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Abstract
This paper examines the application of control systems for the alleviation of the vibratory loads
transmitted to the airframe by the wing-proprotor system of a tiltrotor in uniform, rectilinear flight.
The control action is based on the introduction of higher harmonics in the proprotor blade cyclic
pitch motion, and in the cyclic actuation of controllable-stiffness devices located at the roots of
the blades. Control laws are obtained through an optimal control methodology that yields the best
compromise between control effectiveness and control effort. The numerical investigation concerns
the analysis of the performance of the control techniques applied, examining a XV-15 tiltrotor model
in airplane mode configuration.

1. INTRODUCTION

This work deals with the application of optimal
control techniques to alleviate vibratory loads aris-
ing on the wing-proprotor system of a tiltrotor.
Indeed, hub loads generated by the proprotor,
along with the aerodynamic interactions between
the wing and the wake of the blades produce vi-
bratory loads on the wing that, at the root, are
transmitted to the fuselage. In turn, they pro-
duce acoustic disturbance inside the cabin that
may cause unacceptable ride discomfort, and have
also a significant impact on the fatigue-life of
the structure (and hence on maintenance costs),
thereby being a critical issue for tiltrotor design-
ers. This explains why the suppression/alleviation
of wing-root vibratory loads is one of the goals
that deserves the attention of rotorcraft design-
ers and researchers (see, for instance, the control
approaches based on wind-tunnel test data pre-
sented in Refs. 1 and 2, respectively for airplane
mode and helicopter mode applications).

Here, we examine the reduction of the vibrating
wing-root loads both through the introduction of
higher harmonics in the actuation of the propro-
tor cyclic pitch, and by the cyclic actuation of less
conventional IBC devices like smart-springs3 at
the blade root, that are able to induce local bend-
ing stiffness variations. Specifically, the investi-

gation is aimed at the analysis of the effective-
ness of such control techniques. The laws of the
actuation of cyclic pitch higher harmonics and
smart springs are obtained by an optimal con-
trol methodology based on the minimization of a
cost function, which includes vibratory loads and
control input harmonics, under the constraint of
compatibility with equations governing the wing-
proprotor aeroelasticity.

As it will be shown in Section 3, the identi-
fication of the cyclic control law requires the
knowledge of the (sensitivity or gradient) ma-
trix that relates the harmonics of the control in-
puts to the corresponding vibratory loads. In this
work it is obtained numerically through computa-
tional predictions of the wing-proprotor aeroelas-
tic behaviour. To this purpose, a wing-proprotor
aeroelastic solver developed in the past by the
authors4 has been adapted to include the effects
of the control variables, and then applied. It con-
siders an aerodynamic model based on a bound-
ary integral formulation for the velocity poten-
tial that is able to take into account the aerody-
namic interference between wing and proprotor,
with inclusion of the effects of impacts between
wake vortices and body surfaces.5 This formula-
tion is fully three-dimensional, can be applied to
complete aircraft/rotorcraft configurations in ar-
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bitrary motion, and allows the calculation of both
wake distortion (free-wake analysis) and velocity
field induced by the wake. In turn, the latter is
coupled with a quasi-steady airfoil theory to pre-
dict loads forcing blades and wing. The struc-
tural dynamics of wing and proprotor blades is
described by beam-like models,6 with inclusion of
the wing-proprotor mechanical interaction, that
is mainly governed by the influence of wing de-
formation on the kinematics of the blades and
by transmission of proprotor loads to the wing
through hub and pylon. This formulation yields
a set of coupled, nonlinear, integro-differential
equations, governing bending and torsion of wing
and proprotor blades. Additional equations are
included when a gimballed proprotor is examined.
The resulting aeroelastic model for wing-pylon-
proprotor system is solved through the applica-
tion of the Galerkin method for space discretiza-
tion, followed by a harmonic balance approach
for time integration.7

2. VIBRATORY LOADS ANALYSIS

In the aeroelastic tool applied for the analysis of
tiltrotor vibratory loads the equations governing
the structural dynamics are coupled with a quasi-
steady aerodynamic model in which the wing-
proprotor interaction effects are included through
the induced velocity model. Here, the velocity
induced by the wake vorticity is obtained by a
three-dimensional, unsteady, panel-method tool
which is able to capture the effects of the aero-
dynamic interference between rotor and wing, in-
cluding the strong rotor-wake/wing interaction.
In the following, the aeroelastic solver applied in
the control law identification process and vali-
dation phase is briefly outlined, along with the
aerodynamic model used for the determination
of the velocity field induced by the wake.

