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Abstract

A method able to model the aerodynamics and aeroelastics of flapped rotors is presented in this paper. The structural model

of the blade and the associated mesh deformation algorithms are tested for several cases with good results. In addition, a 1-DOF

model is introduced for the flaps and several techniques are put forward for the coupled CFD/CSD solution. The demonstration

results are promising and highlight the need for a dedicated set of experiments to provide an ultimate validation case. The selected

test cases include flapped sections, wings, and even rotors with multiple trailing edge flaps.

NOTATION

a∞ = freestream speed of sound, m/s

AR = R/c, rotor aspect ratio

c = (mean) rotor chord, m

CN = section normal force coefficient (blade

Cp = (p− p∞)/q∞, pressure coefficient

CT = rotor thrust coefficient, T/(ρ∞(ΩR)2πR2)
Mtip = ΩR/a∞, rotational Mach number

M∞ = freestream Mach number

Mr = Mtip[r/R cos(λ) + µ sin(ψ − λ)],
relative Mach number

M2Cp = (p− p∞)/(12γp∞)
p∞ = freestream pressure, Pa

q∞ = 1
2ρ∞U

2
∞

, free-stream dynamic pressure, Pa

qr = 1
2ρ∞(Ωr + U∞ sin(ψ − λ))2, relative

dynamic pressure, Pa

r = radial coordinate along rotor blade, m

R = rotor radius, m

U∞ = freestream velocity, m/s

CFD = Computational Fluid Dynamics

CSD = Computational Structural Dynamics

α = wing incidence angle, deg.

δf = flap deflection angle, deg.

λ = (local) blade sweep angle, deg

µ = M∞/Mtip, rotor advance ratio

Ω = rotor rotation rate, rad/sec

ρ∞ = freestream density, kg/m3

σ = Nblades/πAR, rotor solidity

ψ = blade azimuth (0o at rear of rotor disk), deg.

section axes)

1 INTRODUCTION

This paper presents developments in the Helicopter Multi-

Block (HMB) necessary for predicting the effect of flaps

present on rotor blades. Flaps on rotors [23] can be used for

different purposes: improved performance, vibration and/or

noise reduction, or even as primary controls. However, due

to the complexity of the flow field, comprehensive methods

based on lookup tables and 2D-aerodynamics show limita-

tions in predicting the rotor performance, particularly at chal-

lenging conditions. The use of CFD may allow for better sim-

ulations, especially if coupled with a structural model to ac-

count for the in-flight structural deformations of blades and

flaps. This calls for a coupling between CFD and CSD. The

reaction of the flap to the airloads is also of interest, because

the flap deployment does not always correspond to the actua-

tion law.

Most aeroelastic simulations have separate structural and

flow solvers, that are coupled and exchange information dur-

ing computations. Various coupling methods have been put

forward in the literature, though two approaches are mainly

used: weak and strong coupling. The former consists of an

exchange of information between both solvers every rotor

revolution or every fraction of a revolution, while the latter

consists of exchanging information between the two solvers

at the end of each time step or even more often. Repre-

sentative examples of previous attempts are shown in Ta-

ble 1. A study by Altmikus et al. [1] compared the strong and

weak coupling strategies. While the predictions for the blade

deformation were similar, the strong coupling proved more

time consuming and less robust. The weak coupling strat-

egy proved more popular, and recently, the interest moved

from isolated rotors to full helicopter configurations [8, 15].

However, some attempts were made in using a strong cou-

pling strategy. The main interest of the strong coupling strat-

egy comes from the lack of forced periodicity, which allows

the simulations of manoeuvring rotors, as demonstrated by

Sitaraman and Roget [32]. Furthermore, coupling method in-

cluding more advanced 3D-FEM structural models were stud-

ied by Ortun et al. [25] and Datta and Jonhson [11], in order

to improve the prediction for newer rotor blades of advanced

planforms.

The flaps may or may not be actuated during parts of the

flight, and will have a finite stiffness and structural damp-

ing. It is therefore well possible that a flap may exhibit flut-

ter, limit-cycle oscillation or even couple with the unsteady

loads on the blade as these vary around the azimuth. This

problem is common in fixed-wing aero-elasticity and for this

reason clearance of all flapped sections with respect to their

dynamic stability is necessary. Flap analyses has so far been

attempted by several authors and with a variety of modelling

techniques. Amongst these works, Milgram et al. [23] as well
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as Friedman [17] and Shen [30] employed a range of com-

prehensive methods that allow for some aspects of the flap

to be modelled. In a recent paper Cesnik [9] also reported

on the use of comprehensive tools for flapped rotor analysis.

Works with full Navier-Stokes based CFD also appear in the

literature and these adopt several techniques to allow for mod-

elling of the flap. The work by Jose and Baeder [20] shows

several techniques including local mesh refinement and adap-

tation near the flap. Sitaraman et al. [31] show the use of

over-set mesh techniques for a range of applications, includ-

ing an airfoil-flap-slat test case where separate grids for each

of the three components are combined to model the flow in-

cluding the gaps between airfoil and flap and slat. All these

works attempt to develop methods for the analysis of flaps or

combine predictions and theory with experiments aiming to

design rotors that out-perform conventional designs. In addi-

tion to the numerical studies, the potential of reducing rotor

vibrations by active flaps on blades was investigated recently

in wind-tunnel tests [10]. In the tests, a Mach-scaled rotor was

equipped with two active flaps per blade, i.e. an inboard flap

at approximately 75% span-wise positions and an outboard

flap centred around 85%. The chord-wise and span-wise ex-

tents were 15% and 10% respectively. Predefined flap sched-

ules as well as closed-loop control systems for the flap were

investigated. For the closed-loop control system, a notable re-

duction in vibratory air-loads was reported. In addition, all the

above works, identify the potential issues related to the aeroe-

lasticity of the flap and the effect of the flap structural proper-

ties in the overall rotor performance. It is exactly this concern

that motivates the current work. The overall objective is to de-

velop an appropriate method for modelling flap aeroelasticity

within the framework of Navier-Stokes CFD methods and es-

tablish the best coupling strategy for the aerodynamics and

structural analysis. In earlier efforts to couple CFD and struc-

tural analysis, the integration of the governing equations in

time has been studied [16] and several works exist presenting

results for wing sections with one, two and some times more

degrees of structural freedom. An example of these works can

be found in [5]. For blade sections of a rotor in forward flight,

the tangential velocity and blade pitch change periodically as

the blade rotates. In the present work, these effects are mod-

elled for two-dimensional sections using a combination of os-

cillatory translations as well as a periodic pitch schedule. For

rotors, this simultaneous variation of the Mach number and

incidence may need a different approach than for fixed-wing

applications and for this reason, the coupling methods are re-

visited here for the problem of a rotor section equipped with

a flap with one degree of freedom in pitch.

The work presented in this paper first concentrates on the

validation of the Helicopter Multi-Block solver of the Uni-

versity of Liverpool for flapped sections and then compares

and evaluates coupling methods for the aero-elastic analysis

of a flap with 1-DOF. The coupling problem is far from triv-

ial since the non-linearity of the aerodynamic loads must be

resolved and at the same time, the flap deflection and velocity

must be computed in a time-accurate fashion. The paper be-

gins with the HMB validation, then presents the mathematical

models and numerical schemes of the 1DOF problem, its non-

dimensionalisation and the implementation of the algorithm.

The results for several coupling methods are then presented

and evaluated and the work shows that limit cycle oscillation

of the coupled system is possible. The paper then proceeds

with the analysis of flapped rotors.

In the next section, the numerical methods are described,

including the HMB solver, flap modelling and CFD/CSD cou-

pling strategy. Then, the various methods are tested for suit-

able test cases: 1-degree-of-freedom flap, static and oscillat-

ing aerofoils, fixed flap deployment on a wing model, and

demonstration of the CFD/CSD coupling strategy for rotors

with flaps in forward flight.

2 NUMERICAL METHODS

2.1 HMB Flow Solver

The Helicopter Multi-Block 2 (HMB2) CFD code [3,4,34,35]

was employed for this work. HMB2 solves the unsteady

Reynolds-averaged Navier-Stokes equations on multi-block

structured mesh topologies using a cell-centred finite-volume

method for spatial discretisation. Implicit time integration

is employed, and the resulting linear systems of equations is

solved using a pre-conditioned Generalised Conjugate Gradi-

ent method. For unsteady simulations, an implicit dual-time

stepping method is used, based on Jameson’s pseudo-time in-

tegration approach [19]. The HMB2 method has been vali-

dated for a range of rotorcraft applications and has demon-

strated good accuracy and efficiency for very demanding

flows. Examples of work with HMB2 can be found in refer-

ences [33–35]. Several rotor trimming methods are available

in HMB2 along with a blade-actuation algorithm that allows

for the near-blade grid quality to be maintained on deforming

meshes [35].

