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ABSTRACT 

In recent 1vork, an actuator-disc theory was used to obtain the dvnamic 
inflow derivatives for rotors. The fundamental assumptions of that ~ork 
are examined in the present research through comparisons with more sophis
ticated induced-flow descriptions. One description involves a general, 
unsteady actuator-disc; and the other involves a prescribed-wake, discrete
vortex analysis of a four-bladed rotor. The results reveal the strengths 
and weakness of previous formulations. 

1. Introduction 

It has been known since the early days of the helicopter that the induced 
flow field of a rotor responds in a dynamic fashion to changes in control set
tings, blade motions, or hub motions. The dynamic character of the rotor wake 
implies that the expected rotor dynamics can be significantly altered due to 
angle-of-attack changes created by the transients in induced flow. The mathe
matical modeling of induced-flow response has been called the theory of dynamic 
inflow. 

The early work in dynamic inflow, References 1-5, starts with Amer noting 
that the pitch and rol~ damping of a rotor depend on the blade pitch setting. 1 

Subsequently, Sissingh used a quasi-steady momentum theory, where he assumed 
the induced flow transients instantaneously follow the lift transients, to 
describe the dynamic inflow experiences of Amer. In particular, the change 
in pitching moment due to pitch rate (the pitch damping) creates a correspond
ing change in the induced flow field which, in turn, alters the development of 
that pitch moment. In Reference 3, however, Carpenter and Fridovitch show 
that there is a measurable time lag between the inception of blade life and 
the subsequent development of induced flow. They quantitatively explained 
the time lag in terms of the apparent mass of the induced flow (as approxi
mated by the apparent mass of an impermeable disk in still air). Similar 
work by Rebont corroborates the results in Reference 3, but he must double 
the apparent mass used in Reference 3 in order to correlate his own exper~
mental data with analysis. 4 In the unsteady aerodynamic theory of Loewy~ 
the vortex system of the rotor is treated by layers of vorticity; and a 
Theodo.rsen-type Lift-Deficiency Function is obtained. In the limit of zero 
reduced frequency, such a theory produces a quasi-steady inflow theory for 
climb; and, if exercised at moderate reduced frequencies, it could conceivably 
provide apparent mass terms. 

More recently Shupe6 shows that the Sissingh model is equivalent to 
the use of a reduced Lock number (i.e. a lift-deficiency function) for cyclic 
modes. In addition, the reference attempts to extend the dynamic-inflow model 



into the forward-flight regime. Lastly, he introduces the inflow dynamics 
as an integral component of rotor aeroelasticity and rotor-body stability 
modeling. 

Ormiston and Peters compare theoretical and experimental values of 
steady control derivatives under various quasi-steady inflow assumptions.? 
The results for hover corroborate earlier findings that quasi-steady momentum 
theory is adequate. The results for forward flight, however, show large dis
crepancies between theory and experiment. In response to this discrepancy, 
Ormiston and Peters postulate a more general formulation of the inflow law; 
it assumes that three induced-flow distributions (uniform, fore-to-aft, and 
side-to-side) are linear functions of three aerodynamic loading C'onditions 
(thrust, pitch moment, and roll moment). Unlike the previous theory. however, 
the new one allows for all possible linear couplings between loads and inflow 
(9 derivatives), tvhereas the old theory allmvs no couplings (3 derivatives). 
An empirical flow model is used to successfully correlate hover and forward 
flight data. 

In References 8-10, the theory of dynamic inflow progresses from a quasi
steady theory into a truly unsteady formulation. Crews, Hohenemser, and 
Ormiston introduce a dynamic-inflow model for hover that includes three un
coupled, first-order equations that describe the magnitude of the induced flow 
distributions (uniform, fore-to-aft, and side-to-side). 8 The gains and time 
constants in these three equations are chosen on the basis of correlation with 
experimental frequency-response data (as in Reference 7). It is interesting 
that even though Reference 8 does not consider the work of Reference 3, the 
identified time constant for cyclic modes in Reference 8 is within 1% of the 
value that would result from the

9
apparent inertia of an impermeable disc, as 

outlined in Reference 3. Peters introduces the apparent mass terms of Reference 
3 into both the momentum-theory formulation of Reference 2 and the empirical 
formulation of Reference 1 The results are used to correlate rotor frequency 
response (to both hub and swashplate inputs) in hover and forward flight. In 
hover, the apparent-mass terms with momentum theory provide excellent correla
tions. Furthermore, the same apparent mass terms, when combined with the 
empirical model, give equally good correlation in forward flight, despite the 
fact that the empirical model is identified only on the basis of hover data. 
In addition, Reference 9 formulates the momentum theory in a unified way that 
allows smooth transitions betwef8 hover, climb, and forward flight. Finally, 
Banerjee, Crews, and Hohenemser attempt parameter identification of the entire 
3X3 inflow matrix from transient rotor data, but no clear conclusions are 
reached. 

The effect of dynamic inflow on rotor stability and transient response 
are investigated in Reference 11-14. Ormiston studies the hover dynamics of a 
three-bladed rotor with dynamic-inflow degrees of freedom

1
fthree second-order 

rotor equations plus three first-order inflow equations). He finds that the 
reduced Lock number approximation is adequate for the regressing mode but not 
for the collective and progressing modes. Peters and Gaonkar include dynamic 
inflow for rotor flap-lag dynamics in hover and forward flight.12 They find 
that, with an inplane degree of freedom, one must define an equivalent Lock 
number alld an equivalent profile drag coefficient in order to approximate the 
damping of regressing modes. Finally, Peters and Gaonkarl3 and Johnsonl4 show 
that dynamic inflow accounts for most of the observed discrepancies between 
theory and experiment for air and ground-resonance dynamics of helicopters in 
hover. 

