The high-frequency oscillations visible
in the curves of these, and of many subsequent figures,
are largely an artifact of the numerical procedure used
to extract the 4/rev magnitude and phase from the time
histories of the accelerations. Clearly, the IBC system
is very effective, and reduces in a few seconds the 4/rev
vertical acceleration to a small fraction of its trim value
in just a few seconds.

The vibration attenuation is also very clear for the CG
roll acceleration ṗ: magnitude and phase of the 4/rev
components are shown in Figures 4 and 5, respectively.
Magnitude and phase of the 4/rev components of the roll
acceleration q̇ are shown in Figures 6 and 7, respectively.
Both ṗ and q̇ are reduced to 5% or less of their trim values
in no more than 6-7 seconds.

Magnitudes and phases of the IBC inputs are pre-
sented in Figs. 8 through 11. Figures 8 and 9 show mag-
nitude and phase of the 3/, 4/, and 5/rev components
for the case r = 0, i.e., no restrictions on the control
effort. Figures 10 and 11 show magnitude and phase for



the case r = 1000. Comparing the two sets of results,
it can be seen that the controls reach their steady-state
values much more quickly for the case r = 0 than for
r = 1000. In the latter case, the steady-state values of
θ3 and θ5 have not yet been reached at the end of 7 sec
of simulation.

It is interesting to note that the action of the IBC
system, and the consequent vibration reduction, occurs
within times of the order of 5-7 sec or, equivalently, of
about 1 rad/sec. These are also typical time scales for
flight control systems, and also overlap typical piloting
frequencies. Therefore, the results previously shown in-
dicate the possibility of interaction with the stability and
control characteristics of the helicopter.

It is also interesting to consider the closed-loop poles of
the system. Computation of the closed-loop state matrix
Ae was achieved by linearizing the augmented nonlinear
set of equations. Figure 12 shows a root locus plot of
just the controller poles for increasing values of r, using
a constant coefficient approximation to Ae. The system
displays an unstable complex conjugate pair at 80 knots,
but there is no trace of the instability in the closed-loop
simulations using the full nonlinear system, previously
shown. The instability is probably due to the errors
made in modeling the periodic system with a constant
coefficient approximation. In fact, when the periodic-
ity is fully taken into account, the instability disappears.
This can be seen in Fig. 13, which shows the real parts of
the characteristic exponents of the least damped modes,
using Floquet theory. None of the modes, which include
controller, rotor, and rigid body modes, becomes unsta-
ble for any of the values of r considered. This confirms
that, whenever the IBC input includes harmonics that
are different from the harmonic that one is trying to
attenuate, the closed-loop problem is intrinsically time-
periodic. Constant coefficient approximations may not
yield correct correct closed-loop stability results, as in
this case, even at lower advance ratios, where constant
coefficient approximations give acceptable results for the
open-loop system.

Finally, the position of the poles appears to be linked
to the vibration reduction performance. In general, for
the highest control effort (tuning parameter r = 0.0)
controller poles tend to be farther away from the origin,
and as r increases they come closer to it.

Results for V=140 and 170 kts

Figures 14 through 19 show the 4/rev CG acceleration
components at a speed of V=140 kts, corresponding to
an advance ratio µ = 0.33. Magnitude and phase of the
vertical acceleration are shown in Fig. 14 and 15, re-
spectively. The IBC is extremely effective, and reduces
the magnitude of the 4/rev accelerations to almost zero
within about 7 seconds. Near-perfect attenuation of the
roll acceleration ṗ can be seen in Fig. 16. The apparent
large phase changes of the 4/rev component of ṗ that
appear in Fig. 17 are indeed a numerical artifact, due to
the fact that the calculation of the phase is carried out

on numbers that are very near to zero. Finally, Figs. 18
and 19 show magnitude and phase of the 4/rev compo-
nent of the pitch acceleration q̇, which is also very well
attenuated by the IBC system.

Magnitude and phase of the corresponding values of
the 3/, 4/, and 5/rev inputs are shown in Fig. 20 and 21,
respectively, for the case r = 0. The steady-state values
of each control are reached in about 7 seconds, therefore
the time scale of action of the controller is approximately
the same as in the 80 kts case. The magnitudes and
phases of the input for the case r = 1000 are shown in
Figs. 22 and 23 respectively. Differently from the 80 kts
case, the control time histories for r = 0 and r = 1000
are very similar.

The LTI, closed-loop poles for V=140 kts are shown
in Fig. 24. At this speed, all the poles are stable, with
the partial exception of a complex controller poles, that
is unstable but extremely close to the origin.