The HMB2 solver has a library of turbulence closures in-

cluding several one- and two- equation turbulence models and

even non-Boussinesq versions of the k−ω model. Turbulence

simulation is also possible using either the Large-Eddy or the

Detached-Eddy approach. The solver was designed with par-

allel execution in mind and the MPI library along with a load-

balancing algorithm are used to this end. For multi-block grid

generation, the ICEM-CFD Hexa commercial meshing tool is

used and CFD grids with 10-20 million points and thousands

of blocks are commonly used with the HMB2 solver.

For forward flying rotors, the HMB2 method [3, 4, 34,

35] solves the compressible-flow Reynolds-Averaged Navier-

Stokes equations in an inertial frame of reference. The

employed finite-volume discretisation accounts for moving

and deforming meshes in time-accurate simulations. Conse-

quently, a rotor in forward flight is modelled in a ’helicopter-

fixed frame of reference’, where the forward flight veloc-

ity is introduced through the definition of the ’free-stream’

conditions. For isolated rotors, as well as, rotor/fuselage or

rotor/wind-tunnel cases, the rotor and rotor blade motions are

then accounted for using mesh velocities. For rotor/fuselage

or rotor/wind-tunnel cases, the relative motion of the rotor and

the fixed fuselage or tunnel is accounted for using the sliding-

plane approach [34].
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2.2 Modelling of wings with part-span flaps

Figure 1 illustrates the definition of flap surface and hinge po-

sitions used in the present model. For each flap a separate

boundary is used. In the example shown in Figure 1(a) the

4 shaded surfaces all have the same boundary condition and

thus define a single flap. The flapping motion is around the

hinge line shown in the figure, which is defined by input pa-

rameters. Figure 1(b) shows the example of two neighbouring

flaps. Here, the two shaded surfaces on the right (B1, B2) de-

fine flap 1, while flap 2 is defined by the left surfaces (B3,

B4). The two flaps have separate hinge lines as shown in the

figure. Flap 1 is hinged along a line close to the lower wing

surface, while the second flap is hinged along a line close to

the camber line of the section. The flap implementation in-

cludes blending in both chord-wise and span-wise directions

in the vicinity of any flap edge neighbouring a fixed-surface

or a surface belonging to another flap. The blending meth-

ods involve a gradual reduction of the flap deflection towards

the flap edge. In the spanwise direction a simple algebraic

method is used that reduces the deflection in an approximately

parabolic way. For the single flap, the spanwise blending re-

gions are indicated in Figure 1(a). The two flaps in Figure

1(b) are free to move indepently. Since the flap surfaces are

immediate neighbours along one edge, spanwise blending is

employed normal to this edge with a zero deflection along the

edge dividing the flaps. In the chordwise direction, the blend-

ing is more critical since it may introduce severe pressure dis-

turbances near the flap edge due to the change of the blade

surface curvature. In the present method, a parabolic spline

is created to approximate the flap surface in the vicinity of

the flap edge so that C(1) continuity is achieved at the edge

and C(2) continuity in the point where the spline joins the

un-blended part of the flap surface. Figure 2 demonstrates the

blended-flap method for a 2D mesh around a NACA0012 sec-

tion. In the examples shown, the flap has a chord-wise extent

of 20%c and the flap deflection is 5o. The figure shows the ef-

fect of varying hinge locations. The left column shows the re-

sults for the mesh deformation without chord-wise blending.

For Figure 2(a)-(f), the hinge is located at the symmetry line,

with a variation in the chord-wise position. As can be seen,

the smoothness of the airfoil section is quite well preserved

for the method based on spline-fitting. The difference with

the non-blended case is most pronounced for the flap hinge

located at the 25% flap chord station, shown in Figures 2(e)-

(f). The examples in Figures 2(g)-(j) show examples where

the hinge is located close to the aerofoil lower surface. The

main challenge then becomes preventing grid folding near the

flap edge on the upper surface for fine grids.

For flap surfaces that are completely separate from the

main wing surface, the blending is not used. Examples of

such geometries are shown in Reference [18] for a flapped

rotor blade based on the HIMARCS blade [24]. The gap be-

tween the main and flap elements of the rotor is small but

finite and should be refined to allow for the details of the flow

to be resolved. This technique was successful in modelling

flapped wings and rotors as detailed in [18].

In the model, a Trans-Finite Interpolation method is used

to impose the flap surface deflection onto the volume mesh.

In time-accurate simulations, the mesh velocities are com-

puted using a second-order accurate finite-difference expres-

sion. Alternatively, for prescribed flap deflections an analyti-

cal velocity could be calculated.

2.3 1-Degree-of-Freedom Flap Model

The HMB2 flow solver includes models for incorporating ac-

tive trailing edge flaps on aerofoils and wings, as well as, ro-

tors in forward flight. Most of the time, the use of these mod-

els imposes a pre-defined flapping schedule in time-accurate

flow simulations, typically by means of a Fourier series devel-

opment of the flapping angles as function of time. However,

the finite stiffness of the flap hinges introduces the poten-

tial for aero-elastic coupling of the flap with the surrounding

unsteady flow field. For this reason, a 1-degree-of-freedom

model was implemented in HMB2. The main objective of this

type of simulations will be investigations of the flap stability.

In the 1-degree-of-freedom aero-elastic model, the rotational

motion of the flap around its hinge is governed by an ODE of

the following form:

Ih
d2δ

dt̃2
+ dh

dδ

dt̃
+ khδ = Mh (1)

where t̃ is time, δ is the flap deflection (positive down), Ih
is the moment of inertia about the hinge, dh is the damp-

ing coefficient, kh is the spring stiffness and Mh the aerody-

namic forcing, i.e. the aerodynamic moment about the hinge.

In Equation (1), all quantities are dimensional and per unit

flap span. In the following, a non-dimensionalisation is in-

troduced and subsequently, omission of the tilde denotes a

change to dimensionless quantities.

Equation (1) can be non-dimensionalised using the fol-

lowing definitions:

t =
t̃c

U∞

; b =
c

2

r2 =
Ih
mb2

; µ =
m

ρ∞πb2
(2)

ω̃0 =
√

kh/Ih ; ω0 = ω̃0
c

U∞

Mh = cm
1

2
ρ∞U

2
∞
c2 = 2cmρ∞U

2
∞
b2

ζ =
1

2

dh√
khIh

where t is the non-dimensional time, b the half-chord of the

aerofoil section c, r the radius of gyration, m the mass of the

section per unit span, µ the mass ratio. The natural frequency

of the flapping motion is ω̃0, with ω0 its non-dimensional

equivalent. The scaled non-dimensional structural damping

is defined through ζ. Introducing these definitions in Equa-

tion (1), one can write,

d2δ

dt2
+
dh
Ih

U∞

c

dδ

dt
+ ω̃0

2δ =
2cmρ∞U2

∞
b2

r2mb2
,

d2δ

dt2
+ 2ζω0

dδ

dt
+ ω0δ = 8 cm

πr2µ
(3)

For a single harmonic forcing on the right-hand side,
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Equation (3) has the following exact solution,

d2δ

dt2
+ 2ζω0

dδ

dt
+ ω2

0δ = F0 sin(ωt) (4)

δ(t) =
F0

Zω
sin(ωt+ φ),

Z =

√

(2 · ω0ζ)2 +
1

ω2
(ω2

0 − ω2),

φ = atan

(

2ωω0ζ

ω2 − ω2
0

)

2.3.1 Leap-frog time integration method

In this model, the motion of the flap around its hinge is inte-

grated in time using a second-order accurate leap-frog method

for Equation (3). This integration involves a single aerody-

namic load evaluation per time step. In a time-accurate sim-

ulation using this model, the integration from time step n to

n + 1 involves the following steps. First, the flap is moved

to the current position and the mesh is updated to account for

this change. Then, the grid velocity at the present time step

is evaluated. In the dual-time stepping approach employed in

HMB2, a quasi-steady flow for this step is then solved, fol-

lowed by an integration of the aerodynamic forces and mo-

ments acting on the main section and flap. Then, the flap

position and velocity are updated according to,

a = 8
cm
πr2µ

− 2ζω0

(

dδ

dt

)(n)

− ω2
0δ

(n)

δ(n+1) = δ(n) + δt

(

dδ

dt

)(n)

(

dδ

dt

)(n+1)

=

(

dδ

dt

)(n)

+
1

2
δt

[

(

d2δ

dt2

)(n)

+ a

]

(5)

(

d2δ

dt2

)(n+1)

= a

In the above, dimensionless quantities are used, and δt is the

non-dimensional time step in the simulation, while a repre-

sents the angular acceleration of the flap around the hinge.