It is obvious from the previous work that dynamic inflow is important 
in rotor dynamic and stability analysis. A requirement still exists for a 
unified dynamic inflow theory that would adequately model both hover and forward 
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flight. There are several recent investigations of rotor inflow that contain 
the ingredients necessary for an adequate quasi-steady model. In each case, 
however, the investigations concentrate on the steady rotor loads and inflow; 
but they do not investigate the consequences on the induced flow of systematic 
load perturbations. Joglekar and Loewy find relationships between rotor loads 
and induced flow fsom a potential-flow model of a pressure discontinuity across 
an actuator disc. Landgrebe models the induced flow by a discrete representa-
tion of rotor shed vorticity, and he allows for either a prescribed wake or a 
free wake.l6 Ormiston uses a simple actuator-~~sc theory coupled with rigid 
blade dynamics to estimate rotor induced flow. 

Pitt and Peters take the actuator-disc model in Reference 15 and extend 
it, as necessary, in order to formulate a general, quasi-steady inflow theory. 
In particular, the authors perform the necessary integrations of the loads 
and induced flow and develop closed-form expressions for the 9 elements of 
the inflow-derivative matrix, [LJ. The elements of [L] are found as functions 
of the free-stream velocity (air speed plus average, steady induced flow) and 
the disc angle-of-attack (90° for hover, 0° for edgewise flight). 

Before making a final conclusion on the universality of the Pitt/Peters 
model, there are two major assumptions in Reference 18 that must be critically 
examined. First, there is the assumption that a rotor can be modeled as an 
actuator disc. To test this assumption, the quasi-steady inflow model needs 
to be compared with an analysis that includes the vortices shed by each 
individual blade. Second, there i.s the superposition assumption which (as 
shown in Reference 18) is equivalent to the assumption that all velocities 
are in-phase. To test this assumption, we must compare results with a more 
sophisticated analysis that does not assume in-phase velocities. It is the 
purpose of this paper to test these assumptions in the manner indicated above. 
Finally, to complete the development of this dynamic inflow model, the results 
in Reference 18 will be generalized so as to be applicable to nonlinear analy
ses. It should be noted that the results presented here are based on a D?ctor 
of Science Thesis by the first author under the direction of the second. 1 

2. Hathematical Formulation of Inflow Hodels 

The details of the actuator-disc models are given in References 18 and 
19, but the basic equations will be repeated for clarity. First, the nondimen
sional induced flow is represented by five assumed inflow dis.tributions with 
undetermined magnitudes. 

V = V + V rs in•1• + v -r S''' -2 · 2 -2 
0 5 ~ c co ~ + v 25 r s~n 1/1 + v 2cr cos21/l (1) 

The first term, v
0

, represents a uniform distribution; the second term, v5 , 

represents a side-to-side distribution; the third term, vc, represents a fore
to-aft distribution; and the last two terms represent second-harmonic inflow 
variations. The induced-flow distributions in equation (l) are assumed to be 
linear functions of five generalized loadings on the rotor. These loading 
factors are defined in terms of nondimensional coefficients expressed as inte
grals of the disc loading per unit area, F(r,TjJ). 

2rr R 
Cy = ~4[,£ FrdrdljJ 

prr(l R o o 
- prr~ 2 R6 l1Tt Fr 3sin21/ldrd1jl CzL = 

1 2rr R 
Fr 2sin1/ldrd1/l CL = 

- prrn 2R5fo fo (2) 

2rr R 
Fr 3cos21jldrdTjJ c2M = 

- prrn~R4 Ia Jo 
2rr l 

eM = - ~ 5£ Fr 2cosljJdrd1/l 
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Other radial weightings and higher harmonics are possible; but these 
have physical significance as well as mathematical simplicity. 

If we now define a vector of induced-flow coefficients {v} and a vector 
of loading conditions {F) 

v CT 
0 

v CL s 

v - v F - eM (3a, b) 
c 

v cZL 2s 

v CzM 2c 

then a general formulation of dynamic inflow can be written (for a given reduced 
frequency) as follows, 

{v} = [L(K)] {F} 
-1 

{F) = [L(K)] {v} (4a,b) 

where L(K) is a matrix (dependent on reduced frequency, K) that relates induced 
flow to loads. In general, L(K) is complex and g~yes both magnitude and phase. 
In previous work, it has been assumed that [L(K)l can be represented by a 
quasi-steady matrix, [L(O)]-l = [L]-1 , plus an apparent mass term. 

-1 -1 
[L(K)] iKv[mJ + [L] (5) 

Since K = w/v, where w is the frequency of response, equation 5 implies an 
induced-flow law in either of the following forms. 