2.1 The aeroelastic formulation

Beam-like models are applied to describe the struc-
tural dynamics of both wing and rotor blades.
They are based on the nonlinear bending-torsion
equations of motion presented in Ref. 6, that are
valid for straight, slender, homogeneous, isotropic,
nonuniform, twisted wing/blades. Retaining sec-
ond order terms after the application of an or-
dering scheme that drops third-order terms not

contributing to damping, and assuming radial
displacements as simply geometric consequences
of the transverse bending deflections,8 the final
form of the dynamic system is a set of cou-
pled nonlinear integro-partial differential equa-
tions having as unknowns the displacements of
the elastic axis, along with the cross-section elas-
tic torsion. It is suitable for describing the re-
sponse of beam-like structures undergoing sig-
nificant deflections. In the aeroelastic tool for
control design, both wing and proprotor aero-
dynamic loads are simulated through 2D, quasi-
steady, aerodynamic models (with wake-inflow
corrections, to take into account unsteady and
three-dimensional effects due to wake vorticity).

The kinematics of the rotor blades is strongly
affected by the motion of the wing section to
which the rotor is attached to through the pylon
structure. Thus, both aerodynamic and inertial
blade forcing terms are significantly dependent
on the elastic deformation of the wing. On the
other hand, in addition to the aerodynamic loads,
wing dynamics is forced by forces and moments
transmitted by the proprotor at the wing section
where the pylon is located and by the inertial
effects due to the pylon mass.

The combination of wing and proprotor aeroelas-
tic models yields a strongly coupled set of equa-
tions governing the aeroelasticity of the wing-
pylon-proprotor system to be integrated. To this
aim, the space discretization of both wing and
proprotor blade equations is performed through
the Galerkin method, starting from elastic defor-
mations described as a linear combination of suit-
able linearly independent shape functions that
satisfy the geometric homogeneous boundary con-
ditions corresponding to the structure constraints
(in this work, the natural modes of a cantilever
beam have been applied).7 The resulting aeroe-
lastic system consists of a set of nonlinear ordi-
nary differential equations of the type

M(t) q̈ + C(t) q̇ + K(t,ku)q =

f nl
str(t,q,ku) + f θ

iner(t,q, θ) + faer(t,q, θ)(1)

where q denotes the vector of the Lagrangean
coordinates of blade (with inclusion of gimbal
degrees of freedom, if present), θ denotes the
higher harmonic blade cyclic motion used as a
controller, ku is the vector of the blade bending
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stiffness control variables, whereas M,C, and
K are time-periodic, mass, damping, and stiff-
ness structural matrices representing the linear
structural terms. Nonlinear structural contribu-
tions are collected in f nl

str, the inertial loads due
to higher harmonic blade cyclic motion are col-
lected in f θ

iner, whereas the generalized aerody-
namic forces are collected in faer (with inclusion
of aerodynamic loads transmitted to the wing by
the proprotor).

Considering problems concerning tiltrotors in uni-
form rectilinear motion (during which wing and
proprotor blades are subject to steady periodic
deformations), the blade passage frequency is the
fundamental frequency of wing response, whereas
the fundamental frequency of proprotor blade re-
sponse is the rotor frequency of revolution. Thus,
the solution of Eq. (1) and hence the predic-
tion of the vibratory loads is based on a har-
monic balance approach. It is a methodology
suitable for the analysis of asymptotic solutions
of differential equations (as time goes to infinity)
forced by periodic terms, as in the present prob-
lem. The harmonic balance solution consists of:
(i) express LHS and RHS of Eq. (1) in terms
of Fourier series; (ii) equate the resulting coef-
ficients; (iii) solve the corresponding algebraic
set of equations in terms of the unknown Fourier
coefficients of the Lagrangean coordinates of the
problem. Note that, because of the presence of
nonlinear terms, the harmonic balance solution
requires an iterative procedure.

2.1 The three-dimensional, unsteady,
aerodynamic formulation

The aerodynamic field of wing-rotor systems is
dominated by the interaction effects occurring
between rotor blades and wing. Periodic blade
passages close to the wing are a first source of
oscillations of the pressure field over wing and
proprotor blades, but the main source of wing
unsteady aerodynamic loads is given by the im-
pact of rotor wake vortices on wing surface. In-
deed, the wing located behind the propeller is
massively impinged by the wake vorticity released
by the rotor blades: this generates local flow
and pressure perturbations that, in turn, yield
a significant contribution to the vibrating loads.
The accurate analysis of problems involving the

strong interaction between vortices and bodies is
a complex task that requires the application of
suited three-dimensional, unsteady aerodynamic
solver.