2.3.2 Implicit fluid-structure coupling method

The leap-frog method discussed previously coupled the struc-

tural response and the aerodynamics in the ’outer’ loop of the

dual-time stepping method. Thus, in effect, during the flow

field computation in the ’inner’ relaxation loop, the structural

response was kept constant. In the leap-frog method, the aero-

dynamics and structural response are effectively ’staggered’

in time by one time-step. In a 4-stage Runge-Kutta method,

the sub-iterations would create a more direct coupling be-

tween the aerodynamics and the structural response. This of

course would be at the expense of the flow-field evaluations at

each of the Runge-Kutta steps. For this reason Runge-Kutta

method were not considered in this work.

The second 1-degree-of-freedom model implemented in

HMB employs a fully implicit coupling of the aerodynamics

and the structural response. Here, the coupling takes place

at the levels of the ’inner’ loop of the dual-time stepping

method.

The second-order ODE for the flap deflection is first re-

cast in a system of two first-order ODEs:

dy

dt
+ 2ζω0y + ω2

0δ = 8
cm
πr2µ

dδ

dt
= y

In the implementation in the dual-time marching method,

the system is discretised with time-implicit finite-differences

as:

(

dy

dt

)(n+1)

=
[

3y(n+1) − 4y(n) + y(n−1)
]

/(2dt)

(

dδ

dt

)(n+1)

=
[

3δ(n+1) − 4δ(n) + δ(n−1)
]

/(2dt)(6)

Taking the aerodynamic forcing at the new time level, the

following system is obtained:

[

3
2dt + 2ζω0 ω2

0

−1 3
2dt

]

[

(

dδ
dt

)(n+1)

δ(n+1)

]

=

[

8
c(n+1)
m

πr2µ
+
(

4
(

dδ
dt

)(n) −
(

dδ
dt

)(n−1) )
/(2dt)

(

4δ(n) − δ(n−1)
)

/(2dt)

]

(7)

where the system in Equation (7) is solved for every iter-

ation in the dual time-stepping loop, i.e. the air-loads are

re-evaluated every time the flap deflection angle is updated.

Upon convergence of the inner-loop in this dual-time step-

ping method, the converged flow solution at the new time step

will be consistent with the structural response obtained at the

same time level. Compared to the leap-frog method discussed

previously, the implicit fluid-structure coupling method in-

volves more evaluations of the flap equation and correspond-

ing mesh deformations per time-step. However, the stability

added by the implicit treatment should enable larger time-

steps and hence fewer time-steps in the aero-elastic simula-

tion.

2.3.3 Solution of structural response in Fourier space

In the three previously discussed coupling methods, the flow

state and structural response are integrated in time, using ei-

ther a coupling per time-step or pseudo-time step in the dual-

time stepping method. For cases with a ’periodic’ flow forc-

ing, an alternative method for the temporal integration was

developed. In this method, the motion of the flap around its

hinge is obtained from solving Equation (3) in Fourier space.

The flap deflection and its derivatives, as well as, the forcing,
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are expanded in the following Fourier series,

δ(t) = a0 + a1 sin(ωt) + b1 cos(ωt)

+a2 sin(2ωt) + b2 cos(ωt) + . . . (8)

dδ(t)

dt
= ωa1 cos(ωt)− ωb1 sin(ωt)

+2ωa2 cos(2ωt)− 2ωb2 sin(ωt) + . . .

d2δ(t)

dt2
= −ω2a1 sin(ωt)− ω2b1 cos(ωt)

−4ω2a2 sin(2ωt)− 4ω2b2 cos(ωt) + . . .

8
cm
πr2µ

= c0 + c1 sin(ωt) + d1 cos(ωt)

+c2 sin(2ωt) + d2 cos(ωt) + . . .

Matching the Fourier coefficients for different frequencies

gives,

ω2
0a0 = c0

[

(ω2
0 − k2ω2) −2kζωω0

2kζωω0 (ω2
0 − k2ω2)

] [

ak
bk

]

=

[

ck
dk

]

,

k = 1, . . . , nharm (9)

where nharm is the number of Fourier harmonics used in the

series expansions andω is the frequency of the ’imposed’ flow

unsteadiness. Solving for the Fourier coefficients gives,

a0 = c0/ω
2
0

[

ak
bk

]

=
1

∆

[

(ω2
0 − k2ω2) 2kζωω0

−2kζωω0 (ω2
0 − k2ω2)

] [

ck
dk

]

,

∆ = (ω2
0 − k2ω2)2 + 4k2ζ2ω2ω2

0 ,

k = 1, . . . , nharm (10)

This scheme is a hybrid time-domain/Fourier-domain

method, since the Navier-Stokes equations are solved in the

time-domain. In the current implementation, the method pro-

ceeds along the following steps:

1. Set ai = 0, bi = 0, for i ∈ [0, nharm]; and compute

the flapping schedule for the first two cycles based on

these coefficients,

2. Solve the unsteady flow for the first two cycles and

record the flap hinge moment for each time step,

3. Transform the hinge moment for the last cycle into

Fourier space, which defines ci, di, for i ∈ [0, nharm].
Using Equation (10), compute ai, bi, for i ∈
[0, nharm].

4. Compute the flapping schedule for next two cycles

based on these coefficients. In case an under-relaxation

is used, the new flapping schedule combines the ’old’

Fourier coefficient and the ’new’ coefficients to prevent

excessively large changes in the flapping schedule from

one structural solution to the next,

5. Solve the unsteady flow for the next two cycles and

record the flap hinge moment for each time step,

6. Repeat from step 3.

The structural response is updated every 2nd cycle to en-

able the flow to adjust to each new flapping schedule. In the

1st cycle of a new flapping schedule, the flow will develop

artificial transients which will need to decay before an accu-

rate hinge moment can be recorded in the 2nd cycle after a

new flapping schedule was imposed. The above method is a

hybrid time/frequency-domain integration and resembles the

harmonic balance technique used in aero-elasticity. An alter-

native would be ’harmonic balance method’, as will be used

in the following sections.

2.4 Aeroelastic Coupling method for Forward

Flying Rotors

For forward flying rotors, a modal approach is used. The

modal approach allows a reduction of the problem size by

modelling the blade shape as the sum of a limited number of

dominant eigenmodes, which are obtained using NASTRAN.

The blade shape is described as follows:

φ = φ0 +

nm
∑

i=1

αiφi , (11)

where φ is the blade shape, φ0 the blade static deformation

and φi is the i-th mass-scaled eigenmode of the blade. The

amplitude coefficients αi are obtained by solving the equa-

tion:
∂2αi

∂t2
+ 2ζiωi

∂αi

∂t
+ ω2

i αi = ~f · φi , (12)

where ωi and ζi are respectively the eigenfrequency and the

eigenmode damping ratio. ~f is the vector of external forces.

To solve Equation 12 in time, along with the flow solution

around the rotor, a strong coupling method was used.

The strong coupling approach does not force periodicity

in the blade deformation and may need more time to solve a

problem and be less stable. However, it allows more flexibil-

ity for complex motions of the rotor which are not linked to a

steady flight (like manoeuvres). Two approaches were tested

and compared: a leap-frog method computed the modes am-

plitudes between each time step, and an implicit method com-

puted the mode shape amplitudes between each pseudo-time

step. A flow chart showing the different steps for each method

is shown in Figure 3.

2.4.1 The Leap-Frog Method

Equation 12 is solved at the end of each time step, as shown in

Figure 3a. The i-th mode forcing is extracted from the com-

puted time step t as:

f s
i = ~f · φi (13)

The i-th amplitude αi is then assessed for time step t+ 1 as:

[αi]t+1 = [αi]t +

[

∂αi

∂t

]

t

∆t+
1

2

[

∂2αi

∂t2

]

t

∆t2 (14)

The time derivative of the amplitudes are then computed

as:

[

∂2αi

∂t2

]

t+1

= [f s
i ]t − ω2

i [αi]t − 2ζiωi

[

∂αi

∂t

]

t

(15)
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[

∂αi

∂t

]

t

=
1

2

(

[

∂2αi

∂t2

]

t

+

[

∂2αi

∂t2

]

t+1

)

∆t (16)

using the non-updated amplitudes derivatives estimates from

the previous time step t.