-1 
[M] {v} + [L] {v} = {F} (6a) 

-1 -1 
{v} + [LM] {v} = [M) {F} (6b) 

[LM] {v} + {v} = [L] {F} (6c) 

The L,M, and L(K) matrices can be found from either an analytic or an 
experimental representation of the rotor wake. Apply any one of the loadings 
in equations (2) for a given K and measure the normalized induced flow field, 
q(r,~), due to that loading. If one then extracted {v) from that flow field, 
he would have a column of L(K). In this present paper, the extraction of the 
{v} is accomplished by the following integrals 

v c £1Tfl 4 - -2 -= - q r cos$drd$ 1T 0 0 

611T; - -3 -
vzs = ~ 

0 
Jo q r sinZ~drd$ 

(7) 
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where q could have real and imaginary (in-phase and out-of-phase components). 
The computation of V0 is clearly the average of q. The other v's are Fourier 
harmonics. The r weightings in equation 7 are not unique, but are consistent 
with the other definitions used in this work. In this present paper two ver
sions of an actuator disc theory are used to find q for the various loading 
conditions, thus giving L(K). In addition, a prescribed-wake, discrete-vor
tex theory is used to find the quasi-steady L for comparison. The actuator
disc theory is based on pressure distributions developed by Kinnerl5 that solve 
Laplace's equation,¢, .. = 0, in an ellipsoidal coordinate system and that also 
gives a pressure disco~Einuity (i.e. lift) across a circular disc. Over the 
area of the rotor disc, the lift density will correspond to the difference in 
the pressure P below and above the actuator-disc. Thus, the thrust of the 
rotor disc is an area integration of the lower pressure minus the upper. The 
thrust in the ellipsoidal coordinate system is 

T = L 
m,n 
m<n 

2 211 
pV [ ~ (C~cosm~ + D~sinm~)d~] ~ P~(v)Q~(iO)rdr 

(lower - upper) 
(8) 

where Pm and Qm are, respectively, associated Legendre functions of the first 
and secBnd kin~s; ~ and D~ are arbitrary constants; and v, n, and ~ are ellip
soidal coordinates defined in reference 15 and 19. When the integration and 
summation of equation 8 are performed, the find value of the rotor loading (i.e., 
CL, CM, etc.), is used to evaluate the constants em and nm. This process and 
tfie value of the constants are given in reference ~9. n 

Each loading integral, equations 2 and 8, is uniquely determined by a 
single coefficient of the Kinner distribution and is independent of all others. 
Differing pressure distributions can result in identical average loadings. One 
of the purposes of this research is to determine if such pressure distributions 
will also result in identical averaged values of the induced flow. To do this, 
we consider two types of pressure distribution. The first, called "uncorrected", 
contains only the single coefficient of ¢ necessary to create the appropriate 
loading. The second distribution, called "corrected", includes just enough of 
the next-higher pressure term to enforce the conditions ¢ = 0, d¢/dr = 0, at 
r = 0, which is a reasonable distribution for a rotor. Figure 1 shows the 
corrected and uncorrected thrust distributions. The roll/pitching moment and 
higher harmonic loadings are not shown due to the brevity of this paper, but 
can be found in reference 18 and 19. 

Using potential theory the steady velocity distribution, W, due to a 
given pressure distribution can be determined using the Kinner pressure dis
tribution, ~' as follows, 

W (X' , Y' , Z ' ) 

The variable s is a dummy variable of integration. Thus, the integration is 
performed from the disc to the infinite field along the streamline parallel 

(9) 

to the X axis in the wind system where V and n are functions of S• The above 
expression is algebraically complex and is evaluated numerically. The result
ing steady induced velocities from equation 9 are integrated as in equation 
7 to yield the quasi-steady L matrix. 

One of the accomplishments of this present work is the extension of the 
above actuator-disc theory to the unsteady case. The unsteady theory is 
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developed from the nondimensional, linearized, unsteady momentum equation as 
follows 

* - vq. = -~ . 
l.,X ,l. q . 

'1 

where 
A p (10) 

1jJ = nt <P = 
PilZRZ 

(*) z d 
crw q z ~ 
VFS 

v z 
ilR X = X/R 

The above equation can be solved by either of two different methods. In the 
first method, we assume that the pressure field can be expressed as a "mutually 
in-phase" simple-harmonic function. This will be referred to as 11 superposition 
of velocities". In the second method, we assume that the inflow velocities can 
be represented as in-phase simple harmonic motion. This will be referred to as 
"superposition of pressures 11

• 

In the superposition of velocities method, all the components of pressure 
are assumed to be in-phase. Thus, we use the complex-number notation: 

where the pressure term ~ is assumed to be a real function. The velocity field 
is represented by a complex expression, q = w + ju and represents a superposit 
of the complex velocity field. Substitution of equations 11 and 12 into 
equation 10 results in the following two equations for the real and imaginary 
portions. 

2 v2u'' = w ui + 1 w"f . 
'1 

(13 a & b) 

If one takes the derivative of equations 13 a & b with respect to i and employs 
the continuity equation one obtains 

"f .. = 0 
,11 

i.e. (14) 

Thus, we note that, for the complex frequency response problem, the 
pressure distribution in equation 10 must satisfy the Laplace equation, i.e. 
14. This is very significant in that it allows the use of the Kinner static 
pressure distirbution for the unsteady theory. Equations 13 a & b can be 
treated by a Laplace transform in ~ followed by application of the convolution 
theorem. The final solution for unsteady induced flow at the rotor disc is, 
therefore, 

1 f -v <I> z' 
"' ' 

cos(KI';)di'; (in-phase) (15 a & b) 

"f z' sin(Ki';)di'; 
' 

(out-of-phase) 
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where K is a reduced frequency based on air speed, not tip speed, K = w/v. 