Finally, one result for the case V=170 kts, correspond-
ing to µ = 0.4. Note that the simulation cannot com-
pute a trim state at this speed. Therefore, the drag
of the fuselage was arbitrarily reduced until a trimmed
state was achieved. Figure 25 shows baseline and IBC-on
magnitudes of the 4/rev component of the vertical accel-
eration. Again, the IBC is very effective at attenuating
vibrations, and the attenuation occurs on the same time
scales as for the speeds previously shown. Additional re-
sults were obtained for this speed, but are not presented
here for reasons of space. However, the overall trends
are the same as seen for the V=80 kts and V=140 kts
cases. The closed-loop LTI system is stable.

Summary and conclusions

The present paper summarized the simple state space
derivation for the continuous time form of the SISO HHC
compensator; demonstrated how the same approach can
be used to work out a state space representation for the
SISO PHHC compensator, which is suitable for stability
and robustness analysis; generalized that result in order
to get to a general approach for the derivation of the
state space form for a MIMO HHC controller; and pre-
sented the results of a numerical investigation into the
performance and stability properties of Higher Harmonic
Control, implemented in the rotating system, based on a
simulation study of the coupled rotor-fuselage dynamics
of a four bladed hingeless rotor helicopter.

The results of the simulation study indicate that

1. The IBC controller is very effective in reducing the
desired components of the 4/rev CG accelerations.
Because the aerodynamic model used leads to un-
derestimating these vibratory components, the ab-
solute values of the reduction and of the control in-
puts may not be fully reliable. However, the per-
centage reductions obtained in the simulations are
in excess of 80-90%.



2. The vibration attenuation occurs within 5-7 seconds
after the IBC system is turned on. This is equivalent
to a frequency of around 1 rad/sec, which is a fre-
quency at which flight control systems and human
pilots can operate. Therefore, the interactions and
potential adverse effects on the stability and control
characteristics of the helicopter should be explored.

3. The IBC problem is intrinsically time-periodic if the
IBC inputs include frequencies other than the fre-
quency one wishes to attenuate. This is true even
if the rest of the model is assumed to be time-
invariant. In these cases, the closed-loop stability
results obtained using a constant coefficient approx-
imations may be incorrect even at lower values of the
advance ratio µ, where constant coefficient approx-
imation of the open-loop dynamics are accurate.

Acknowledgments

This research was supported by the U.S. Army Re-
search Office, under the grant 41569-EG, Technical Mon-
itor Dr. Gary Anderson.

References

[1] Friedmann, P.P., and Millott, T., “Vibration Re-
duction in Rotorcraft Using Active Control-A Com-
parison of Various Approaches,” Journal of Guid-
ance, Control and Dynamics, Vol. 18, No. 4, Jul-
Aug 1995, pp. 664-673.

[2] Teves, D., Niesl, G., Blaas, A., and Jacklin, S., “The
Role of Active Control in Future Rotorcraft,” Pa-
per III.10.1–17, Proceedings of the 21st European
Rotorcraft Forum, Saint Petersburg, Russia, Sept
1995.

[3] Wereley, N., and Hall, S., “Linear Control Issues in
the Higher Harmonic Control of Helicopter Vibra-
tions,” Proceedings of the 45th Forum of the Amer-
ican Helicopter Society, Boston, MA, May 1989.

[4] Shaw, J., and Albion, N, “Active Control of the
Helicopter Rotor for Vibration Reduction,” Journal
of the American Helicopter Society, Vol. 26, 1981.

[5] Johnson, W., Helicopter theory, Princeton Univer-
sity Press, 1980.

[6] Muller, M., Arnold, U. T. P., and Morbitzer, D.,
“On the Importance and Effectiveness of 2/rev IBC
for Noise, Vibration and Pitch Link Load Reduc-
tion,” Proceedings of the 55th Anual Forum of the
American Helicopter Society, 2000.

[7] Bittanti, S., and Colaneri, P., “Periodic control,” in
J.G. Webster, editor, Wiley Encyclopedia of Elec-
trical and Electronic Engineering, John Wiley and
Sons, 1999.

[8] Du Val, R., Gregory, C., and Gupta, N., “Design
and Evaluation of a State Feedback Vibration Con-
troller,” Journal of the American Helicopter Soci-
ety, Vol. 29, 1984, pp. 30-37.

[9] Lovera, M., Colaneri, P., and Celi, R., “Periodic
Analysis of Higher Harmonic Control Techniques
for Helicopter Vibration Attenuation,” Proceedings
of the 2003 American Control Conference, Denver,
Colorado, 2003

[10] Theodore, C., and Celi, R., “Helicopter Flight
Dynamic Simulation with Refined Aerodynamic
and Flexible Blade Modeling,” Journal of Aircraft,
Vol. 39, No. 4, Jul-Aug 2002, pp. 577-586.