2.4.2 The Implicit Method

The discretisation of the derivatives of the modal amplitudes

is expressed as follows:

[

∂αi

∂t

]

t

=
[

∂αi

∂t

]

t−1
+∆t

[

∂2αi

∂t2

]

t−1
(17)

=
[αi]t−[αi]t−2

2∆t
+

[αi]t−2[αi]t−1+[αi]

∆t
(18)

=
3[αi]t−4[αi]t−1+[αi]

2∆t
(19)

which, if applied to the modal amplitudes and their time

derivatives, gives:

[

∂αi

∂t

]

t

=
3[αi]t−4[αi]t−1+[αi]t−2

2∆t
(20)

[

∂2αi

∂t2

]

t

=
3
[

∂αi

∂t

]

t

−4
[

∂αi

∂t

]

t−1
+
[

∂αi

∂t

]

t−2

2∆t
. (21)

Equation 12 is discretised as:

[

2ζiωi +
3

2∆t
ω2
i

−1 3
2∆t

]([

∂αi

∂t

]

t

[αi]t

)

=




[f s

i ]t +
4
[

∂αi

∂t

]

t−1
−

[

∂αi

∂t

]

t−2

2∆t
4[αi]t−1−[αi]t−2

2∆t



 (22)

and solved at the end of each time step. The matrix is inverted

using Cramer’s rule and the modal amplitudes coefficient up-

dated for the following pseudo-time step. This method im-

plies the computation of the new grid at each pseudo-time

step, as shown in Figure 3b, compared to each time step for

the leap-frog method, but was deemed more robust.

2.4.3 Aeroelastic Coupling method for Hovering Rotors

For hovering rotors, CFD/CSD coupling is realised using an

iterative method. The loads are first extracted from the fluid

solution and are then used in NASTRAN to obtain the re-

quired blade shape using a static deformation approach. The

blade is then deformed based on the structural shape using the

method described in the next section. This process is repeated

until convergence. Results from this approach are reported in

an earlier work of the authors [13].

2.5 Grid Deformation Method

The method developed for HMB first deforms the blade sur-

face according to the structural deformation using the Con-

stant Volume Tetrahedron (CVT) method, then obtains the

updated block vertex positions via spring analogy (SAM) and

finally generates the full mesh via Transfinite Interpolation

(TFI). It is extensively described in [14]. The TFI first in-

terpolates the block edges and faces from the new vertex po-

sition and then interpolates the full mesh from the surfaces.

This method uses the properties of multi-block meshes and

maintains efficiency as the number of blocks increases, par-

ticularly in the spanwise blade direction.

The method to deform the blade surface to account for the

flap motion, for rotor blades with active flaps, is very simi-

lar to the method for wings with active flaps, previously de-

scribed in Section 2.2. The flap and hinge line locations are

now to be defined for the blade in the ’datum’ position, i.e.

for the blade at ψ = 0o and with the built-in coning and col-

lective angle removed. The assumption is made that all blades

have the same flap geometry. The flap angles are then defined

as a Fourier series in the blade azimuthal angle. Again, flap

blending is employed to maintain a smooth surface geometry

and mesh.

2.6 Example mesh deformations and mesh quality

preservation

Figure 4 shows the relative cell volume changes due to mesh

deformation accounting for rotor trimming and trailing-edge

flap actuation for the ’rigid’-block mesh deformation method.

A spanwise cut through mid-span of inboard flap is shown for

three different conditions. Figure 4(a) shows results for the

relative cell volume change resulting from applying a trailing-

edge flap deflection of 5o. In Figure 4(b), an 8o nose-down

pitch change is added, while in Figure 4(c) an additional

2o blade flapping angle is imposed. Figures 5(a)-(c) show

the equivalent results for a chord-wise cut through the blade

mesh. The mesh deformation method based on the spring

analogy approach is demonstrated in Figure 6(a) for an 8o

nose-down pitch change as well as a 5o trailing-edge flap de-

flection. Comparing this figure with Figure 4(b), it can be

seen that using the ’rigid’-block mesh deformation method,

the mesh is not deformed at all in the blocks around the lead-

ing edge of the blade, while for the spring analogy approach,

the relative cell volume changes were limited to around 10%
in the leading-edge region. For the ’rigid’-block mesh de-

formation method, the mesh deformation resulting from the

blade pitch change is restricted to the blocks surrounding the

’rigid’ blocks. For the spring analogy method, these blocks

similarly take the majority of the mesh deformation. For com-

parison, Figure 6(b) shows results which were obtained by

imposing the blade deflections onto the first layer of mesh

blocks surrounding the blade surface by TFI. In the present

method, this was achieved by re-setting the ’internal’ vertex

displacements to zero. As demonstrated previously [35] for

a rotor without flaps, such an approach leads to unacceptable

mesh deformations for typically rotor control angles.

3 RESULTS AND DISCUSSION

In this section, demonstrations of the previously introduced

methods are presented. The first part focuses on aerofoil sim-

ulation using a 1-degree-of-freedom flap model, followed by

a demonstration of the flap actuation on a wing. The aeroe-

lastic coupling strategy is then demonstrated on the UH-60A

rotor, followed by a demonstration of the flapped rotor ap-

proach using a model rotor.
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3.1 Results for 1-degree-of-freedom flap model -

static aerofoil

As a first test of the 1-degree-of-freedom aero-elastic flap

model, the accuracy of the temporal integration method was

assessed by performing a series of simulations in which the

coupling with the aerodynamic loads was switched off. In this

case, the flap was given an initial deflection of 2.0o down. The

non-dimensional flap stiffness kh was chosen as 0.1 and the

non-dimensional inertia Ih about the flap hinge as 10.0. This

gives a scaled natural frequency ω0 =
√

kh/Ih = 0.10, cor-

responding to a reduced frequency of 0.05. Time-dependent

simulations were set such that the considered time-interval

spans 3 cycles of the flap at the natural frequency. Cases were

computed with 360, 720 and 1440 time steps per cycle. No

structural damping was imposed.

The evolution of the flap angle for the cases without aero-

elastic coupling is shown in Figure 7(a), using the leap-frog

1-degree-of-freedom method. It can be seen that for all three

temporal resolutions, the natural frequency of the flap oscilla-

tion is very well captured, i.e. the flap completes three cycles

in the considered time interval. The effect of the temporal in-

tegration accuracy mainly shows through a slowly increasing

flap amplitude for larger time-step cases. For this undamped

case without aero-elastic coupling this amplitude should re-

main constant. For the 3 cycles considered, the simulation

with 1440 time steps per cycle preserves the amplitude to a

good level, while the simulation with 360 steps per cycle gives

a clear over-prediction of the flap amplitude at later stages in

the simulation.

The simulations were repeated with aero-elastic coupling,

with the results shown in Figure 7(b). From comparison with

the cases without aero-elastic coupling, it can be seen that

the aero-elastic coupling increases the oscillation frequency

somewhat. This is a manifestation of the added ’stiffness’

duet to the aerodynamic moments around the flap hinge for

the considered conditions. As expected, the aero-elastic cou-

pling appears to introduce a small amount of damping into

the system, since the flap amplitude stays closer to the initial

amplitude for the considered time interval.

3.2 Results for 1-degree-of-freedom flap model -

oscillating aerofoil

Table 2 presents the test cases for an oscillating OA209 airfoil

studied in the present work. In all cases, the airfoil oscillation

schedule represents a blade section at 90% span-wise position

on the ONERA 7AD 4-bladed model rotor assuming a rotor

tip Mach number Mtip = 0.60. Test cases 1 and 2 assume

a constant pitch angle of the section, 2.0o and 4.0o, respec-

tively. The unsteady nature of the aerodynamics are therefore

purely the result of the translation motion of the section. Fig-

ure 8 shows the surface pressure distribution for test case 2,

when the airfoil is assumed fully rigid, i.e. without flap de-

flection. The formation of the strong normal shock on the

advancing side of the cycle is apparent. The reduced dynamic

head encountered by the section on the retreating side of the

cycle leads to much reduced air-loads through that part of the

cycle.