Several interesting aspects of these equations should be pointed out. 
First, these are identical to the integrals in the steady aerodynamic theory, 
~quation 9, except for the weighting functions that have been added. (Note: 
~,z' in equation 15 is equal to the bracketed term in equation 9). Second, 
these weighting functions, cos(Ks) and sin(Ks), have direct physical interpre
tation. They can be associated with an oscillatory pressure field that varies 
as a wave traveling at velocity v and frequency w. Third, the effect of un
steadiness is only a function of K. Thus, for a given rotor angle-of-attack, 
a single sweep of K will suffice to give the behavior for all w,v combinations. 
Lastly, the similarity of equations for the steady and unsteady induced velo
cities allows the utilization of the same numerical quadrature technique for 
either case. 

The second assumption used 
the superposition of pressures. 
distribution varies harmonically 
and pressures are expressed as 

with the solution of equation 10 is called 
In this method it is assumed that the inflow 
but is in-phase. Thus, the induced velocities 

(16) 
A - jw~ 
~ = A e (17) 

where q is assumed to be a real number and the pressure distribution is repre
sented by the complex expression, A = A + B j , hence the name superposition of 
pressures. Substitution of equations lg and0 17 into the momentum equation 10 
yields the following two equations. 

REAL COMPONENTS vq = A . i,x o,~ 

(18 a & b) 

IMAGINARY COMPONENTS wq. = - B . 
1 0,1 

when one takes the derivative of equations 18 a & b with respect to i and employs 
the continuity equation, one has 

(19) 

Thus, each pressure function (A0 or B0 ) can be represented by the steady pressure 
series seen earlier. (They each solve the same equations and boundary conditions.) 
It follows directly, under the assumption of in-phase velocities, that the relation
ship between the induced velocities and the in-phase pressure (A0 ) is identical 
to that of the steady theory, equation 18a. The out-of-phase pressure distribution 
(B

0
) on the other hand, is given by equation 18b which states that the velocity 

equals -1/w times the derivative of pressure (with no integration from 0 + oo 

as previously required). Equation 17 implies that the pressure from q and q 
(i.e., A0 and B0 ) can be superimposed!! This has been an underlying assumption 
in all dynamic inflow work to date. Furthermore, since qi = -1/w B0 i• the out
of-phase (apparent mass) is independent of either the magnitude or direction 
of the free-stream velocity (another assumption of previous work in dynamic 
inflow). 

It is reasonable to consider the correlation between the two above 
theories (pressure in-phase, velocity in-phase) and the true solution. One 
would expect the actual case to have neither in-phase pressure nor velocity. 
Thus, a comparison of results under the two assumptions can be used to obtain 
reasonable bounds on the variability of unsteady effects. 

In the superposition of velocities method, in-phase pressure field, the 
general form of the velocity can be written as 
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{F} = [L(K)]- 1 {v} (20) 

In the superposition of pressures method, in-phase induced velocities, the 
general fopn of the equation after substituting the assumed induced velocity 
{v} = {v}e'-wlJ! is 

[[L]- 1 + [M]jw] {v} = {F} (21) 

Thus, the unsteady aerodynamic research is concerned with the equivalence of 
equations 20 and 21 i.e. 

·-1? 1 
L(K) = [L- + Mjwl (22) 

A second aspect of this research is a study of the applicability of an 
actuator-disc analysis to a physical rotor system with a finite number of 
blades. To this end, we will compute the L matrix (steady case) by use of 
a rotor model that inlcudes blade dynamics and the finite number of blades. 
In particular, we use the Prescribed-Wake Program of the United Technologies 
Research Center, Ref. 16. This program was modified to obtain the upper 3X3 
matrix (9 elements) of the L-matrix. The precedure required the independent 
perturbation of the collective, pitch, and roll control about a trim condition. 
The pertrubed induced velocity and rotor lift ar~ integr~ted both radially 
and azimuthally to yield the perturbed vectors {v} and {F} with the resulting 
static [L] matrix 

3. Results 

A Fortran computer has been written to calculate both the steady and 
unsteady induced velocities for the actuator-disc theory. The induced velo
cities are integrated on the rotor disc to obtain the induced flow perturba
tions according to equation 7 and the L(K) matrix results from equation 4. 

3.1 Steady Actuator 

The first step in the numerical integration of the induced velocity 
equation 9 is the transformation of the disc coordinates into ellipsoidal 
coordinates. The integration is performed along a streamline where'the poly
nomials P~(\l) and Q~(in) and their derivatives are evaluated at each integration 
point. Generally, the program integrates to a final n of 15 to 20 before the 
integral converges. The induced velocities are then integrated in the radial 
and azimuthal direction for each separate loading condition to obtain the 5X5 
and 3X3 [L] matrix. See reference 19 for a more detailed account of this pro
cedure. 

As noted in reference 18, there exists two special cases for the calcu
lation of the steady induced velocities. For these cases, a= 90° and 0°, the 
induced velocities are calculated by hand (in a closed-form solution) and serve 
as a check on the numerical accuracy of the computer program. This is an impor
tant verification since almost the identical program is used for the unsteady 
results. 

In general, the 5X5 [L] matrix is dependent on angle-of-attack and the 
corrected/uncorrected pressure loadings. The SXS matrix can be partioned into 
the standard 3X3 by negating the higher harmonic loadings. The 5X5 [L] matrix 
and its variations with a and loading distribution are given in detail in ref
erences 18 and 19 where the first column was obtained in closed-form. Sub
sequently, Gaonkar et al verified the results and obtained closed-form 
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expressions for columns 2 through 5, reference 20. These values agree with 
the numerical data of references 18 and 19 and are presented in table 1. 