To this aim, here the boundary integral formula-
tion for potential flows introduced in Ref. 5 has
been applied. It is a development of the formula-
tion presented in Ref. 9, which overcomes insta-
bilities of the numerical solution arising in case of
impingement between wake and body surfaces.
This formulation introduces the decomposition
of the potential field into an incident field, ϕI

,
and a scattered field, ϕ

S
. The scattered poten-

tial is generated by sources and doublets over the
body surfaces and by doublets over portions of
the body wakes that are very close to the trail-
ing edges from which they emanated (near wake,

SN

W
). The incident potential is generated by dou-

blets over the complementary wake regions that
compose the far wakes, SF

W
. These are the wake

portions that may come in contact with other
body surfaces (note that, in the present analy-
sis, body surface denotes proprotor blades and
wing surfaces, while the wake surface includes
wakes from both rotor blades and wing). The

scattered potential is discontinuous across SN

W
,

whereas the incident potential is discontinuous
across SF

W
. Hence, as demonstrated in Ref. 5,

for ϕ = ϕ
I

+ ϕ
S

the scattered potential is ob-
tained by

ϕ
S
(x, t) =

∫
S

B

[
G (χ − χ

I
) − ϕ

S

∂G

∂n

]
dS(y)

−
∫
SN

W

Δϕ
S

∂G

∂n
dS(y)(2)

where G is the unit source solution and Δϕ
S

is
the potential jump across the wake surface.5 In
addition, χ = v · n accounts for the impenetra-
bility boundary condition (with v denoting the
body velocity due to rigid and elastic body mo-
tion, and n the surface unit outward normal vec-
tor), while χ

I
= u

I
·n, with the velocity induced

by the far wake, u
I

= ∇ϕ
I
, given by

u
I
(x, t) = −∇

∫
SF

W

Δϕ
S

∂G

∂n
dS(y)(3)

The incident potential affects the scattered po-
tential by the induced-velocity term, χ

I
, and, in

turn, the scattered potential affects the incident
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potential by its trailing-edge discontinuity that is
convected along the wake and yields the intensity
of the doublet distribution over the far wake.

Obtaining the zero-th order discrete form of Eq.
(3) by using N panels over the far wakes and
recalling the vortex-doublet equivalence, the in-
cident velocity field may be evaluated through
the following expression

u
I
(x, t)≈−

N∑
n=1

Δϕ
S
(y

TE

Wn
, t − θn)

∫
Cn

∇xG × dy

where Cn denotes the contour line of the n-th
far wake panel, y

TE

Wn
is the trailing edge position

where the wake material point currently in y
Wn

emanated at time t − θn, and ∇x denotes the
operation of gradient with respect to the vari-
able x. This equation represents the velocity
field given by the Biot-Savart law applied to the
vortices having the shape of the far wake panel
contours and intensity Δϕ

S
(y

TE

Wn
, t − θn). The

final step of the formulation presented in Ref. 5
consists of introducing in these vortices a finite-
thickness core where a regular distribution of the
induced velocity is assured, along with a stable
and regular solution even in body-vortex impact
conditions5 (it is worth recalling that only the
far wake may experience such events). The de-
scription of the wake influence through the use
of finite-core vortices is a way to include also dif-
fusivity and vortex-stretching effects that, oth-
erwise, would not be taken into account in a
potential-flows aerodynamic formulation.

Akin to Eq. (3), Eq. (2) is solved numerically
by boundary elements, i.e., by dividing S

B
and

SN

W
into quadrilateral panels, assuming ϕ

S
, χ,

χ
I

and Δϕ
S

to be piecewise constant (zero-th
order, boundary element method - BEM), and
imposing the equation to be satisfied at the cen-
ter of each body element (collocation method).
Once the potential field is known, the Bernoulli
theorem yields the pressure distribution and the
integration over the body surface gives the cor-
responding aerodynamic loads.