Test cases, 3, 4a and 4b assume a representative

pitch schedule defined by θ(2kt) = θ0 − θ1s sin(2kt) −

θ1c cos(2kt), with θ1s = 8.0o and θ1c = −2.0o. For case

3, θ0 = 2.0o, while for 4a and 4b, θ0 = 6.0o. Test case 3 has

a negative pitch angle through parts of the advancing side,

leading to the formation of a strong shock wave on the lower

surface of the section. For a blade station at 90% R, this sit-

uation can arise in high-speed forward flight [33]. The larger

mean angle in cases 4a and 4b result in much weaker shocks

on the advancing side of the rotor disk, while for these cases,

the large blade pitch will cause dynamic stall through parts of

the retreating side. For these different test cases, simulations

were conducted for the different aero-elastic coupling meth-

ods and a wide range of different numerical parameters, as

shown in Tables 3-7.

3.2.1 Consistency and stability of different schemes

For the fixed-pitch test cases 1 and 2, the predictions for the

flap deflection angle from the leap-frog and direct implicit

coupling methods are compared in Figures 9 and 10 for invis-

cid and viscous flow models. Results are shown for a range of

time-steps as well as pseudo-steps. It can be seen that the re-

sults from the direct implicit coupling method converge well

even for a small number of time-steps, i.e. for 720 or more

time steps per translation cycle, the results are very close.

The leap-frog method can also deliver good results that con-

verge to the implicit solution at the expense of pseudo time

steps. For the cases shown here, around 100 pseudo-steps are

needed for the inviscid flow model and 200 for the viscous

option. This result alone shows that the implicit method may

be more suitable for computations and could offer savings. It

is also evident that the combination of real time steps with the

small number of pseudo-steps that the implicit method offers,

is the key to efficient computations. This conclusion about

the implicit method, is further supported by its robustness in

comparison to the leap-frog method.

Figures 11 and 12 show how the results for the direct im-

plicit coupling method depend on the number of pseudo-time

steps and time-steps for cases 1a and 2. From the analysis it

can be seen that with 50 pseudo-steps and CFL of 20, the

inner iteration in the dual-time stepping method converges

sufficiently to obtain a good temporal evolution in the outer

loop with increasing number of time steps. Figure 11 also

compares the result for the harmonic method for test case 1a

with a singe mode with the results of the direct implicit cou-

pling method reconstructed with the first Fourier harmonics.

The comparison shows that the harmonic method captures the

first harmonic component of these solutions to a good level.

As can be seen, the higher-frequency flap deflection modes

present in the direct implicit coupling solutions feed back into

the first-harmonic excitation. This higher-frequency feedback

cannot be captured by the harmonic method.

For the leap-frog method, temporal convergence was seen

to require more time steps per translation cycle. The results

presented in Figure 10 indicate that at least 2880 time steps

per translation cycle are required for the two fixed-pitch cases.

For these cases, the results of the leap-frog methods for very

small time-steps appear to approach those of the direct im-

plicit coupling method. This means that for these two cases,

both methods can be used effectively, however, with four

times more steps per translation cycle required for the leap-

frog method than for the direct implicit coupling method.
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Test case 3 was simulated using the direct implicit cou-

pling method as well as the harmonic method. Figure 13

shows the predicted flap deflection angles. It was observed

that the harmonic method only produced a stable solution

when a single Fourier harmonic was used. Due to the se-

lection of the natural flap frequency, the second Fourier har-

monic exceeded the natural frequency of the flap. For two or

more Fourier modes in the harmonic balance method, a reso-

nance instability occurs. For this test case, the direct implicit

coupling method produced results which showed a temporal

convergence for the selected range of time steps. Also, the re-

sults for the direct implicit coupling method appear to be con-

sistent with those for the 1-mode harmonic balance method,

i.e. the component at 1/cycle for the results from the direct

implicit coupling method are close to the prediction from the

harmonic balance method.

Test cases 4a and 4b were also computed using the di-

rect implicit coupling method as well as the harmonic bal-

ance methods. Figure 14 shows the predicted flap deflection

angles. It was observed that the harmonic method produced a

stable solution only when a single Fourier harmonic was used,

as was the case for the test case 3 discussed previously. For

two or more Fourier modes in the harmonic balance method,

a resonance instability occurs. For cases 4a and 4b, the di-

rect implicit coupling method produced results which showed

a temporal convergence for the selected range of time steps.

Also, the results for the direct implicit coupling method ap-

pear to be consistent with those for the 1-mode harmonic bal-

ance method, i.e. the component at 1/cycle for the results

from the direct implicit coupling method are close to the pre-

dictions from the harmonic method. Figure 15 presents re-

sults from a more detailed investigation of the convergence

behaviour of the direct implicit coupling method for cases 4a

and 4b. In the analysis the number of time steps per transla-

tion cycle as well as the number of pseudo-steps in the dual

time-stepping method was varied. For all cases, a CFL of

20 was used. The results show that at least 50 pseudo-steps

per time-step were required to achieve the required tempo-

ral convergence with respect to the time-step in the dual-time

stepping method. Also, the results indicate that for this chal-

lenging test case, well-resolved results can be obtained with

the direct implicit coupling method with 1440 steps per trans-

lation cycle. This resolution is similar to what is used with

HMB for rotors in forward flight.

3.2.2 Flap excitation during dynamic stall

The pitch/translation schedule used in test cases 4a and 4b

was chosen such that stall would occur for the rigid airfoil

at identical conditions. The 1-degree-of-freedom flap aero-

elastic model can be seen to give a significant flap deflection

for the selected conditions. One of the effects of the flap de-

flection is a change of the airfoil camber. During the part of

the cycle associated with the ’retreating’ side of a helicopter

rotor disk, the highest angle of attack usually occurs around

2kt = 270o. For the direct implicit coupling method, the flap

schedule for these cases is shown in Figure 15. A large com-

ponent at the harmonic nearest to the natural frequency of the

flap can be observed for both natural frequencies of the flap.

The main effect of the natural frequencies of the flap can be

seen in the frequency content at higher frequencies as well as

the phasing. The phasing of the flapping schedule will now

largely determine whether during the part of the cycle with

the highest angle of attack, the camber of the airfoil can be

reduced or increased. For the test cases 4a and 4b, the only

difference is the flap eigenfrequency ω0, which for case 4a is

0.05, while it is 0.10 for case 4b. As can be seen from Fig-

ure 14(a) and 14(b), the flapping schedules for the two cases

have similar amplitudes. Of course, the frequency content is

significantly different. On the ’retreating’ side, the phasing

of the flapping excitation can be seen to be particularly dif-

ferent. In effect, the schedule obtained for case 4a has an

upward flap deflection when the section enters the part of the

cycle where stall is likely to occur. For case 4b, the opposite

is true. Figure 16 shows the Mach contours as well as stream-

lines for the section as it passed through the retreating side

of the cycle. The results shown are for a rigid section with-

out flapping deflection. The formation of a strong dynamic

stall vortex can be clearly seen. For case 4a, the Mach con-

tours and streamlines are shown in Figure 17, while case 4b is

shown in Figure 18. As can be seen, the reduced airfoil cam-

ber in case 4a delays the stall onset relative to test case 4b.

Comparing with the ’rigid’ section results, it can be seen that

for both flapped cases, the onset of dynamic stall is delayed.

The case with ω0 = 0.050 can be seen to also significantly

reduce the extent of the stalled flow, while for the case with

ω0 = 0.100 the addition of the flap motion did not reduce the

extent of separated flow. The sectional normal force as well

as the sectional normal force for cases 4a and 4b are com-

pared in Figure 19. The figures show results for the direct

implicit coupling method using 720 time steps per translation

cycle. Results are compared for 25 and 50 pseudo-steps per

time step. The comparison shows that the effect on the air-

foil aerodynamic loads is limited for the selected time step.

The results for the 19th and 20th periods are shown, indicat-

ing that that results have converged well into a time-periodic

state. The sectional loads clearly show the reduced dynamic

stall effect for the case with ω0 = 0.050, relative to that with

ω0 = 0.100, as shown in Figures 17 and 18. It is important to

note that the presence of the vortex near the flap results in the

flap moving closer to the vortex, changing further the aerofoil

camber.

3.3 Results for Wing with Active Part-Span Flaps

In this section, a wind tunnel model for a wing with two active

trailing edge tabs is considered. The wing was constructed

from a segment of a Sea King main rotor blade, which gave

the model a small linear twist. Figure 20 shows the CFD ge-

ometry created for this test case. An ellipsoidal wind tunnel

wall is assumed with flat end plates to mimic the geometry of

the AgustaWestland wind tunnel at Yeovil used for the tests.