The first column of the L matrix is the induced velocity perturbations 
for the corrected or uncorrected thrust loading. The L(l,l) term ~ due to 

0 
CT) is 0.5 for the complete range of alpha and is also independent of lift dis
tribution. This is the same value predicted by the momentum theory of reference 
7. The L(3,1) term (Vc due to C ) is zero for the case of axial flow and as a 
approaches zero, the edgewise flight condition, the term exhibits a nearly 
linear variation. The uncorrected value of L(3,1) is approximately 60% larger 
than the corrected value. Int~restingly, this term is zero for momentum theory, 
but is present in the vortex theories. Because the L(3,1) term is positive and 
greater than L(l,l), it implies that there is an upwash at the front of the rotor. 

The L(S,l) term is the second cosine harmonic of induced flow due to thrust 
(v 2c due to CT). This term is zero at a= 90° and displays a smooth transition 
to a= 0°. The L(5,1) changes sign as the thrust loading is varied from the 
corrected thrust to the uncorrected thrust distribution, consequently, the L(5,1) 
term is heavily dependent on the lift distribution. The uncorrected L(S,l) is 
always positive and is relatively large; and, for a< 10°, it is larger than 
the average value of the induced velocity, V 0 • The corrected L(S,l) is negative 
for all values of a up to a = 90° where it is zero. A negative L(S,l) yields 
an upwash at the front of the rotor disc. 

Due to space limitations, the results for only the first column of the 
[L] matrix are presented. However, the physical significance and results for 
each column of the matrix is discussed in detail in reference 19. The inverse 
of the steady L matrix is required when writing the induced flow model as 
shown in equation 6. The inverse matrix is also required for the unsteady in
duced velocity by the method of superposition of pressure. Both the 5X5 and 
3X3 L matrices developed here are well-behaved and always invertiable. 

3.2 Unsteady Actuator 

The computer code for the steady condition is extended to perform the 
unsteady superposition of velocities caluclations of equation 15. The in-phase 
induced velocities, w, and the out-of-phase induced velocities, u, are inte
grated in the same manner as the steady calculations except that the weighting 
functions, cos (Ki;) and sin(Ki;) are included. The weighting functions cause 
the function Q), 7,, to oscillate as the sine or cosine function. As the reduced 
frequency K is increased, the frequency of oscillation correspondingly increases. 
This means that the streamwise integration increment must decrease as K 
increases. Consequently, computer time increases with increasing K. The com
plex induced velocity is integrated over the rotor disc to obtain the complex 
[L(K)] matrix. 

As in the steady case, a special case is used to verify the complex 
induced velocity calculations of the computer program. For axial flight, a = 
90°, equation 15 is integrated on the disc in closed-form to yield the exact 
value of· the apparent mass matrix [M] which are given in table 2. The computer 
time required for the calculation of the (S.V.) unsteady induced velocities 
and L(K) matrix increase drastically as a approaches 0 and K increases. These 
large computing times reveal the tremendous advantage that is obtained if the 
[L] and [M] matrices can be used rather than the complex L(K). 

The first case to be presented is the case of axial or hovering flight. 
The complex [L(K)] matrix is a diagonal mrtrix for a= 90°, meaning that none 
of the elements are ~£upled. The [L(K)]- from superposition of pressure (S.P.) 
is just ik [M] + [L] (Results are normalized to v = 1). This leads to a 
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definition of apparent mass defined as 1/k Im 1(K) for the superposition of 
velocities (S.V.) method. 

Due to the limited scope of this paper, only the first column of the 
1(K) matrix and the apparent mass matrix will be discussed. A more detailed 
discussion and classification of the results is presented in reference 19. 
Figure 2 is a comparison of the apparent mass M(l,l) terms as calculated by 
the S.V. and S.P. method. The apparent mass elements calculated by the S.V. 
method asymptotically approach infinity as K approaches zero. This is exactly 
analogous to the case for an unsteady wing in which the log (K) term in the 
Theodorsen function gives an infinite slope at K = 0, Ref. 18. As K is in
creased, the apparent mass c~culated by the method of S.V. exponentially 
approaches the apparent mass calculated by the S.P. method. At a very high 
frequency, figure 2 shows that the apparent mass of both methods agree. Even 
though there is a large difference in the apparent mass terms calculated by 
the superposition of pressures and velocities in the K < 50 range, the reduced 
frequency is small and consequently the imaginary terms are relatively small, 
and the effects of the different apparent masses are not great. 

The other nonzero elements of the apparent mass matrix show similar trends 
as figure 2. For large values of K, i.e., K > 250, all the apparent mass terms 
predicted by the S.P. and S.V. methods agree. The values are presented in 
table 2. Due to the symmetry of the airflow through the rotor for axial flow, 
a= 90°, the M(2,2) and M(3,3) terms are equal and the M(4,4) and M(S,S) terms 
are also equal. It is seen that the M(l,l) term is larger than the M(2,2) and 
M(3,3) terms which, in turn, are larger than the M(4,4) and M(5,5) terms. 
The M(l,l) term is positive and the other terms are negative. It is interesting 
to note that the apparent mass terms due to the corrected pressure distribution 
are always smaller than the apparent mass associated with the uncorrected pres
sure distributions. This can possibly be explained by the fact that with the 
corrected pressure distribution the lift tends towards the edge of the disc, 
while for the uncorrected pressure distribution it tends towards the hub. 