3. OPTIMAL CONTROL FOR LOADS
ALLEVIATION

Here, the objective is to identify the blade higher
harmonic cyclic pitch motion and the cyclic blade

root smart spring stiffness variations such that
wing-root vibratory hub loads are reduced as much
as possible. Following an approach already used
in the past by other authors that have faced
the problem of helicopter vibration control (see,
for instance, Refs. 10, 11, 12, and 13), this is
achieved through an optimal methodology that
consists of minimizing the following performance
index

J = zT Wz z + uT Wu u(4)

where u is the vector collecting the control in-
put amplitudes to be determined (harmonics of
higher-harmonic cyclic pitch and blade root bend-
ing stiffnesses, in our case), z is the vector of the
quantities to be reduced, while Wz and Wu are
weighting matrices that are defined so as to get
the best compromise between control effective-
ness and control effort. Because of the inher-
ently time-periodic nature of the problem, this
control approach involves only the harmonics of
input and output variables, without concerning
the evolution of transients. In the present prob-
lem, for a N -bladed proprotor, the output vector
consists of the N/rev sine and cosine harmon-
ics of loads to be attenuated, while the control
inputs are the sine and cosine higher harmon-
ics of blade pitch, θ and blade root smart spring
stiffnesses, ku, that are effective for control.

Akin to the standard optimal LQR control method
(of which the present approach may be inter-
preted as the natural extension for the applica-
tion to the control of the steady-periodic behav-
ior of a system governed by a nonlinear, periodic-
coefficient differential equation), the minimiza-
tion of the cost function is obtained under the
constraint of satisfying the governing equation of
the system controlled. Such constraint is not di-
rectly represented by Eq. (1), but rather is given
by the following linearized relationship (about a
reference input state, un−1) between control in-
puts, u, and system response, z,

zn = zn−1 + Tn−1 (un − un−1)(5)

where Tn−1 is the (Jacobian) transfer matrix
that may be obtained numerically from solutions
of Eq. (1). Note that the nonlinear behavior
of the rotor aeroelastic response implies that the
transfer matrix is not constant, being a function
of the reference input state. Then, combining
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Eq. (4) with Eq. (5) and minimizing the re-
sulting cost function yields the following optimal
control input

un = Gu un−1 − Gz zn−1(6)

where the gain matrices are given by

Gu = DTT
n−1 WzTn−1

Gz = DTT
n−1 Wz

with

D = (TT
n−1WzTn−1 + Wu)

−1

Equation (6) has to be used in a recursive way:
starting from a given control input and corre-
sponding output, the law of the optimal con-
troller is updated until convergence. This ap-
proach yields the gain matrices to be implemented
in a closed-loop control process in which, at each
n-th control step, measured vibrating hub loads
and corresponding control inputs are used as a
feedback to update the control law. In this case,
the time interval between each control step should
be long enough to allow the tiltrotor to reach
the steady-periodic state corresponding to the
updated control inputs.10.

A drawback in using this local controller method-
ology lies in the significant computational cost
for the evaluation of the gradient matrix at each
step of the control process (note that the eval-
uation of the gradient matrix requires the de-
termination of the sensitivities of the hub loads
harmonics with respect to each flap deflection
harmonic considered in the control actuation).
In the numerical investigation, here the optimal
gain matrices law have been determined through
a computationally efficient local controller proce-
dure. It consists of the least square polynomial
approximation of outputs as functions of the in-
puts (based on numerically evaluated open-loop
data), from which the elements of the gradient
matrix, T, may be derived analytically (a sim-
ilar procedure has been applied in Ref. 2 for
reduction of noise and vibration of the XV-15 ro-
tor). Indeed, this approach significantly increases
the numerical efficiency of the local controller, in
that allows a search of the optimal control actu-
ation that is as fast as that using a global con-
troller (i.e., considering a constant gradient ma-
trix), and much faster than the local controller

one that requires the numerical evaluation of the
gradient matrix at each step of the control pro-
cess.

4. NUMERICAL RESULTS

The control algorithm for the alleviation of vi-
bratory loads at the wing-root has been applied
considering the wing-proprotor model examined
in Ref. 14. For this configuration, the stability
analysis performed by the aeroelastic solver ap-
plied here yields results that are in good agree-
ment with those presented in Refs. 14 and 15
(for such a comparison, an aerodynamic model
very similar to that described in Ref. 14 has
been used).16 The wing considered has length
Lw = 5.092m and chord c = 1.58m, while the
three-bladed gimballed proprotor has radius R =
3.82m (see Ref. 14 for further details on the
geometrical and structural properties).