The active tabs are denoted by the red and green surfaces on

the wing trailing edge. The CFD mesh for the flap is shown in

Figures 20(b) and 20(c). A C-type mesh is used with separate

block surfaces for the flaps. The mesh size was 4.7 million

cells and a wall distance of 10−5c was used based on past ex-

perience with cases at similar Re. The conditions of the test

cases computed are summarised in Table 8.

Figure 21 presents results for the effect of the flap on the

surface pressure coefficient distribution over the flapped sec-
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tion. For zero incidence of the main wing, the flap effect is

well-captured for deflections at +/− 3 degrees and the CFD

results fit well with the different measurements obtained dur-

ing the test at four stations near the leading edge of the wing.

The same holds for a case where the incidence of the wing is

8 degrees.

Figure 22 shows the span-wise effect of the flap. The

vertical dashed lines indicate the flap ends and one can see

that the effect of the flap dies gradually along the wing span.

This is expected since for this case the flap has been mod-

elled as a blended surface and the decay of the Cp away of

the flap is slow. The lift measured in the tunnel is compared

against CFD on Figure 23. Three flap deflection angles are

shown with minor differences between the CFD and experi-

ments. The results simply validate that the steady flow model

in HMB is capable of capturing the effect of the mean flap

deflection.

3.4 Coupled CFD/CSD Simulation of the UH-

60A Rotor in High-Speed Forward Flight

The UH-60A rotor [2] was chosen to assess the aeroelastic

coupling strategy. This rotor was tested in flight by NASA

and the US Army [21]. In the high-speed flight (Flight

Counter 8534), it has been shown [12, 36] that the torsional

deformation played an important role in the loading predic-

tions. This torsional deformation is triggered by the move-

ment of a shock on the advancing-side and the formation

of a shock on the blade lower surface. This case was used

by Steijl et al. [36], who showed that the inclusion of tor-

sional deformation extracted from flight test data allowed for

an improvement of the loads on the advancing side, that were

mainly driven by a high amplitude pitch-down torsion around

Ψ = 140 degrees. It was therefore deemed as an interesting

test-case to assess the coupling method.

The flight conditions and control angles are summarised

in Table 9. The grid contained 8.0 million nodes and the

k − ω BSL turbulence model [22] was used. A first simu-

lation was carried out using a structural damping of ζ = 0.3
for every structural mode and an azimuthal step of ∆Ψ =
0.25 degree. The implicit coupled method was used. The first

half of the revolution was run as a rigid case, before the blade

was allowed to elastically deform. Three revolutions allowed

for convergence on the deformations.

The blade geometry was estimated from information in

the literature [2], however, uncertainties still exist on the ex-

act blade geometry, twist distribution and structural model.

The blade deformations were extracted from the coupled

simulations and are shown in Figure 24. The most notice-

able property of the blade deformation was the strong dip in

torsion deformation at the advancing side. This deformation

was caused by a shock formed on the lower surface, shown in

Figure 25. With the torsional deformation, the shock moves

on the lower surface and increases the amplitude of the blade

deformation. The blade recovered from the torsional defor-

mation when the local free stream velocity decreased enough

for the strength of the shock to lower. Small oscillations also

appeared on the retreating side and a slight increase of tor-

sion was also noticed around Ψ = 25 degrees. The amplitude

of the second torsional mode seemed negligible compared to

the amplitude of the first torsional mode. The flapping defor-

mation also seemed to be dominated by the second flapping

mode, with a strong 1/Rev component, leading to a dip of the

tip flapping at Ψ = 135 degrees.

The Mach-scaled sectional normal force and pitching mo-

ments were extracted and are shown in Figure 26. The influ-

ence of the torsional deformation around Ψ = 160 degrees is

clearly visible, with negative normal force. High frequency

oscillations can also be noticed on the advancing side. These

were caused by BVIs. Looking at the pitching moments, the

transition between aerofoil sections and the start of the sweep

can be noticed through the moment discontinuities in the ra-

dial direction. The BVI area is also visible with the high-

frequency changes on the advancing side. The higher mo-

ments due to the SC1094-R8 seemed to trigger the dip in the

torsional moment, due to the higher amplitude of the pitching

moment between Ψ = 45 degrees and Ψ = 120 degrees.

The sectional normal force was compared with flight-test

measurements [21] at r/R = 0.675 and r/R = 0.865 in

Figure 27. The dip in the sectional forces on the advancing

side appeared stronger in the simulations than in the flight test

measurements, and was delayed by 15 degrees. However, the

loads on the retreating side agreed better with the flight test

measurements. At r/R = 0.675, the BVIs predicted by the

simulations did not seem to occur in the flight tests on the

advancing-side, but at r/R = 0.865, their locations and am-

plitudes seemed to agree with the flight test data. The mean

normal force in the first quadrant is, however, over-predicted.

The predicted loads were also compared to the ones obtained

with a rigid blade and the ones obtained by Steijl et al. [36],

using a prescribed torsion closer to the flight tests data. The

effect of the blade in-flight deformation was mainly located

on the advancing side. On the retreating side, the coupled

case, predicted a higher increase of the Mach-scaled loading

in the forth quadrant, in better agreement with flight test mea-

surements. On the advancing-side, the differences in the dip

amplitude and phase between the coupled simulation and the

flight test measurements appeared to be due to different tor-

sional levels between simulation and flight test data, as the

simulation with a prescribed torsion agreed better with the

flight tests. The BVIs around Ψ = 85 degrees also appeared

to be stronger in the coupled simulation compared to the oth-

ers, which may come from the inclusion of the flapping de-

formation. Clearly, the approximate blade shape and the lack

of detailed data for the structural properties have an influence

on the results. The mesh deformation method, however, man-

aged to produce good quality grids, and resulted in no loss of

code stability.

It was then decided to study the influence of the structural

damping coefficient ζ (see Equation 12) on the blade in-flight

deformation. Therefore, damping coefficients of ζ = 0.1 and

ζ = 0.02 were compared to the original value of 0.3. The

evolution of the blade tip deformation with the damping co-

efficient can be seen in Figure 28. The main features of the

blade deformation did not change. The tip flapping showed a

difference in the recovery from the dip on the advancing side.

With the lower damping, the recovery happened at a higher

speed, and the overshoot was also more pronounced. Higher

differences can also be noticed on the tip torsion. The first

remark deals with the converged state. While all blades con-
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verged to the same equilibrium state at ζ = 0.3, it was noticed

that for lower damping coefficients, the converged deforma-

tion of blades 1 and 3 was marginally different from the one

of blades 2 and 4. Also, the aerodynamic damping on the

retreating side proved low, and a decrease in the structural

damping allowed the blade to vibrate at the frequency of the

first torsional mode.

The influence of the azimuthal time step was also stud-

ied, using ∆Ψ = 1degree and ∆Ψ = 0.25 degree. The ob-

tained tip deformation is shown in Figure 29. The difference

in the blade deformation predictions with ∆Ψ = 1degree
and ∆Ψ = 0.25 degrees was limited to the advancing side in

tip torsion, with an earlier recovery from the dip when using

∆Ψ = 0.25 degree.

Therefore, a time step ∆Ψ = 0.25 degrees was used to

compare the two proposed coupling methods: the leap-frog

and the implicit method. Figure 30 shows the tip deformation

for the two methods. The difference between the two methods

proved limited, with almost identical results.

Finally, the influence of the turbulence model was as-

sessed, with the use of the k − ω BSL and SST turbulence

models [22]. A time step of ∆Ψ = 0.25 degrees, and damp-

ing ratio of ζ = 0.3 were used. The tip deformation pre-

dictions are shown in Figure 31. The main difference was

located on the dip: a 0.7 degree difference was visible in the

dip of the tip torsion, the torsional deformation being more

important with the k − ω BSL model. This difference is due

to the small differences in strength of the shock appearing on

the blade tip area.

3.5 Results for rotor with active trailing-edge de-

vices

In this section, a 4-bladed model rotor is considered with

straight blades of NACA0012 section and aspect ratio of ap-

proximately 12.2. Each blade is equipped with two active

trailing-edge tabs; an inboard one of 15% spanwise extent

centred around 60%R, and an outboard one with 10% span-

wise extent centred around 80%R. In the chordwise direction,

the flap had a dimension of 15%c. Based on these basic ro-

tor parameters, a CFD geometry was defined with a generic

rotor hub and wind tunnel support, with tunnel dimensions

modelled on a typical subsonic tunnel return section (15× 10
R) at the Politechnico di Milano. The rotor geometry as well

as the flap locations are shown in Figure 32. For the CFD

analysis presented here, the sliding-plane method was used

to couple a stationary background mesh (which includes the

far-field boundaries and the cylindrical wind tunnel support)

with a drum around the rotor blades and the hub. In this sec-

tion, the application of the mesh motion/deformation method

described in Section 2.5 for rotor simulations including active

trailing-edge taps is discussed. Table 10 presents a summary

of the selected test cases.