[11] Celi, R., “Hingeless Rotor Dynamics in Coordinated
Turns,” Journal of the American Helicopter Society,
Vol. 36, No. 4, Oct 1991, pp. 39-47.

[12] Wereley, N., and Hall, S. “Frequency Response of
Linear Time Periodic Systems,” Proceedings of the
29th IEEE Conference on Decision and Control,
1990, pp. 3650-3655.

[13] D’Angelo, H., Linear Time-Varying Systems: Anal-
ysis and Synthesis, Allyn and Bacon, 1970.

[14] Zhou, J., and Hagiwara, T., “H2 and H∞ Norm
Computations of Linear Continuous-Time Periodic
Systems Via the Skew Analysis of Frequency Re-
sponse Operators,” Automatica, Vol. 38, No. 8,
2002, pp. 1381-1387.

[15] Cheng, R. P., Tischler, M. B., and Celi, R., “A
High-Order, Time Invariant Linearized Model for
Application to HHC/AFCS Interaction Studies,”
Proceedings of the 59th Annual Forum of the Amer-
ican Helicopter Society, Phoenix, AZ, May 2003.



0

0.001

0.002

0.003

0.004

0.005

0.006

0 1 2 3 4 5 6 7

M
ag

ni
tu

de
, g

Time, (sec)

r=0.0
r=10.0

r=100.0

r=1000.0

Figure 2: Peak-to-peak 4/rev vertical accelerations at
helicopter CG in g for 80 kts (µ = 0.188).
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Figure 3: Phase in degrees of the 4/rev vertical acceler-
ations at helicopter CG for 80 kts (µ = 0.188).
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Figure 4: Peak-to-peak 4/rev roll accelerations of heli-
copter for 80 kts (µ = 0.188).
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Figure 5: Phase of 4/rev roll accelerations of helicopter
for 80 kts (µ = 0.188).
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Figure 6: Peak-to-peak 4/rev pitch accelerations of heli-
copter for 80 kts (µ = 0.188).

0

60

120

180

240

300

360

0 1 2 3 4 5 6 7

P
ha

se
, (

de
g)

Time, (sec)

r=0.0

r=10.0

r=100.0

r=1000.0

 φ

Figure 7: Phase of 4/rev pitch accelerations of helicopter
for 80 kts (µ = 0.188).
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Figure 8: IBC/HHC control input amplitude in degrees,
80 kts (µ ≈ 0.189) and r=0.0.
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Figure 9: IBC/HHC control input phase in degrees, 80
kts (µ ≈ 0.189) and r=0.0.
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Figure 10: IBC/HHC control input amplitude in degrees,
80 kts (µ ≈ 0.189) and r=1000.0.
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Figure 11: IBC/HHC control input phase in degrees, 80
kts (µ ≈ 0.189) and r=1000.0.
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Figure 12: Root-locus of LTI closed-loop system con-
troller poles, 80 kts.
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the least damped modes, 80 kts.
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Figure 14: Peak-to-peak 4/rev vertical accelerations at
helicopter CG in g for 140 kts (µ = 0.330).
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Figure 15: Phase in degrees of the 4/rev vertical accel-
erations at helicopter CG for 140 kts (µ = 0.330).
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Figure 16: Peak-to-peak 4/rev roll accelerations of heli-
copter for 140 kts (µ = 0.330).

-180

-120

-60

0

60

120

180

0 1 2 3 4 5 6 7

P
ha

se
, (

de
g)

Time, (sec)

r=0.0

r=10.0
r=100.0

r=1000.0

 φ

Note: arrows point to signal peaks

Figure 17: Phase of 4/rev roll accelerations of helicopter
for 140 kts (µ = 0.330).
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Figure 18: Peak-to-peak 4/rev pitch accelerations of he-
licopter for 140 kts (µ = 0.330).
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Figure 19: Phase of 4/rev pitch accelerations of heli-
copter for 140 kts (µ = 0.330).
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Figure 20: IBC/HHC control input amplitude in degrees,
140 kts (µ ≈ 0.33) and r=0.0.
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Figure 21: IBC/HHC control input phase in degrees, 140
kts (µ ≈ 0.33) and r=0.0.
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Figure 22: IBC/HHC control input amplitude in degrees,
140 kts (µ ≈ 0.33) and r=1000.0.
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Figure 23: IBC/HHC control input phase in degrees, 140
kts (µ ≈ 0.33) and r=1000.0.
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Figure 24: Root-locus of LTI closed-loop system con-
troller poles, 140 kts.
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Figure 25: Peak-to-peak 4/rev vertical accelerations of
helicopter for 170 kts (µ = 0.4).
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