To understand the difference between the complex 1-matrix as calculated by 
S.P. and S.V. methods, it is better to compare the magnitude and phase angles of 
the complex elements for each method. 

Figure 3 presents the magnitude of the (1,1) element of the complex 1-
matrix as calculated by each theory for a corrected thrust distribution. The 
S.V. magnitudes are calculated for discrete K values over the range of interest. 
The S.P. magnitudes are obtained form the square root of the sum of the squares 
of the real and imaginary terms. The real part, shown on figure 3 as a dot
dashed line, is the (1,1) term of the inverted steady 1-matrix for a= 90°, 
table 1. The imaginary term for the S.P. method, shown as the large dashed 
line, is the apparent mass M(l,l), table 2, multiplied by the reduced frequency 
K. The combined magnitude of the real and imaginary parts are shown as the 
dotted line. When the lines of the real or imaginary component coalesce with 
the magnitude line, then the perspective component is predominantly larger than 
the other term. The maximum difference between the S.P. and S.V. theories is 
for the case of corrected thrust loading in the range of 1 ~ K ~ 10. The max
imum difference is close to 50%. Therefore, we conclude that either theory may 
deviate by + 20% from the true value at K = 3. Although this is larger than 
originally hoped, especially since this is the range of most interest, we recall 
that the effect of dynamic inflow is itself a correction factor. Thus, error 
of 20% in a correction term may be acceptable. The agreement between the two 
methods improved for the uncorrected thrust loading which is not shown. Also 
not shown, but noted, was that the agreement for the first harmonic terms, 
columns 2 and 3, was better than that shown in figure 3. The best agreement 
was for the second harmonic terms, columns 4 and 5. 
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To fully understand the behavior of the inverted complex L-matrix, it 
is beneficial to look also at the phase angle variation of each element as a 
function of reduced frequency. The phase angle can be considered to be a time 
lag between the in-phase and out-of-phase induced velocities. The phase angle 
is the arc tangent of the ratio of the imaginary part to the real part. For 
the S.P. method, the real part is the inverted, steady L-matrix; and the imagin
ary term is the apparent mass multiplied by the reduced frequency. The phase 
angle for S.V. is defined as the arc tangent of the ratio of the imaginary 
part to the real part of the inverted complex L-matrix obtained by integration 
of the complex induced velocities of equation 15. 

The phase angles for both the S.P. and S.V. solutions of the (1,1) element 
with a corrected thrust distribution are presented in figure 4. The S.V. method 
phase angle is larger than that of the S.P. method for K < 5 and greater than 
the S.P. phase angle forK> 5. The maximum deviation is± 5°, which is quite 
acceptable; and the deviation is even less in the region of most interest 2 < 
K < 8. It is interesting that the phase angles of the S.P. and S.V. converge 
more slowly (as K ->- 0 and K + oo) than do the magnitudes. The phase-angle 
plots of the other element show similar trends, and are presented in greater 
detail in reference 19. 

the unsteady results presented are for the axial-flow 
part of this research is to determine the comparison 
obtained by S.P. and S.V. as the angle of attack varies 

Up to Shis point, 
case, a = 90 . A major 
of the complex L-matrix 
from a= 90° to a= 0°. The inverted complex L-matrix obtained by the S.P. 
method consists of the superposition of the inverted steady L-matrix and the 
apparent mass matrix. The apparent mass matrix, is a diagonal matrix that is 
independent of the rotor angle-of-attack and is the complex part of the inverted 
matrix. The real part is the inverted steady L-matrix, which varies with angle 
of attack and the imaginary part is only the diagonal terms which vary with K. 

-1 
Each of the 13 non-zero elements of [L(K)] has real and imaginary parts 

(i.e. magnitude and phase) that vary with both angle-of-attack and reduced fre
quency. Therefore, it is beyond the scope of this paper to study every element 
in detail. Instead, we will discuss the diagonal elements only from a qualita
tive standpoint (no figures); and we will present data for only the most important 
off-diagonal terms, (3,1) and (1,3). Quantitative results for all elements 
can be found in reference 19. First of all, the diagonal elements of [L]-1,

0
as 

calculated by the g.V. and S.P. methods, show similar comparisons for a~ 90 as 
they do for a = 90 . Therefore, deviations of only ± 5% to ± 20% are found. 
The off-diagonal terms, however, are a different story. 

0 We recall that, for a ~1 90 , the S.P. method gives real off-diagonal 
terms (due to the steady [L] ; but it gives absolutely no imaginary off-diagonal 
terms since the [M] matrix remains diagonal. The S.V. method, on the other 
hand, produces fully complex off-diagonals. Figures 5 and 6 show magnitude 
and phase for the S.V. method. Although the S.P. result is not explicitly shown, 
it is easily inferred. For magnitude, it is a horizontal line through the 
K = 0 values (independent of K); and, for phase, the S.P. result is identically 
zero .. The magnitude plot shows that the S.P. and S.V. methods give close 
results for 0 < k < 10 (except for the "dips 11 in the S.V. curves); however as 
K increases to 30, the magnitude shows a linear increase that is not predicted 
by the S.P. theory. 