Figure 33 shows the pressure in a slice of the flow field

perpendicular to the blade spanwise direction. The location

of the sliding planes is shown with the thick black lines. The

effect of the sliding planes on the pressure is limited, as shown

by the continuity of the isobar curves.

Figure 34 presents the rotor normal loading evolution with

the flaps, using an inviscid simulations. The effect of the

flaps proved to be strong at the flap locations (between the

dot-dashed lines), but also showed an influence on the normal

loading of the non-flapped sections. When using a viscous

simulation, using the k − ω turbulence model, similar effect

on the loads can be observed, as shown in Figure 35.

4 CONCLUSIONS

A CFD method for predicting the flow field around aeroelas-

tic flapped rotor has been introduced. This method is using a

mesh deformation algorithm based on the use of trans-finite

interpolation and spring analogy, and was shown to preserve

the mesh quality in the area near the aerofoil, where a high

mesh quality is necessary to accurately predict flow features,

such as the boundary layer, and stall.

A first study dealt with a freely moving flap attached to

a 2D-aerofoil. The aerodynamic environment of blade sec-

tions on a rotor in forward flight were approximated using a

combination of an oscillatory translation and pitching motion,

mimicking the effect of the tangential velocity changes and

blade pitch schedule of sections on a rotor in forward flight,

respectively. The unsteady aerodynamics of the blades cre-

ates a time-dependent flap deflection. For the cases consid-

ered, the flap deflection was shown to be bounded. Various

time integration methods in the 1-degree-of-freedom were in-

vestigated in detail. The fully implicit coupling method was

found to be the faster in convergence, allowing higher CFL,

more robust than the leap-frog method and less dependent on

the number of pseudo-steps. Time marching methods with a

less direct coupling, i.e. the leap-frog method were found to

give similar results to the fully implicit method when a much

smaller time-step was used. As an alternative to the time-

marching methods, a harmonic balance method was coupled

to the time-marching CFD method. This method was found

to be quite effective in establishing a time-periodic solution

assuming an appropriate choice of an under-relaxation fac-

tor was used. With this choice of under-relaxation factor, the

method was shown to be capable of resolving most of the

flap dynamics of time-marching solutions, when a reduced

number of time-steps per cycle were used compared to the

time-marching simulations. However, the coupled harmonic

balance time-marching CFD method was proved to be prone

to instabilities. To obtain a stable simulation, the number of

Fourier modes needed to be cut-off below the harmonic clos-

est to the natural frequency of the flap. For stability analysis

and accurate load evaluation, the method with direct implicit

coupling appears to be the most reliable and accurate of the

methods investigated in this work. The effect of the flaps was

also tested for a wing, using a prescribed flap position. Trail-

ing edges flaps were added on a part of a Seaking blade, and

the loads predictions were compared to wind tunnel measure-

ments. The effect of the flaps on the wing lift proved to be ac-

curately captured by the CFD simulations. A strong coupling

method was then applied to the UH-60A rotor in high-speed

forward flight. The method proved to be able to predict the

strong torsion peak on the advancing side, and allowed to get

converged deformations in three rotor revolutions for a damp-

ing coefficient of ζ = 0.3. Finally, the effect of flaps on ro-

tors was demonstrated, using a model rotor. Two trailing edge

flaps were located on each blade, and all flaps underwent the

10



same actuation as a function of the azimuth. The flaps clearly

influenced the spanwise loading on the full blade, instead of

having a local effect only.

The HMB method was found capable of dealing with

flapped rotors and their aeroelastics. Further studies should

deal with the effect of the flap actuation on the acoustic and

vibrations coming from the rotor, as well as improvements of

the rotor performance. Freely moving flaps for rotor cases

should also be tested, in order to assess the flap stability, and

the influence of the flaps on the aeroelastic blade deforma-

tions should also be assessed and quantified.
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Table 1: CFD/CSD coupling methods in the literature

Authors Coupling

Strategy

CFD Code CSD Code Fluid

model

Test case

Servera et al. [29],

2001

Weak WAVES HOST Euler ONERA 7A and 7AD rotors

(µ = 0.4)

Beaumier et al. [6],

2001

Weak CANARI,

FLOWer

R85 RANS Hovering ONERA 7A and

Bo-105 rotors

Altmikus et al. [1],

2002

Weak,

Strong

WAVES,

FLOWer

HOST Euler ONERA 7A rotor (µ = 0.4)

Pomin and Wagner

[27], 2004

Strong INROT DYNROT Hybrid

RANS-

Euler

ONERA 7A rotor (hover

and µ = 0.4)

Potsdam et al. [28],

2004

Weak OVERFLOW-

D

CAMRAD-

II

RANS UH-60A rotor (flight coun-

ters 8534, 8513 and 9017)

Pahlke and Van der

Wall [26], 2005

Weak FLOWer S4 RANS ONERA 7A and 7AD rotors

(µ = 0.4)

Biedron and Lee-

Rausch [7, 8], 2008,

2011

Weak FUN3D CAMRAD-

II

RANS HART-II (µ = 0.1509)

and UH-60A (flight counters

8534 and 9020) rotors

Ortun et al. [25],

2008

Strong elsA MSC.Marc RANS ONERA 7A (µ = 0.4) and

ERATO (µ = 0.423) rotors

Dietz et al. [15],

2008

Weak FLOWer HOST RANS GOAHEAD helicopter con-

figuration (µ = 0.0956)

Sitaraman and Roget

[32], 2009

Strong UMTURNS DYMORE RANS,

Vor-

ticity

trans-

port

UH-60A rotor (pull-up

manoeuvre flight counter

11029)

Table 2: Test cases considered for 1 degree-of-freedom model

case Mmean µrotor µ ω0 ζ θ0 θ1s θ1c

1a 0.5553 0.333 100 0.100 0.0 2.0o 0.0o 0.0o

1b 0.5553 0.333 10 0.100 0.0 2.0o 0.0o 0.0o

2 0.5553 0.333 100 0.100 0.0 4.0o 0.0o 0.0o

3 0.5553 0.333 100 0.100 0.0 2.0o 8.0o −2.0o

4a 0.5553 0.333 100 0.050 0.0 6.0o 8.0o −2.0o

4b 0.5553 0.333 100 0.100 0.0 6.0o 8.0o −2.0o

Table 3: Simulations performed for test case 1a

method steps/cycle pseudo-steps harmonics

Leap-frog 360, 720, 1440, 2880 25, 50 -

Direct-implicit 360, 720, 1440, 2880 50, 100 -

Periodic 360 50 1, 2, 3, 4, 10, 32

Table 4: Simulations performed for test case 2

method steps/cycle pseudo-steps harmonics

Leap-frog 1440, 2880, 5760 50 -

Direct-implicit 360, 720, 1440, 2880 50, 100 -

Periodic 360 50 1
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Table 5: Simulations performed for test case 3

method steps/cycle pseudo-steps harmonics

Leap-frog 360, 720, 1440, 2880 50 -

Direct-implicit 360, 720, 1440 25, 50, 100 -

Periodic 360, 720, 1440 50 1, 10

Table 6: Simulations performed for test case 4a

method steps/cycle pseudo-steps harmonics

Leap-frog 360, 720, 1440 50 -

Direct-implicit 360, 720, 1440 25, 50, 100 -

Periodic 360 50 1, 10

Table 7: Simulations performed for test case 4b

method steps/cycle pseudo-steps harmonics

Leap-frog 360, 720, 1440, 2880, 5760 50 -

Direct-implicit 360, 720, 1440 25, 50, 100 -

Periodic 360 50 1, 10

Table 8: Wind-Tunnel cases - Wing Configuration

model α u∞ (ft/s) M∞ Reynolds no. δf freq. (Hz)

RANS k − ω 0.0o 110 0.10 1.0× 106 ±3.0o 0
RANS k − ω 4.0o 110 0.10 1.0× 106 ±3.0o 0
RANS k − ω 8.0o 110 0.10 1.0× 106 ±3.0o 0
RANS k − ω 12.5o 110 0.10 1.0× 106 ±3.0o 0
RANS k − ω 0.0o 150 0.13 1.13× 106 ±3.0o 0
RANS k − ω 4.0o 150 0.13 1.13× 106 ±3.0o 0
RANS k − ω 8.0o 150 0.13 1.13× 106 ±3.0o 0
RANS k − ω 12.5o 150 0.13 1.13× 106 ±3.0o 0

Table 9: UH-60A flight conditions and trimming for flight counter 8534. The angles are given in degrees.