The attention has been focused on the airplane
mode configuration in level flight, where the main
sources of vibratory loads are the interaction aero-
dynamic effects between wing and proprotor. In
this flight condition the free-stream velocity con-
sidered is V = 128.5m/s and the proprotor an-
gular velocity is Ω = 458RPM (corresponding
to advance ratio, μ = 0.7). The wing angle of
attack is equal to 3◦ and the proprotor axis is
aligned with the free-stream. The control re-
sults that will be presented in the following have
been obtained through a control law synthesis
obtained from a cost function (see Eq. (4)) that
is based on proprotor hub loads as outputs to be
reduced. This choice has been motivated by the
difficulty in approximating analytically the ma-
trix T relating control variable harmonics and
wing-root vibratory loads (an irregular behaviour
is shown by some of these transfer functions,
and further research will be addressed to better
understand such a problem). The results that
will be presented in the following have been ob-
tained limiting the higher harmonic pitch motion
to ±0.4◦ and the smart spring cyclic amplitude
to the 10% of the baseline stiffness value. In
both cases, the control law has been synthesized
by using the harmonics from 2/rev to 4/rev.

Figure 1 shows the 3/rev dimensionless loads at
the proprotor hub, comparing the uncontrolled
ones, with those given by a feedforward control
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approach and a feedback control approach, both
actuating higher harmonic pitch motion (loads
components are given in a frame with y-axis along
the wing span and z-axis aligned with the pro-
protor shaft; they have been obtained by dividing
forces by the factor mΩ2R2 and the moments
by the factor mΩ2R3, with m = 7.64kg/m).
Note that in the feedforward control approach
the higher harmonic pitch motion determined in
the control law synthesis through matrix T is
directly applied in the aeroelastic tool, while in
the feedback control approach matrices Gz and
Gu are used to determine higher harmonic pitch
motion as a function of the measured hub loads.
Both approaches significantly reduce the vibra-
tory hub loads, with the feedback one slightly
giving better performances. The same compari-
son is presented in Fig. 2 for the vibratory loads
at the wing root (in this case loads components
are given in a frame with y-axis along the wing
span and vertical z-axis; they have been obtained
by dividing forces by the factor mΩ2L2

w and the
moments by the factor mΩ2L3

w, with distributed
mass m = 32.5kg/m). Also in this case the vi-
bratory loads are significantly alleviated (although
they are not the direct objective of the optimal
control), with a poorer performance for the ver-
tical shear and bending moment (again, in the
overall the feedback control better alleviate vi-
brations).

Next, the smart spring control has been applied.
The results obtained are presented in Fig. 3 for
the hub loads and in Fig. 4 for the wing-root
ones. Akin to the higher harmonic pitch control,
hub loads are strongly reduced and a good reduc-
tion is also obtained for the wing-root loads, al-
though better control performance has been ob-
tained with the higher harmonic pitch actuation.

Finally, Figs. 5 and 6 show the results of the
combined control action from higher harmonic
pitch motion and smart spring stiffness varia-
tion. Comparing these figures with Figs. 1-4
it is possible to observe that using both devices
does not change the order of magnitude of the
attenuation obtained. Specifically, it gives con-
trol performances similar to that achieved by us-
ing higher harmonic pitch control only, with a
slightly more reduction on the vertical shear but
a poorer performance on the out–of–plane bend-

ing moment.

5. CONCLUDING REMARKS

A cyclic control approach has been applied to the
alleviation of vibratory loads acting on a wing-
proprotor system in airplane mode condition. In
this configuration the main source of vibrations
are the aerodynamic interaction effects between
wing and blades. The control synthesis has been
based on the numerical evaluation of the sensitiv-
ity matrix relating input harmonics to vibratory
loads included in the cost function of the opti-
mal control method. Because of the irregular be-
haviour of some transfer functions involving the
wing-root loads, here best control performance
has been obtained basing the control approach
on the cost function by considering proprotor hub
loads. Specifically, a good alleviation of vibratory
loads has been achieved using higher harmonic
cyclic pitch, higher harmonic smart springs and
the combination of them. The application of
only higher harmonic cyclic pitch control yields
better performances than the application of only
smart springs. The use of the combined action
of both devices has shown similar performances
than those obtained by applying the only higher
harmonic cyclic pitch control. In addition, al-
though the control is based on the reduction of
proprotor hub loads, it is efficient also in the re-
duction of wing-root loads. Next research ac-
tivity is needed in this subject, starting from the
analysis of the robustness of the control method-
ology, and including the investigation about the
problems that have been found in determining
the control law from an optimal methodology
based on the transfer matrix involving directly
the vibratory loads at the wing root. Anyway, we
expect that the use of combined devices would
give better alleviation when the wing–root loads
will be included in the cost function.
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