The S.V. phase shows in figure 6 a significant deviation from the S.P. 
method which predicts a phase angle of zero degrees. There appears to be an 
unexplainable shift in the sign of the phase angle for K = 3. ForK > 5, the 
S.V. result is a 40° phase shift (relatively independent of a) which cannot 
be accounted for by S.P. 
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Although the above results tend to place the S.P. and S.V. comparisons 
in a bad light, the discrepancies must be placed in perspective. In particu
lar, how do the deviations in S.P. and S.V. in the off-diagonal terms compare 
with the overall magnitude of the dominant, diagonal elements. Figures 7 fnd 
8 plot the ratios of (3,1) and (1,3) elements to the (3,3) element of [1]- for 
a corrected first column and uncorrected second and third columns. Figure 7 
shows the magnitude of this ratio. The S.P. method predicts equal magnitudes 
for the two ratios at a= 30°, and the S.V. method shows relatively equal values 
near the S.P. result. The maximum deviation appears in the (3,1) term near K 
= 4 (50% difference) but the other points are all within .15 of each other (15% 
off the (3,3) term). Figure 8 is phase angle relationship with both the a= 
30° case and the limit as a+ 90° are given. At a= 90°, all phase angles are 
in agreement with the dominant portion coming from the (3,3) term in the denom
inator. When a = 30°' little or no change takes place in the S. P, results, since 
the off-diagonal remains purely real. For the S.V. method, however, the phase 
deviates significantly for K > 3. The only positive note is that the phase 
deviation becomes larger as the magnitude becomes smaller. For example, at K 
= 20 the phase deviation is 50° (quite large) but the magnitude is only 20% 
of the (3,3) term. Furthermore, the most important applications of dynamic 
inflow are in the range 0 < K < 5; and in this range, the phase agreement is 
much better. Finally, we note that pitch-thrust coupling is not as important 
to ground- and air-resonance as are the diagonal terms. Therefore, the varia
tions shown in figures 7 and 8 might be acceptable, given the great simplicity 
of the S.P. method over the S.V. method. We conclude that the variations between 
the S.P. and S.V. method are not large enough to warrant abandonment of the 
simple S.P. model. 

3.3 Prescribed Wake 

The previous results provide a measure of the accuracy of the assumption 
of superposition of pressures. In this section, we assess the accuracy of the 
assumption of an actuator disc. This is accomplished for quasi-steady (k = 0) 
case by comparing actuator disc results to these from a discrete vortex analysis 
(lifting-line theory) for a rotor with a finite number of blades. For such an 
analysis of an actual rotor, the induced flow may not be small with respect 
to the free-stream, consequently, there may be wake contraction and wake skew. 
To account for this in the actuator-disc theory, we follow the suggestion of 
reference 18 and replace the parameters v and a with generalized counterparts. 
For very small lift (the actuator-disc case) we have a nondimensional free-stream 
velocity, v, with components ~ and I in and out of the rotor plane 

ll = v coset 

I= v sina 

v = -1 -; a = tan A ll 

(24) 

(25) 

We extend this to the lifting case by introducing a third parameter, v, the 
induced flow. The extended definitions of v and a (v* and a*) become 

2 + (I+v) (I+iv) 
v* = .tll'---------

--;-z + (Hv) 2 

a* = tan-1 X+v 
ll 

(26) 

where equations 26 result from momentum considerations. Although a can be 
quite small for a rotor in forward flight, a* is generally larger than 10°. 
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A comparison of the lifting-line and actuator-disc results are given in 
figures

0
9 through 11. Generally, results for dis& angle of attack (a*) greater 

than ZO are well-converged. Results for a* < ZO , however, are very hard to 
obtain (due to the close proximity of the rotor disc and the shed vorticity). 
Because of this, results a* < 20° are suspect. 

Figure 9 compares the first column of the actuator disc L-matrix to 
that determined by che prescribed wake method. The actuator-disc theory predicts 
the (1,1) term to be a constant 0.5, and the lifting-line results support the 
result. There is also good agreement between the corrected actuator-disc and 
the lifting-line results for a*> Z0°. For low a's however, the correlation is 
lost, with the lifting-line predicting less fore-to-aft gradient as a*+ 0°. 
The (Z,l) term is zero for all theories. Experimental data, however, has never 
shown a reduction in fore-to-aft gradient with edgewise flow. Therefore, we 
tend to discount the lifting-line results for a*< Z0°. 

Figure 10 gives the (Z,Z) and (3,Z) elements. The (Z,Z) element, one of 
the most important, seems well-modeled by the actuator-disc theory. Interest
ingly, the (Z,3) term has fairly constant value (.Z) from lifting line, although 
it is zero in actuator disc. This is clearly a wake rotation term. 

Figure 11 presents the (1,3), (Z,3), and (3,3) terms. The (1,3) term shows 
excellent agreement (except at 18°) between actuator-disc and lifting-line results. 
The (3,3) term (one of the most important for ground resonance, shows excellent 
comparison). The (3,Z) term is the counterpart to the (Z,3) wake rotation. It 
is consistent with a typical wake rotation, but is probably not important for 
dynamic inflow. Thus, there is a very encouraging agreement between actuator
disc and lifting-line theories. 

4. Summary and Conclusions 

Four different inflow models are used to calculate dynamic inflow 
derivatives. The model are: 

(1) Steady Actuator Disc-Corrected and Uncorrected radial load 
distribution. 