µ M∞ Re∞ αS θ0 θ1c θ1s β0 β1c β1s
0.368 0.256 2.735× 106 −7.31 11.6 −2.39 8.63 3.43 −0.70 −1.00

Table 10: Model rotor test case parameters

model Mtip µ θ(ψ) δf (ψ) gridsize

Euler (rigid) 0.50 0.15 8o − 2o sin(ψ) + 2o cos(ψ) 0o 9.6 · 106
Euler (active) 0.50 0.15 8o − 2o sin(ψ) + 2o cos(ψ) 5o sin(5 · ψ) 9.6 · 106
k − ω (elastic) 0.50 0.15 8o − 2o sin(ψ) + 2o cos(ψ) 0o 13.6 · 106
k − ω (active) 0.50 0.15 8o − 2o sin(ψ) + 2o cos(ψ) 5o sin(5 · ψ) 13.6 · 106
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Figure 1: Definition of flap surfaces on wing. Flapping motion around a user-defined hinge line. In the vicinity of the edge,

surface blending is used when a neighbouring surface is fixed or the surface belongs to a different flap.
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Figure 2: Mesh deformation for blended trailing-edge flap. Examples show 2D mesh for NACA0012 section, with flap hinge at

different locations. Solid circle denotes hinge location. The amplitude of the flap deflection is 5.0o in all cases.
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(a) Leap-frog method (b) Implicit method

Figure 3: Aeroelastic coupling strategies tested for a forward-flying rotor.

17



0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

(a) β = 0o, θ = 0o, δf = 5o

0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

(b) β = 0o, θ = −8o, δf = 5o

0.6

0.58

0.56

0.54

0.52

0.5

0.48

0.46

0.44

0.42

0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

(c) β = 2o, θ = −8o, δf = 5o

Figure 4: Relative cell volume changes due to mesh deformation accounting for rotor trimming and trailing-edge flap actuation.

Spanwise cut through mid-span of inboard flap.
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Figure 5: Relative cell volume changes due to mesh deformation accounting for rotor trimming and trailing-edge flap actuation.

Chordwise cut through mid-chord of flaps.
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Figure 7: Flap 1DOF aero-elastic model. Cambered section (OA209) with finite trailing-edge thickness. M = 0.550375. Flap

has an initial 2.0o downward deflection. Effect of temporal accuracy of structural response without aero-elastic coupling is shown

in (a), while the results with aero-elastic coupling are shown in (b).
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Figure 8: Surface pressure distribution. ONERA OA209 section in oscillatory translation. M∞ = 0.5553. Advance ratio

µ = 0.333. Pitch angle is kept fixed at 4.0o. A rigid section is assumed with δ = 0o. Test case 2.
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Figure 9: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Fixed pitch at θ = 2.0o, mass ratio

µ = 10.0. Inviscid simulations - Case 1b.
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Figure 10: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Fixed pitch at θ = 2.0o, mass ratio

µ = 10.0. Turbulent flow - SST model - Case 1b
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Figure 11: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Fixed pitch at θ = 2.0o, mass ratio

µ = 100.0 - Case 1a.

2kt [deg]

δ
fl
a

p
[d

e
g

]

0 45 90 135 180 225 270 315 360
6

5

4

3

2

1

0

1

2

3

4 360 steps/cycle  50 pseudosteps
360 steps/cycle  100 pseudosteps
720 steps/cycle  50 pseudosteps
1440 steps/cycle  50 pseudosteps
2880 steps/cycle  50 pseudosteps

Figure 12: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Fixed pitch at θ = 4.0o. Compari-

son of effect of time-step and employed scheme - Case 2.
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Figure 13: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory pitch/translation. Pitch schedule θ = 2.0o −
8.0osin(2kt) + 2.0ocos(2kt) - Case 3.
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Figure 14: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Pitch schedule θ = 6.0o −
8.0osin(2kt) + 2.0ocos(2kt) - Cases 4a, b.
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Figure 15: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Pitch schedule θ = 6.0o −
8.0osin(2kt) + 2.0ocos(2kt) - Cases 4a, b.
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Figure 16: Mach contours. Rigid ONERA OA209 section without flapping deflection in oscillatory translation. Pitch schedule

θ = 6.0o − 8.0osin(2kt) + 2.0ocos(2kt).
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Figure 17: Mach contours. Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Pitch schedule

θ = 6.0o − 8.0osin(2kt) + 2.0ocos(2kt). ω0 = 0.050.
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Figure 18: Mach contours. Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Pitch schedule

θ = 6.0o − 8.0osin(2kt) + 2.0ocos(2kt). ω0 = 0.100.
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(b) sectional pitching moment

Figure 19: Flap 1DOF aero-elastic model. ONERA OA209 section in oscillatory translation. Pitch schedule θ = 6.0o −
8.0osin(2kt) + 2.0ocos(2kt).
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(a) Wind tunnel section and model

(b) C-topology mesh (c) Surface mesh

Figure 20: Definition geometry of wing wind tunnel model. Dark surface denotes active flap surface. (a) The wing is positioned

in an elliptical cross-section tunnel, (b) mesh has C-topology around the wing, (c) surface mesh on wing surface.
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Figure 21: Wing wind-tunnel model with active trailing edge flap. Steady flow test cases. CFD results for chordwise pressure

coefficient at flap mid-span location are compared with experimental data.
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Figure 22: Wing wind-tunnel model with active trailing edge flap. Steady flow test cases. Spanwise loading for different wing

incidences. Undeflected flap case compared with 2.61o flap down and 2.85o flap up. M = 0.133, Re = 1.13 · 106.
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Figure 23: Wing wind-tunnel model with active trailing edge flap. 0.0o and 8.0o incidence - ’high q’. Steady flow test cases.

Undeflected flap case compared with 2.61o flap down and 2.85o flap up. M = 0.133, Re = 1.13 · 106.
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(a) Elastic flapping (b) Elastic torsion

Figure 24: Predicted UH-60A blade deformation during a revolution for Flight 8534.

Figure 25: Comparison of the pressure coefficient on the blade lower surface between a rigid blade assumption and an elastic

blade for Flight 8534.
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(a) M2Cn (b) M2Cm

Figure 26: Loading of the UH-60A for Flight 8534.

(a) r/R = 0.675 (b) r/R = 0.865

Figure 27: Comparison of the sectional normal force of the UH-60A with flight test measurements for Flight 8534. The prescribed

twist predictions were obtained by Steijl et al. [36].
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(a) Tip flapping (b) Tip torsion

Figure 28: Predicted blade tip deformations for several structural damping coefficients (ζ) for Flight 8534.

(a) Tip flapping (b) Tip torsion

Figure 29: Effect of the time step on the predicted blade tip deformations for Flight 8534. Method 2 is the implicit coupled

method.
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(a) Tip flapping (b) Tip torsion

Figure 30: Comparison of the predicted blade tip deformations with for two coupling methods for Flight 8534. Method 1

represents the leap-frog method and Method 2 the implicit coupling method.

(a) Tip flapping (b) Tip torsion

Figure 31: Influence of the turbulence model on the predicted UH-60A blade tip deformation for Flight 8534. The implicit

coupling method was used.
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Figure 32: Geometry of 4-bladed WT model rotor, with idealised rotor head and WT support. Each blade has two active trailing-

edge tabs, indicated as blue and green in plots.
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Slidingplane

Slidingplane

(a) ψ = 180o - mid-span inboard flap

Slidingplane

Slidingplane

(b) ψ = 180o - mid-span outboard flap

Figure 33: Rotor with active trailing edge flaps. Pressure coefficient in slices through mid-span stations of flaps. µ = 0.15,

Mtip = 0.5.
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Figure 34: Rotor with active trailing edge flaps. Spanwise loading. Inviscid flow. Results for blade with two active flaps are

compared with base-line rotor. µ = 0.15, Mtip = 0.5. Flap deflection δf (ψ) = 5.0osin(5ψ).
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Figure 35: Rotor with active trailing edge flaps. Spanwise loading. Turbulent flow. Results for blade with two active flaps are

compared with base-line rotor. In both cases, elastic torsional deflection is included. µ = 0.15, Mtip = 0.5. Flap deflection

δf (ψ) = 5.0osin(5ψ).
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