(Z) Unsteady Actuator Disc-Superposition of Pressure {S.P.) for 
both the corrected and uncorrected radial load distributions. 

(3) Unsteady Actuator Disc-Superposition of Velocities (S.V.) for 
both the corrected and uncorrected radial load distributions. 

(4) Prescribed-Wake Model 

The induced-velocity distribution for each inflow model is numerically inte
grated over the rotor disc to obtain the L-matrix. Models 1-3 provide both 
a standard 3X3 nonuniform inflow L-matrix, and an extended SX5 L-matrix that 
includes second-harmonic velocities and loadings. The fourth model includes 
wake contraction, wake rotation, and finite number of blades and serves as 
a measure of accuracy for the simpler, actuator-dise models. 

From the steady actuator disc research we can conclude: 

(1) In axial flow (e.g. hover), the gains (elements of the 3X3 L-matrix) 
are identical to those obtained from simple momentum theory, and are independent 
of the radial lift distribution. The magnitude of the elements increase with 
increasing harmonic loading, i.e., L55 & L44 > L33 & Lzz > Lll" 
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(2) For a thrust loading and edgewise flow, the cosine harmonics of 
induced velocity, 1(3,1) and 1(5,1), are large with respect to the average 
value L(l,l). For the other loading conditions, at a = 0°, all the higher
harmonic elements of the 1-matrix are small save for 1(5,5). 

(3) Both the 5X5 and 3X3 steady 1-matrices are well behaved and inver
tible as a varies from goo to 0°. 

In the unsteady, actuator-disc research, the inverted complex L-matrices 
of the S.P. and S.V. methods are compared. The following are the conclusions 
from this phase of the rese&rch: 

(1) The apparent mass terms (the M-matrix) for the uncorrected pressure 
distributions are identical to the apparent mass terms of an impermeable disc, 
but vary significantly with lift distribution. The uncorrected terms are always 
larger than the corrected values. 

(2) The apparent mass terms are more sensitive to the lift distribution 
than the corresponding terms in the 1-matrix. 

(3) The apparent mass magnitude (for either corrected or uncorrected 
distributions) decrease with increasing harmonics of induced velocity. 

(4) The apparent mass terms of the S.V. method approach those of the 
S.P. method at high reduced frequencies (K). However, for small K, the S.V. 
and S.P. apparent mass terms are considerably different. 

(5) For a# goo and K > 0, the S.V. method predicts imaginary terms 
for some of the off-diagonal elements while the S.P. method does not. However. 
these are small with respect to the diagonal terms. 

The conclusions of the prescribed-wake program are: 

(1) The prescribed-wake 1-matrix agrees favorabl~ with the 1-matrix 
from the actuator-disc model, provided that the V and a parameters are 
considered. 

(2) The prescribed-wake 1-matrix has antisymmetric or cross coupling 
terms, 1(3,2) and 1(2,3), which are constant with a. These are not predicted 
by the Actuator-Disc Theory. These are due to the wake rotation associated 
with lifting rotor. For realistic values of rotor power, however, these are 
only 10 percent as large as the diagonal terms. 
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L-MATP.IX ELEMENTS 

ELEMENT UNCORRECTED CORRECTED MOMENTUr1 

Lll 1/2 1/2 . s 

L22 -4 -4 
(l+sina) (l+oinet) -2 

L33 -4sinet -4sin.::t -2 
(l+sin'.'l) (l+sina) 

L44 -sina( 11-Ssinet) -sina ( 11-Ssinu) 0 
(!+sino) (l+sina) 

~5 -6(l+sin2u) 
(l+sint'1)2 

-6(1+sin2u) 0 
{l+sinu)2 

~l 
,, (l-sinet) "' (1-sina) 0 

" (l+sin':l) 64 (l+sinct) 

)3 "' {1-sina) 5251'1 (1-sina} 0 
64" (l+sina) 2048 (l+sincx) 

l5l l (1-sino.) - l {1-sin::t) 0 
s (l+sina) 7 (l+siner.) 

L42 - ""' (1-sinct) 
220511 {1-sina) 

32 (!+sino;) 0 
- 20l.8 {l+sina) 

~4 lOSn (1-sina) 1051f (1-sinet) 0 
128 (l+sin<l) 128 (l+sina) 

ls3 -nsina(l-sina) _ 3nsina(l-sina) 0 
4 

los 2siner.(l-sina) 2sina(l-sinCt) 0 

Multiply all elements by 1/v 
All other elements not shown are %ero 

TABLE 1 
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Elements of M-Motrix 

Element Uncorrected Corrected 

Mll ' .8488 118 
):; . ]5; • • 543~ 

H22 • MJ) - !~r • -.113:: '" - 94Sr • -.0862 

M4:. • Mss '" - 1575r • -.0517 -

Mij' •+J 0 0 

TABLE 2 

LEGENDRE PCLYNDMIALS - PC M1 N > 

I .II P< lid ) THRUST 

11.8 

II.G 
w 
::::> 11.'1 -' a:: 
> 11.2 
-' a:: 

"' 
11.11 

c z: -11.2 .II >- II. I 11.2 11.3 11.'1 II.~ II.G II. 
-' c -11.'1 a. 

-II.G P<JI.3) 

-II.B 

-I. I 
RADIUS STATION - NCNDIMENSICN 

"igure 1. Corrected (Thrust) and Uncorrected (P£) Lift Distribution for CT. 
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